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Abstract

Fixed point theory and contractive mappings are popular tools in solving a variety of problems such as
control theory, economic theory, nonlinear analysis and global analysis.There are many works on di�erent
types of contractions to �nd a �xed point in metric spaces. Improving and extending some kind of those, in
this paper, we introduce a new version of H-contradiction for four mappings in a metric space (X,d). Then,
we prove the existence and uniqueness of a common best proximity point for four non-self mappings. An
example is also given to support our main result. The related �xed point theorem are also proved.
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1. Introduction and Preliminaries

Since the �rst results of Banach in 1922, various authors have been studying �xed points, and, in recent
years, best proximity points of mappings in metric spaces. Their discoveries are still being generalized in
many directions; see [1] to [10]. In a recent paper, Wardowski [11] presented a new contraction, which called
F -contraction and proved a �xed point results in complete metric spaces. Then Omidvari et al.[12] proved
existence of a unique best proximity point for F -contractive non-self mappings. In this paper, we extend
their results by introduce a new version of Wardowski's contraction for four mappings in a complete metric
space and estabilish a new common best proximity point theorem. Next, by an example and a �xed point
result, we support our main results and show some applications of them.
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Given two non-empty subsets A and B of a metric space (X, d) , the following notions and notations are
used in the sequel .

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}
A0 = {a ∈ A : d(a, b) = d(A,B)for some b ∈ B}
B0 = {b ∈ B : d(a, b) = d(A,B)for some a ∈ A}.

De�nition 1.1. An element u ∈ A is said to be a common best proximity point of the non-self mappings

f1, f2, ..., fn : A→ B if it satis�es the condition that

d(u, f1u) = d(u, f2u) = ... = d(u, fnu) = d(A,B).

De�nition 1.2. The mappings f : A→ B and g : A→ B are said to be commute proximally if they satisfy

the condition that

[d(u, fx) = d(v, gx) = d(A,B)]⇒ fv = gu.

De�nition 1.3. If A0 6= ∅ then the pair (A,B) is said to have P-property if and only if for any a1, a2 ∈ A0

and b2, b2 ∈ B0 {
d(a1, b1) = d(A,B)
d(a2, b2) = d(A,B)

=⇒ d(a1, a2) = d(b1, b2)

2. Main Results

We begin our study with following de�nition

De�nition 2.1. Let H : R+ → R be a mapping satisfying:

(H1) H is strictly increasing, i.e

α < β =⇒ H(α) < H(β) ∀α, β ∈ R+,

(H2) For each sequence {αn}n∈N of positive numbers

lim
n→∞

αn = 0⇐⇒ lim
n→∞

H(αn) = −∞,

(H3) There exists k ∈ (0, 1)such that lim
α→ 0+

αkH(α) = 0,

then self mappings f, g, S, T : X → X are said to satisfy an H-contractive condition if there exists C > 0
such that

∀x, y ∈ X s.t d(fx, gy) > 0 =⇒ C +H(d(fx, gy)) ≤ H(m)

and

m = max{d(Sx, Ty), d(fx, Sx), d(Ty, gy), 1
2
[d(Sx, gy) + d(fx, Ty)]}.
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Theorem 2.1. Let A and B be nonempty subsets of a complete metric space (X, d) such that A0 is closed

and nonempty. Let the non-self mappings f, g, S, T : A→ B satisfy the following conditions:

i) {f, S} and {g, T} commute proximally,

ii) pair (A,B) has the P-property,

iii) f, g, S and T are continuous,

iv) f, g, S and T satisfy the H-contractive condition.

v) f(A0) ⊆ T (A0), g(A0) ⊆ S(A0) and g(A0) ⊆ B0, f(A0) ⊆ B0.

Then f, g, S and T have unique common best proximity point .

Proof. Fix a0 in A0, since f(A0) ⊆ T (A0), then there exists an element a1 in A0 such that f(a0) = T (a1).
Similarly, a point a2 ∈ A0 can be chosen such that g(a1) = S(a2). Continuing this process, we obtain a
sequence {an} ⊆ A0 such that

f(a2n) = T (a2n+1), g(a2n+1) = S(a2n+2).

Since f(A0) ⊆ B0 and g(A0) ⊆ B0, there exists {un} ⊆ A0 such that

d(u2n, f(a2n)) = d(A,B) and d(u2n+1, g(a2n+1)) = d(A,B). (1)

We wil prove that the sequence {un} is convergent in A0.
(A,B) satis�es the P-property therefore from (1) we obtain

d(u2n, u2n+1) = d(fa2n, ga2n+1). (2)

If there exists n0 ∈ N such that d(fa2n0 , ga2n0+1) = 0 , them by (2) we have d(u2n0 , u2n0+1) = 0 that implies
u2n0 = u2n0+1 . If u2n0+1 6= u2n0+2 then by (2) , d(fa2n0+2, ga2n0+1) > 0 and therefor

H(d(u2n0+1, u2n0+2)) = H(d(fa2n0+2, ga2n0+1))

≤ −C +H(max{d(Sa2n0+2, Ta2n0+1), d(fa2n0+2, Sa2n0+2),

d(Ta2n0+1, ga2n0+1),
1

2
[d(Sa2n0+2, ga2n0+1) + d(fa2n0+2, Ta2n0+1)]})

= −C +H(max{d(u2n0 , u2n0+1), d(u2n0+1, u2n0+2), d(u2n0 , u2n0+1),

1

2
[d(u2n0+1, u2n0+1) + d(u2n0 , u2n0+2)]}),

and consequently

H(d(u2n0+1, u2n0+2)) ≤ −C +H(max{0, d(u2n0+1, u2n0+2),
1

2
d(u2n0 , u2n0+2)}).

Thus (note that 1
2d(u2n0 , u2n0+2) ≤ 1

2 [d(u2n0 , u2n0+1) + d(u2n0+1, u2n0+2)]):

H(d(u2n0+1, u2n0+2)) ≤ −C +H(d(u2n0+1, u2n0+2)).

Therefor C ≤ 0, which is a contranction and u2n0 = u2n0+1 = u2n0+2. So un = u2n0 for all n ≥ 2n0, and un
is convergent in A0. Now let d(fa2n, ga2n+1) 6= 0 for all n ∈ N. Since the pair (A,B) has p-property, by (2)
we have

H(d(u2n, u2n+1)) = H(d(fa2n, ga2n+1))

≤ −C +H(max{d(Sa2n, Ta2n+1), d(fa2n, Sa2n),

d(Ta2n+1, ga2n+1),
1

2
[d(Sa2n, ga2n+1) + d(fa2n, Ta2n+1)]})

= −C +H(max{d(u2n−1, u2n), d(u2n, u2n−1), d(u2n, u2n+1),

1

2
[d(u2n−1, u2n+1) + d(u2n, u2n)]}).
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Then we have
H(d(u2n, u2n+1)) ≤ −C +H(max{d(u2n−1, u2n), d(u2n, u2n+1)}),

using the preceding description

H(d(u2n, u2n+1)) ≤ −C +H(d(u2n−1, u2n)). (3)

Similarly

H(d(u2n+1, u2n+2)) = H(d(fa2n+2, ga2n+1))

≤ −C +H(max{d(Sa2n+2, Ta2n+1), d(fa2n+2, Sa2n+2),

d(Ta2n+1, ga2n+1),
1

2
[d(Sa2n+2, ga2n+1) + d(fa2n+2, Ta2n+1)]})

= −C +H(max{d(u2n+1, u2n), d(u2n+2, u2n+1), d(u2n, u2n+1),

1

2
[d(u2n+1, u2n+1) + d(u2n+2, u2n)]}).

Thus (not that 1
2d(u2n+2, u2n) ≤ 1

2 [d(u2n+2, u2n+1) + d(u2n+1, u2n)]

H(d(u2n+1, u2n+2)) ≤ −C +H(d(u2n, u2n+1)). (4)

Therefor, by (3) and (4) we have

H(d(un, un+1)) ≤ −C +H(d(un−1, un)),

and then
H(d(un, un+1)) ≤ −nC +H(d(u0, u1)). (5)

Put αn =: d(un, un+1).
By (5), we obtain lim

n→∞
H(αn) = −∞ that together with (H2) gives

lim
n→∞

αn = 0. (6)

Also from (H3) we have
∃k ∈ (0, 1) such that lim

n→∞
αknH(αn) = 0 (7)

On the Other hand, by (5)
H(αn)−H(α0) ≤ −nC

Therefor
αknH(αn)− αknH(α0) ≤ −nαknC ≤ 0

Letting n −→∞ in the above inequality and using (6) and (7) , we obtain

lim
n→∞

nαkn = 0

Hence there exists N1 ∈ N such that nαkn ≤ 1 for all n ≥ N1 . Therefor for any n ≥ N1

αn ≤
1

n
1
k

This means that series
∑∞

i=1 αi is convergent, then

∀ε > 0 ∃N ≥ 0 such that m ≥ n ≥ N,
m∑
i=n

αi ≤ ε. (8)
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By the triangular inequality and(8)

d(um, un) ≤ αm−1 + αm−2 + ...+ αn ≤
m∑
i=n

αi ≤ ε

Therefor {un} is a cauchy seqvence in A0.
Since{un} ⊆ A0 and A0 is a closed subset of the complete metrice space (X, d), we can �nd u ∈ A0 such
that lim

n→∞
un = u .

By (1) and because of the fact {f, S} and {g, T} commute proximally, fu2n−1 = Su2n and gu2n = Tu2n+1.
Therefore, the continuity of f, g, S and T and n→∞ ascertains that fu = gu = Tu = Su.
Since f(A0) ⊆ B0, there exists a ∈ A0 such that

d(A,B)=d(a, fu)=d(a,gu)=d(a,Su)=d(a,Tu).

As {f, S} and {g, T} commute proximally, fa = ga = Sa = Ta. Then, since f(A0) ⊆ B0, there exists x ∈ A0

such that

d(A,B)=d(x,fa)=d(x,ga)=d(x,Sa)=d(x,Ta).

Let d(a, x) > 0, because pair (A,B) has the P-property and
d(a, fu) = d(x, ga) = d(A,B), we have d(fu, ga) > 0 and therefore

H(d(a, x)) = H(d(fu, ga))

≤ −C +H(max{d(Su, Ta), d(fu, Su), d(Ta, ga),
1

2
[d(Su, ga) + d(fu, Ta)]})

= −C +H(max{d(a, x), d(a, a), d(x, x),
1

2
[d(a, x) + d(a, x)]})

then
d(a, x) ≤ −C + d(a, x),

this results C ≤ 0. wich is a contradiction and d(a, x) = 0 or x = a. Thus, it follows that

d(A,B) = d(a, fa) = d(a, ga) = d(a, Sa) = d(a, Ta), (9)

then a is a common best proximity point of the mapping f, g, S and T .
Suppose that a′ 6= a is another common best proximity point of the mapping f, g, S and T , so that

d(A,B) = d(a′, fa′) = d(a′, ga′) = d(a′, Ta′) = d(a′, Sa′). (10)

As pair (A,B) has the P-property then from (9) and (10), we have

H(d(a, a′)) = H(d(fa, ga′))

≤ −C +H(max{d(Sa, Ta′), d(fa, Sa), d(Ta′, ga′),
1

2
[d(Sa, ga′) + d(fa, Ta′)]})

= −C +H(max{d(a, a′), d(a, a), d(a′, a′),
1

2
[d(a, a′) + d(a, a′)]}),

then
H(d(a, a′)) ≤ −C +H(d(a, a′))

which implies that a = a′ .
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Now we illustrate our common best proximity point theorem by the following example.

Example 2.1. Let X = [0, 1]× [0, 1] and d be the Euclidean metric. Then (X, d) is a complete metric space.

Let

A := {(0, a) : 0 ≤ a ≤ 1}, B := {(1, b) : 0 ≤ b ≤ 1}.

Then d(A,B) = 1, A0 = A and B0 = B. Let f, g, S and T de�ned as f(0, x) = (1, x8 ) , g(0, x) = (1, x32) ,

S(0, x) = (1, x) and T (0, x) = (1, x4 ). Then for all x and y ∈ X we have

d(fx, gy) = |x
8
− y

32
| = 1

8
d(Sx, Ty).

Now if we de�ne H : R+ → R by H(α) = ln(α) and C = ln8. Then clearly non-self mappings f, g, S, T :
A → B are H-contraction. Now, all the required hypotheses of theorem 2.1 are satis�ed. Clearly (0, 0) is

unique common best proximity point of f, g, S and T .

By theorem 2.1 we also obtain the following common �xed point theorem.

Theorem 2.2. Let (X, d) be a complete metric space . Let f, g, S, T : X → X be given continuous map-

pings and satisfy the H-contractive condition such that S and T commute f and g respectively. Further let

f(X) ⊆ T (X), g(X) ⊆ S(X). Then f, g, S and T have unique common �xed point.

Proof. We take the same sequence {un} and u as in the proof of theorem 2.1. Due to the fact that S and T
commute f and g respectively we have

fu2n−1 = Su2n, gu2n = Tu2n+1.

By continuity of f, g, S, T and n→∞ we have

fu = Su, gu = Tu. (11)

If fu 6= gu, since f, g, S, T : X → X satisfy the H-contractive condition and by (11)

H(d(fu, gu)) ≤ −C +H(max{d(Su, Tu), d(fu, Su), d(Tu, gu),
1

2
[d(Su, gu) + d(fu, Tu)]})

≤ −C +H(max{d(fu, gu), d(fu, fu), d(gu, gu),
1

2
[(fu, gu) + (fu, gu)]}),

then H(d(fu, gu)) ≤ −C +H(d(fu, gu)). Therefore C ≤ 0, which is a contraction. Then fu = gu and by
(11), fu = gu = Su = Tu.
We set a = fu = gu = Su = Tu. Because of the fact T commute g we obtain

ga = gTu = Tgu = Ta.

If a 6= ga therefor

H(d(a, ga)) = H(d(fu, ga))

≤ −C +H(max{d(Su, Ta), d(fu, Su), d(Ta, ga),
1

2
[d(Su, ga) + d(fu, Ta)]})

≤ −C +H(max{d(a, ga), a(a, a), d(ga, ga),
1

2
[(a, ga) + (a, ga)]}).
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Therefore, H(d(a, ga)) ≤ −C + H(d(a, ga)) and consequently C ≤ 0, that is a contraction by C > 0.
Therefore

a = ga = Ta. (12)

Similarly, we can show that

a = fa = Sa. (13)

Hence, by (12) and (13) we deduce that a = fa = ga = Sa = Ta. Therefore, a is a common �xed point of
f, g, S and T .
Assume one contrary that, p = fp = gp = Sp = Tp and q = fq = gq = Sq = Tq but p 6= q.
We have

H(d(p, q)) = H(d(fp, gq))

≤ −C +H(max{d(Sp, Tq), d(fp, Sp), d(Tq, gq),
1

2
[d(Sp, gq) + d(fp, Tq)]})

≤ −C +H(max{d(p, q, ), d(p, p), d(q, q), 1
2
[(p, q) + (p, q)]}).

Consequence H(d(p, q)) ≤ −C + H(d(p, q)), then C ≤ 0, a contradiction. Therefore, f, g, S and T have a
unique common �xed point.
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