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Abstract. In this paper, we consider a second order nonlinear di¤erential
equation and establish two new theorems about the existence of the bounded
solutions of a second order nonlinear di¤erential equation. In these theorems,
we use di¤erent Lyapunov functions with di¤erent conditions but we get the
same result. In addition, two examples are given to support our results with
some �gures.

1. Introduction

For more than sixty years, a great deal of work has been done by various authors
to investigate the autonomous and non-autonomous second order nonlinear ordinary
di¤erential equations (ODEs) ( [1]- [5], [7]- [14], [16], [17], [19] ) and references cited
therein.
In investigating the qualitative properties of solutions for second order ODEs,

the �xed point method, perturbation theory, variations of parameter formulas, etc.
have been used to get information without solving the equations. Moreover, in
some of these works, the authors have been studied the Lyapunov direct or second
method by constructing di¤erent Lyapunov functions or using existing Lyapunov
functions.
As far as we know, it should be noted in the relevant literature that so far,

the second method of Lyapunov is the most e¤ective tool for studying qualitative
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features of nonlinear higher order equations without getting solutions of the equa-
tions. This method needs the creation of an appropriate function or functionality
that gives concrete results for the problem being studied.
In 1995, Meng [6] dealt with the ordinary linear di¤erential equation of second

order
x00(t) + p(t)x0(t) + [q1(t) + q2(t)]x(t) = f(t);

and in 2002, Yuangong and Fanwei [18] considered the second order time lag non-
linear di¤erential equation

(r(t)x0(t))0 + p(t)x0(t) + [q1(t) + q2(t)]x(t) = f(t; x(t)):

The authors got some interesting results on the boundedness and square integra-
bility of solutions of the ODEs.
In 2019, Tunç and Mohammed [15] considered two di¤erent models for nonlinear

of second order

x00(t) + p(t)g(x0) + q1(t)h(x) + q2(t)x = f(t; x; x0)

and
x00(t) + �(t; x; x0) + q1(t)x+ q2(t)�(x) = q(t; x; x0):

They investigate asymptotic boundedness of solutions of the ODEs as t �!1:
In this paper, motivated by the work of Tunc and Mohammed [15], we deal with

the following second order nonlinear di¤erential equation:

x00 + f(t; x; x0) + q1(t)'(x) + q2(t) (x) = g(t; x; x0); (1)

where x 2 R = (�1;1); t 2 R+ = [0;1): f 2 C1(R+�R2;R); q1; q2 2 C1(R+;R);
';  2 C1(R;R); g 2 C(R+ � R2;R) and f(t; x; 0) = 0; '(0) = 0;  (0) = 0:
Under the assumptions, the existence of the solutions of Eq. (1) is guaranteed. In
addition, we assume that the functions f; ';  and g ful�ll the Lipschitz condition
with respect to x and its derivative x0. So, the solutions of Eq. (1) are uniqueness.
Eq. (1) can be written as

x0 = y

y0 = �f(t; x; x0)� q1(t)'(x)� q2(t) (x) + g(t; x; x0): (2)

Let

'�(x) =

8<: x�1'(x); x 6= 0
'0(0); x = 0;

 �(x) =

8<: x�1 (x); x 6= 0
 0(0); x = 0

and

f�(t; x; y) =

8<:
y�1f(t; x; y); y 6= 0
f 0y(t; x; 0); y = 0:
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2. Main Results

The following assumptions are needed to formulate our main results.

(A1) f(t; x; 0) = 0; y�1f(t; x; y) � f0 � 1 for all t 2 R+; x 2 R; y 2 R� f0g:
(A2) '(0) = 0; x�1'(x) � '0 � 1 for all x 2 R� f0g:
(A3)  (0) = 0; x�2 2(x) � 1 for all x 2 R� f0g:
(A4)  (0) = 0; x�1 (x) �  0 � 1 for all x 2 R� f0g:
(A5) q1(t) > 0; q2(t) > 0; q01(t) > 0;8t 2 R+:
(A6) The functions g1(t);�(t); h(t) are continuous such that

jg(t; x; y)j � jg1(t)j;8t 2 R+; 8x; y2R; (3)

�(t) =
1

2
(q01(t) + 2q1(t)); 8t 2 R+;Z 1

a

q22(s)

h2(s)�(s)
ds <1;

Z 1

a

g21(s)

�(s)
ds <1;

h2(t) � 1; 8t 2 R+:

Theorem 1. If the conditions (A1); (A2); (A3); (A5) and (A6) hold, any solution
of Eq. (1) satis�es

jx(t)j � O(1);

����dxdt
���� � O(

p
q1(t)); t �!1:

Proof. We establish the following Lyapunov function because we use the Lyapunov
second method

V (x; y) = 2

Z x

0

'(�)d� +
1

q1(t)
y2: (4)

From (A1); (A2); (A5) and (A6); we get V (x; y) = 0 if and only if x = 0 and y = 0:
From (A2) and q1(t) > 0; we have

V (x; y) � x2 +
1

q1(t)
y2 � 0:

Di¤erentiating the Lyapunov function V in (4) along the solutions of the system
(2) and using (A1); we obtain

d

dt
V = � q

0
1(t)

q21(t)
y2 � 2

q1(t)
yf(t; x; y)� 2q2(t)

q1(t)
y (x) +

2

q1(t)
yg(t; x; y)

� � q
0
1(t)

q21(t)
y2 � 2

q1(t)
y2 � 2q2(t)

q1(t)
y (x) +

2

q1(t)
yg(t; x; y)

= � 2

q21(t)

�
1

2
q01(t) + q1(t)

�
y2 � 2q2(t)

q1(t)
y (x) +

2

q1(t)
yg(t; x; y):

Since

�(t) =
1

2
(q01(t) + 2q1(t)); (5)
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we have
d

dt
V � �2�(t)

q21(t)
y2 � 2q2(t)

q1(t)
y (x) +

2

q1(t)
yg(t; x; y):

We assume that a > 0; b; x 2 R: If we use the inequality

� ax2 + bx � �a
2
x2 +

b2

2a
; (6)

to the terms

�2�(t)
q21(t)

y2 +
2

q1(t)
yg(t; x; y);

and from (A5); (A6); we get

d

dt
V � ��(t)

q21(t)
y2 � 2q2(t)

q1(t)
y (x) +

g21(t)

�(t)
: (7)

Let

W (x; y) = ��(t)
q21(t)

y2 � 2q2(t)
q1(t)

y (x):

Rearranging W (x; y); we have

W (x; y) = ��(t)
q21(t)

�
h(t)y +

q1(t)q2(t)

h(t)�(t)
 (x)

�2
+

q22(t)

h2(t)�(t)
 2(x)+

�(t)

q21(t)

�
h2(t)� 1

�
y2:

Since the �rst term of W (x; y) is negative, it is clear that

W (x; y) � q22(t)

h2(t)�(t)
 2(x) +

�(t)

q21(t)
(h2(t)� 1)y2: (8)

From (7) and (8)

d

dt
V � q22(t)

h2(t)�(t)
 2(x) +

�(t)

q21(t)

�
h2(t)� 1

�
y2 +

g21(t)

�(t)
: (9)

We assume that

q22(t)

h2(t)�(t)
=
�(t)

q1(t)

�
h2(t)� 1

�
:

Hence

h2(t) =
�2(t) +

p
�4(t) + 4q1(t)q22(t)�

2(t)

2�2(t)
:

So, it can be seen that h2(t) � 1 for t 2 R+: Thus, we obtain

W (x; y) � q22(t)

h2(t)�(t)

�
 2(x) +

1

q1(t)
y2
�
: (10)

From (9) and (10)

d

dt
V � q22(t)

h2(t)�(t)

�
 2(x) +

1

q1(t)
y2
�
+
g21(t)

�(t)
: (11)
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Also, from (A3); we know that

 2(x) +
1

q1(t)
y2 � x2 +

1

q1(t)
y2 � V (t):

And applying the inequality to (11), we can derive

d

dt
V � q22(t)

h2(t)�(t)
V � g21(t)

�(t)
:

Multiplying the inequality by

exp

�
�
Z t

t0

q22(s)

h2(s)�(s)
ds

�
and integrating this inequality from t0 to t; we get

V (t) � V (t0) exp

�Z t

t0

q22(s)

h2(s)�(s)
ds

�
+

Z t

t0

�
g21(s)

�(s)
exp

�Z t

s

q22(�)

h2(�)�(�)
d�

��
ds:

Hence we can take

V (t) � V (t0) exp

�Z 1

t0

q22(s)

h2(s)�(s)
ds

�
+

Z 1

t0

�
g21(s)

�(s)
exp

�Z 1

s

q22(�)

h2(�)�(�)
d�

��
ds:

Because of (A6); we can assume that

V (t0) exp

�Z 1

t0

q22(s)

h2(s)�(s)
ds

�
+

Z 1

t0

�
g21(s)

�(s)
exp

�Z 1

s

q23(�)

h2(�)�(�)
d�

��
ds = A;

where A > 0; A 2 R: So, we have
V (t) � A

and

x2 +
1

q1(t)
y2 � V (t) � A:

Therefore, we �nd
jx(t)j �

p
A; jy(t)j �

p
Aq1(t):

Hence
jx(t)j � O(1); jy(t)j � O(

p
q1(t)); t �!1:

�
The result of the following theorem is the same as the result of Theorem 1 but

we use di¤erent Lyapunov function and some di¤erent conditions in Theorem 2.

Theorem 2. If the conditions (A1); (A2); (A4); (A5) and (A6) hold, any solution
of Eq. (1) satis�es

jx(t)j � O(1);

����dxdt
���� � O(

p
q1(t)); t �!1:
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Proof. We determine the Lyapunov function as follows

V (x; y) = 2

Z x

0

�
'(�) +

q2(t)

q1(t)
 (�)

�
d� +

1

q1(t)
y2: (12)

From (A1); (A2); (A4); (A5) and (A6); we get V (x; y) = 0 if and only if x = 0
and y = 0: From (A2); (A4); q1(t) > 0 and q2(t) > 0; we have

V (x; y) �
�
1 +

q2(t)

q1(t)

�
x2 +

1

q1(t)
y2 � 0:

Di¤erentiating the Lyapunov function V in (12) along the solutions of the system
(2) and using (A1); we �nd

d

dt
V = � 2

q1(t)
yf(t; x; y) +

2

q1(t)
yg(t; x; y)� q01(t)

q21(t)
y2

� � 2y2

q1(t)
+

2

q1(t)
yg(t; x; y)� q01(t)

q21(t)
y2

= � 2

q21(t)

�
1

2
q01(t) + q1(t)

�
y2 +

2

q1(t)
yg(t; x; y):

De�ning �(t) as in (5), we have

d

dt
V � �2�(t)

q21(t)
y2 +

2

q1(t)
yg(t; x; y):

Let a > 0; b; x 2 R: From the inequality (6) and (A6); we get

d

dt
V � ��(t)

q21(t)
y2 +

g21(t)

�(t)
:

Since the �rst term of the inequality is negative, we can write

d

dt
V � g21(t)

�(t)
:

Integrating this inequality from t0 to t; we get

V (t) � V (t0) +

Z t

t0

g21(s)

�(s)
ds:

Hence we can take

V (t) � V (t0) +

Z 1

t0

g21(s)

�(s)
ds:

Because of (A6); we can assume that

V (t0) +

Z 1

t0

g21(s)

�(s)
ds = B; B > 0; B 2 R:

So, we have
V (t) � B:
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From (A2); (A4) and (A5); we know that

x2 +
1

q1(t)
y2 � V (t) � B:

Therefore, we �nd
jx(t)j �

p
B; jy(t)j �

p
Bq1(t):

Hence
jx(t)j � O(1); jy(t)j � O(

p
q1(t)); t �!1:

�

Remark 3. If it is taken f(t; x; x0) = p(t)g(x0) and  (x) = x in Eq. (1) or
'(x) = x in Eq. (1), Theorem 1 or Theorem 2 in [15] is obtained, respectively.

3. Examples

Example 4. As a special case of Eq. (1), we consider the following second order
nonlinear ODE

x00 + 6x0 + x0e�t�x
2

+ 5e3t(5 + sinx)x+ 2e2t(1� e�x
2

)x =
cost

e3t(1 + 2ex4)
(13)

or

x0 = y

y0 = �6x0 � x0e�t�x
2

� 5e3t(5 + sinx)x� 2e2t(1� e�x
2

)x+
cost

e3t(1 + 2ex4)
:

It is clear that the conditions (A1); (A2); (A3); (A5) and (A6) are satis�ed. So,
from Theorem 1, all solutions of Eq. (13) satisfy

jx(t)j � O(1);

����dxdt
���� � O(

p
5e3t); t �!1

as shown in Fig. 1 obtained by using the adaptive MATLAB solver ode45.

Example 5. Taking f(t; x; x0) = 5x0et sin2 x; q1(t) = 2e3t; '(x) = xex
2

; q2(t) =

5e4t;  (x) = (3 + sinx)x and g(t; x; x0) =
sinx0

e6t(2 + ex2)
in Eq. (1), we get the

following second order nonlinear ODE

x00 + 5x0et sin2 x+ 2e3txex
2

+ 5e4t(3 + sinx)x =
sinx0

e6t(2 + ex2)
(14)

or

x0 = y

y0 = �5x0et sin2 x� 2e3txex
2

� 5e4t(3 + sinx)x+ sinx0

e6t(2 + ex2)
:
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Figure 1. The solution of Eq. (13) with the initial conditions
x(0) = 0; y(0) = �1 in t 2 [0; 10]:

It is clear that the conditions (A1); (A2); (A4); (A5) and (A6) are satis�ed. So,
from Theorem 2, all solutions of Eq. (14) satisfy

jx(t)j � O(1);

����dxdt
���� � O(

p
2e�3t); t �!1

as shown in Fig. 2 obtained by using the adaptive MATLAB solver ode45.

4. Conclusion

We have presented a new second order nonlinear di¤erential equation (1) to study
the existence of the bounded solutions of the equation by using the Lyapunov direct
or second method. Additionally, we give two examples to support our main results.
Also, MATLAB has been used to draw two �gures. Fig. 1 in �rst example shows the
solution (x(t); y(t)) of Eq. (13) with the initial conditions x(0) = 0; y(0) = �1 in
t 2 [0; 10]: The solution is bounded since the conditions of Theorem 1 are satis�ed.
Fig. 2 exempli�es the solution (x(t); y(t)) of Eq. (14) with the initial conditions
x(0) = 1; y(0) = 0 in t 2 [0; 7]: The solution is bounded since the conditions of
Theorem 2 are satis�ed. Moreover, taking f(t; x; x0) = p(t)g(x0) and  (x) = x or
'(x) = x in Eq. (1), Theorem 1 or Theorem 2 in [15] is gotten, respectively. So,
Eq. (1) is a generalization of Eq. (6) and Eq. (7) in [15].

Declaration of Competing Interest The author has no competing interest to
declare.
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Figure 2. The solution of Eq. (14) with the initial conditions
x(0) = 1; y(0) = 0 in t 2 [0; 7]:
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