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Abstract
A p-indigent module is one that is subprojective only to projective modules. An RD-
projective module is subprojective to any torsionfree (and flat) module. An RD-projective
module T is called rdp-indigent if it is subprojective only to torsionfree modules. In this
work, we consider the structure of SRDP rings whose (simple) RD-projective right R-
modules are rdp-indigent or torsionfree. Moreover, new characterizations of P-coherent
rings and torsionfree rings are presented by subprojectivity domains.
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1. Introduction
In module theory, the classes of all projective and all injective modules are important

subclasses of Mod − R since they shed light on the whole of Mod − R. Accordingly,
the injectivity and the projectivity of modules have been widely studied in the literature.
For instance, there are some recent studies carried out to determine the injectivity (or
projectivity) of an R-module, through a fixed module, see ([1, 2, 4–6,19,20,23,30]).

P-indigent modules were introduced in [20] as a dual notion of indigent modules defined
in [5], and their study was furthered in [13]. Namely, while projective modules have the
largest possible subprojectivity domain (all of Mod-R), the p-indigent modules are those
having a domain of subprojectivity as small as possible. In this work, we focus on the
subprojectivity domain of RD-projective modules.

A submodule X1 of an R-module RX is called relatively divisible, or briefly, an RD-
submodule if rX1 = X1 ∩ rX for each r ∈ R. A sequence 0 → A1 → A2 → A3 → 0
of left modules is said to be RD-exact if for each a ∈ R, the sequence HomR( R

Ra , A2) →
HomR( R

Ra , A3) → 0 is exact, or equivalently 0 → ( R
aR) ⊗ A1 → ( R

aR) ⊗ A2 is exact.
A module RN is RD-injective (resp., RD-projective) if it is injective (resp., projective)
according to every RD-exact sequence ([10, 17, 24, 31]). According to [22], a module RX
is divisible if Ext1

R( R
Ra , X) = 0 for each a ∈ R. A module NR is called torsionfree if

Tor1(NR,
R

Ra) = 0 for each a ∈ R. A module RM is divisible (resp., torsionfree) if and
only if each exact sequence starting (resp., ending) with RM is an RD-exact ([24]). It
is clear that XR is torsionfree if and only if X+ is divisible by the standard adjoint
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isomorphism. For more details about divisible and torsionfree modules, we refer the reader
to [3, 11, 18, 24, 25, 27]. For commutative domains, divisible and torsionfree modules are
identical with the traditional ones. Obviously, every pure exact sequence is RD-exact and
so every RD-projective (RD-injective) is pure-projective (pure-injective). Recall that an
R-module RM is called fp-injective if Ext1

R(N,M) = 0 for every finitely presented module
RN . Moreover, every flat and fp-injective module is respectively torsionfree and divisible.

In this paper, we address some questions raised on the RD-projective modules. For
an RD-projective module, the minimal subprojectivity domain is the class of torsionfree
modules. Following [20], we say that an RD-projective module is relatively divisible pro-
jective indigent (shortly, rdp-indigent) if it is such a module. Unlike p-indigent modules,
such an RD-projective module exists over arbitrary rings. Subprojectivity domains of the
RD-projective modules are investigated, and P-coherent rings and torsionfree rings are
characterized through subprojectivity domains of RD-projective modules. We consider
the structure of rings with the property that every (singular simple) RD-projective mod-
ule is rdp-indigent. Moreover, the structure of rings whose non-projective RD-projective
modules are subprojective only to flat modules is investigated.

In what follows, we write RTF (resp., RF,R N,R P) for the class of all torsionfree (resp.,
flat, nonsingular, projective) left modules. For a module X, E(X) denotes the injective
envelope of X. The character module HomZ(X,Q/Z) of X is denoted by X+. For addi-
tional terminology, concepts, and results which are not mentioned here, we refer the reader
to [16,22,28].

2. Subprojectivity domain of an RD-projective module
This section is devoted to prove the basic properties about subprojectivity domains of

modules that will be needed later in the paper. We start by recalling what is understood
by the notion of subprojectivity. Given modules X1 and X2, X1 is X2-subprojective
if for each epimorphism α : P → X2 and each morphism h : X1 → X2, there exists
a morphism f : X1 → P with αf = h. The conditions for a module X1 to be X2-
subprojective are given in [15, 20]. For any X ∈ R − Mod, we denote by Pr−1(X) the
class {L ∈ R−Mod : X is L-subprojective}.

By [24, Proposition 2.4], a module X is torsionfree if R/Ra is X-subprojective for
each a ∈ R. If X is torsionfree module and Y is RD-projective module, then Y is X-
subprojective. For RD-projective module M , it is a natural question to ask how small
Pr−1(M). The next proposition shows that the domain of subprojectivity of any RD-
projective module must contain at least the torsionfree modules. The following fact can
be easily verified, thus its proof is omitted.

Proposition 2.1.
∩

Z∈Λ Pr−1(Z) = TF, where Λ be family of all RD-projective right
R-modules.

For an RD-projective right R-module M :

PR ⊆ FR ⊆ TFR ⊆ Pr−1(M).

While a right perfect ring is necessary and sufficient condition to be PR = FR, the
complete structure of a ring over which PR = TFR (or TFR = FR) is not known. However,
it is clear that R is a right perfect if PR = TFR. In terms of p-indigence, we have two
new concepts for the RD-projective modules. Therefore, it makes sense to wonder about
the RD-projective modules which are subprojective relative to only torsionfree (or flat)
modules.

Definition 2.2. An RD-projective right R-module M will be called (strongly )relatively
divisible projectively indigent (or an (s)rdp-indigent) in case Pr−1(M) = TFR(FR).
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Rdp-indigent module exists over any ring. A cyclic module XR
∼= R/I is called cyclically

presented (c.p.) if I = aR for some a ∈ R. Set CP := ⊕Ci∈ΓCi, where Γ stands for the
set of all representatives of c.p. right R-modules. It is clear that CP is an RD-projective
right R-module. The next result follows by definition of a torsionfree module.

Proposition 2.3. CP is an rdp-indigent.

A ring R is left P -coherent, if all principal left ideals of R are finitely presented (f.p.)
([25]).

Proposition 2.4. For each RD-projective module RK, Pr−1(K) is closed under direct
product if and only if R is a right P-coherent.

Proof. (⇐) We easily prove the necessity by modifying slightly the proof of [20, Propo-
sition 2.14]. Let RK be an RD-projective module and {Ai}i∈Φ a subclass of Pr−1(K).
Let γ = (γi)i∈Φ : K →

∏
i∈ΦAi. For each i ∈ Φ, there exists gi : Pi → Ai with Pi

free. Since {Ai}i∈Φ is a subclass of Pr−1(K) for each i ∈ Φ, there exists hi : K → Pi

such that γi = gihi. Let h = (hi)i∈Φ : K →
∏

i∈Φ Pi, and g :
∏

i∈Φ Pi →
∏

i∈ΦAi be
defined by g((xi)i∈Φ) = (gi(xi))i∈Φ. It is clear that g is an epimorphism and gh = γ . By
[25, Theorem 2.7],

∏
i∈Φ Pi is torsionfree, hence K is

∏
i∈ΦAi-subrojective by [15, Lemma

1]. (⇒) For sufficiency, in particular, consider Pr−1(CP). Since CP is an rdp-indigent, R
is a right P-coherent by our hypothesis and [25, Theorem 2.7]. �

A ring R is torsionfree if all (or finitely generated (f.g.)) left ideals of R are torsionfree.
The property of a ring being torsionfree is right-left symmetric (see [3, Corollary 3.3]).
Torsionfree rings have been studied by Hattori [18] under the name left PF rings: all
the principal left ideals are flat. It has been shown that R is torsionfree if and only if
submodules of torsionfree left modules are again torsionfree ([18, Proposition 7]).

Proposition 2.5. A ring R is torsionfree if and only if Pr−1(M) is closed under sub-
modules for every RD-projective R-module M .

Proof. (⇐) In particular, consider Pr−1(CP). CP is an rdp-indigent, and so torsionfree
right R-modules are closed under submodules by our hypothesis. (⇒) Let X be an RD-
projective module, Y ∈ Pr−1(X) and Z ⊆ Y . Let ν : X → Z be a homomorphism and
g : W → Y an epimorphism with W free. The following diagram is commutative.

Ker(σg) ι //

µ

��

W

g

��

σg
// Y/Z // 0

X ν
//

λ

55kkkkkkkkkkk

ρ
;;w

w
w

w
w

Z ϵ
// Y σ

// Y/Z // 0

Since Y ∈ Pr−1(X), we have a homomorphism λ : X → W such that gλ = ϵν, where
ϵ is the inclusion. R is torsionfree, hence Ker(σg) is torsionfree as a submodule of the
projective module W . By factor theorem, since (σg)λ = σiν = 0ν = 0, we have ρ : X →
Ker(σg) such that ιρ = λ. Then ϵν = gλ = gιρ = ϵµρ, and this implies that ν = µρ. By
[15, Lemma 1], X is Z-subprojective. �

A module X is embeded in a projective module if and only if X is E(X)-subprojective
([13, Lemma 2.3]). We improved this result as follows:

Proposition 2.6. For any right R-module Y, the following are equivalent:
(1) Y embeds in a free module.
(2) Injective right R-modules are in Pr−1(Y ).
(3) Every right R-module is embeded in a module X in Pr−1(Y ).
(4) Y is embeded in a module X in Pr−1(Y ).
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Proof. (1) ⇒ (2) by [13, Lemma 2.3]. (2) ⇒ (3) This follows by the fact that every
module is embeded in an injective module. (3) ⇒ (4) is clear. (4) ⇒ (1) Let ι : Y → X be
an inclusion homomorphism. Consider the epimorphism p : W → X with W free module.
Since X ∈ Pr−1(Y ), there is a homomorphism f : Y → W such that pf = ι. However, ι
is a monomorphism, hence f is also a monomorphism. This proves our claim. �

A sequence 0 → A1 → A2 → A3 → 0 of left modules is neat (resp., s-pure) exact if
for each simple module RS (resp., JR), the sequence Hom(S,A2) → Hom(S,A3) → 0
(resp., 0 → J ⊗ A1 → J ⊗ A2) is exact. The definitions of neat submodule and s-pure
submodule coincide with closed submodule over commutative hereditary noetherian rings
(see [21]). A complete characterization of commutative rings for which each simple module
is RD-injective is given in [10]. The following proposition follows by [24, Lemma 2.1] and
[10, Theorem IV.1].

Proposition 2.7. The following statements are equivalent.
(1) RD-exact sequences of left modules are neat.
(2) Simple left modules are RD-projective.
(3) Each simple left modules is both f.p. (or pure-projective) and RD-flat.
(4) RD-exact sequences of right R-modules are s-pure and simple left modules are f.p.

(or pure-projective).
When R is commutative, these conditions are equivalent to that each simple module is both
f.p. and RD-injective.

Proof. (1) ⇒ (2) and (3) ⇒ (4) are clear. (2) ⇒ (3) follows by [31, Corollary 1]. (4) ⇒ (1)
By [24, Lemma 2.1(2)], every simple left R-module is RD-projective, implying that every
RD-exact sequences of left module is neat. The commutative case follows by [10, Theorem
IV.1]. �

We call R a left SRDP ring if it satisfies the equivalent conditions of Proposition 2.7.
Similarly one defines right SRDP rings. A ring in which all right ideals are principal
is called a principal right ideal ring, or right PIR. PIR rings are obviously SRDP. Less
obvious example of SRDP ring is commutative hereditary noetherian ring (see [7, Theorem
2.14 ]).

Proposition 2.8. Let ∆ be a set of all representatives of singular simple modules over
commutative hereditary noetherian ring R. Then ⊕S∈∆S is both RD-projective and srdp-
indigent module.

Proof. Over commutative hereditary noetherian ring, simple modules are RD-projective
by [7, Theorem 2.14 ]. Since RD-projective modules closed under direct sums, the module
⊕S∈∆S is an RD-projective. Now, the module ⊕S∈∆S is srdp-indigent by [14, Proposition
5.2]. �

3. Every non-projective RD-projective module is rdp-indigent
In this section, we studied rings whose (singular simple) RD-projective modules are

rdp-indigent. As in [3] and [18], PP rings have an important role in our studies. A left
PP ring is a ring whose all principal left ideals are projective. Note that every right (or
left ) PP ring is a torsionfree ring, and the converse is true when the right annihilators of
elements are f.g. [11, Theorem 4.5]. For convenience,
(S) stands for the property that non-projective simple right R-modules are rdp-indigent.

Lemma 3.1. If R is a right SRDP ring satisfying property (S), then it is either left
divisible or left PP.
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Proof. Consider two nonisomorphic singular simple modules UR and VR. Clearly, U is
V -subprojective, and thus V would be torsionfree. But V is RD-projective, and so it is
projective by [24, Corollary 2.5]. This contradicts with singularity of V . Therefore, U
is unique. Then either HomR(U,R) = 0 or HomR(U,R) ̸= 0. If HomR(U,R) ̸= 0, U
embeds in R, and by Proposition 2.6, every injective module is torsionfree. In particular,
the injective module RR

+ is torsionfree, and hence R++ is divisible by standart adjoint
isomorphism. Then R is a left divisible since it is (RD-)purely embeds in R++ by [16,
Proposition 5.3.9]. If HomR(U,R) = 0, then Hom(U,G) = 0 for each ideal G of R. Then, U
is G-subprojective, and so G is torsionfree, implying that R is torsionfree. Now, let {Ni}i∈Φ
be a class of torsionfree right R-modules. Since U is rdp-indigent and Hom(U,R) = 0,
a module H is torsionfree if and only if HomR(U,H) = 0. Set H :=

∏
i∈ΦNi. Now,

HomR(U,
∏

i∈ΦNi) ∼= ⊕i∈ΦHomR(U,Ni) = 0, and so H is torsionfree. By [11, Theorem
4.6], R is a left PP ring. �

Note that rings with property (S) must have a unique singular simple right R-module.
In the sequel, this simple module will be denoted by UR throughout paper.

Recall that a module is called coatomic provided that every submodule is contained in
a maximal submodule. Semisimple modules and f.g. modules are well-known examples of
coatomic modules.

Proposition 3.2. If R is a right SRDP right nonsingular ring but not left divisible, then
the following are equivalent:

(1) For all singular coatomic module ZR, Pr−1(Z) ⊆ TFR.
(2) R satisfies (S).

Proof. (1) ⇒ (2) is clear. (2) ⇒ (1) It is enough to show that if a singular coatomic
right module Z is subprojective to a module H, then H is torsionfree. By Lemma 3.1,
R is torsionfree ring. Let Z be a singular coatomic right module. Since Z is coatomic
and singular, it has a maximal submodule W such that Z/W is singular and simple. By
uniqueness of UR, Z/W ∼= UR, implying that HomR(Z,U) ̸= 0. Now let H be a module in
Pr−1(Z). Since U is simple, either HomR(U,H) = 0 or HomR(U,H) ̸= 0. The later case is
not possible, since if HomR(U,H) ̸= 0, then U is isomorphic to a submodule of H. Then,
by Proposition 2.5, Z is U -subprojective, and this would imply that HomR(Z,U) = 0 by
nonsingularity of RR, a contradiction. If HomR(U,H) = 0, then U is H-subprojective.
Thus, H is torsionfree, since U is rdp-indigent. Therefore, Z is an rdp-indigent. �

Lemma 3.3. If R is a right SRDP but not left divisible ring, then R is satisfying property
(S) if and only if all non-projective RD-projective right R-modules of finite length are
rdp-indigent.

Proof. The sufficiency is clear. For the necessity, letXR be a non-projective RD-projective
module of finite length. Let us point out that R is torsionfree ring by Lemma 3.1. Let
Y ∈ Pr−1(X). If HomR(U, Y ) = 0, then Y is clearly torsionfree by our hypothesis. If
HomR(U, Y ) ̸= 0, noting that U is simple, then X is U -subprojective by Proposition
2.5. Then, X is subprojective to each simple right R-module. X has a composition series
0 = U0 ⊆ U1 ⊆ U2 ⊆ . . . ⊆ Ut = X with Ui/Ui−1 simple for each i ∈ {0, 1, . . . , t}. Consider
the sequence 0 → U1 → U2 → U2/U1 → 0. Since U1, U2/U1 ∈ Pr−1(X), U2 ∈ Pr−1(X).
Similarly one can show that Ui ∈ Pr−1(X) for each i. In particular, X is subprojective to
Ut = X, implying that X is projective. Thus, the case HomR(U, Y ) ̸= 0 is not possible,
and X is rdp-indigent. �

Note that by [10, Theorem IV.1] and [24, Lemma 2.1(2)], any pure-projective module
of finite length is RD-projective over a commutative SRDP ring.
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Corollary 3.4. If R is commutative SRDP but not divisible ring, then R is satisfying
property (S) if and only if each non-projective pure-projective module of finite length is
rdp-indigent.

A ring R is said to be right GV-ring if all singular simple right R-modules are injective.

Lemma 3.5. If R is a right SRDP right GV but not left divisible ring, then R is sat-
isfying property (S) if and only if every non-projective RD-projective right R-module is
rdp-indigent.

Proof. The sufficiency is clear. For the necessity, let WR be a non-projective RD-
projective module. Let us point out that R is torsionfree ring by Lemma 3.1. Note
that HomR(U,W ) ̸= 0, otherwise W is torsionfree, and thus making W projective. Now
let Y ∈ Pr−1(W ). Either HomR(U, Y ) = 0 or HomR(U, Y ) ̸= 0. In the former case, Y
is torsionfree. The latter case is not possible. Because if HomR(U, Y ) ̸= 0, then, noting
that U is simple, W is U -subprojective by Proposition 2.5. Now consider the following
diagram:

0 // U
ι / /

µ

��

W

R
π // U // 0

Since R is a right GV-ring, U is injective, and there exists a homomorphism φ : W → U
such that φι = µ. Since U ∈ Pr−1(W ), there exists a homomorphism λ : W → R such that
πλ = φ. However, the homomorphism λι : U → R must be zero since R is torsionfree ring
and U is singular RD-projective module, implying that 0 = πλι = φι = µ, a contradiction.
Thus, the case HomR(U, Y ) ̸= 0 is not possible, and W is rdp-indigent. �

Proposition 3.6. If R is a right SRDP but not left divisible ring, then R is satisfying
property (S) if and only if the following hold:

(a) A module MR is torsionfree if and only if Soc(MR) is projective.
(b) R is a left PP ring with a unique singular simple module UR.

Proof. If R satisfies (S), (b) follows by Lemma 3.1. Since R is a right SRDP and UR

is rdp-indigent, Pr−1(U) = TFR. It is clear that UR is subprojective to a module NR

if Soc(N) is projective. Let XR be a torsionfree module and assume that Soc(XR) is
not projective. Then, by the uniqueness of U , U ∼= T , where T is a submodule of X.
Since R is torsionfree ring and X is torsionfree, U would be torsionfree. However, U is
RD-projective, hence it is projective. This contradicts with singularity of U . To converse,
assuming (a) and (b) and let H ∈ Pr−1(U). It will be enough to show that Soc(H) is
projective. Assume contrary that Soc(H) is not projective. Then there is a submodule N
of H such that, by uniqueness of U , N ∼= U . R is torsionfree since it is left PP ring. Since
H ∈ Pr−1(U), U is U -subprojective by Proposition 2.5, hence U would be projective.
Again this contradicts with singularity of U . �

Lemma 3.7. If R is a right SRDP but not left PP ring with propert (S), then the following
hold:

a) Injective right R-modules are torsionfree.
b) R is a left divisible.
c) Every RD-projective right R-module is embeded in a projective module.
d) R is a right Kasch ring.

Proof. By Lemma 3.1, RR is divisible. HomR(UR, R) ̸= 0, otherwise R would be a
left PP ring as in the proof of Lemma 3.1. Therefore, R is a right Kasch ring. Then, by
Proposition 2.6, U is IR-subprojective for each injective module IR. Therefore, noting that
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Pr−1(U) = TF, injective right R-modules are torsionfree. In order to show that every RD-
projective right R-module is embeded in a free module, let H be an RD-projective module.
Consider the inclusion ι : H → E(H) and an epimorphism p : W → E(H) with W free
module. Since H is RD-projective and E(H) is torsionfree, there is a homomorphism
ψ : H → W such that ι = pψ. Thus, ψ is a monomorphism, as desired. �

A module W is called i-test module if Ext1R(W,T ) ̸= 0 for all non-injective module T .
A nonsemisimple ring is right n-saturated if its non-projective f.g. right R-modules are
i-test ([30]).

Theorem 3.8. Let R be a right SRDP ring without an infinite family of orthogonal idem-
potents. If R is not right Kasch and it satisfies (S), then the following hold:

a) Non-torsionfree right R-modules are i-test.
b) Divisible (m-injective) right R-modules are injective.
c) The classes of torsionfree and nonsingular right R-modules coincide.
d) R is a right hereditary right noetherian right C-ring.

Proof. By Lemma 3.1 and Lemma 3.7, R is a left PP ring. Let us point out that, by our
hypothesis, Pr−1(UR) = TF and, by singularity of U , U is subprojective to M where M is
nonsingular. R is a right PP ring by [8, Lemma 8.4], and hence, by [3, Corollary 3.4], all
torsionfree right R-modules are nonsingular. Then, the classes of torsionfree and nonsin-
gular right R-modules coincide. Let WR be an m-injective module. There is a sequence
0 → W → E(W ) → E(W )/W → 0. Soc(E(W )/W ) is projective, otherwise E(W )/W has
a singular simple submodule, say C. Then E(W ) has an essential submodule L such that
L/W ∼= C. Since U is unique, U ∼= C, hence Ext(C,W ) = 0. Then W is a direct sum-
mand in L, and this contradicts with essentiality of W in L. Therefore, Soc(E(X)/X)
is projective and, by Proposition 3.6, E(X)/X is nonsingular. M is closed in E(M),
thus it is injective. This is equivalent to R is a right C-ring. Moreover, since R is also
right SRDP, every divisible (and fp-injective) right R-module is injective, implying right
Noetherianity of R. Since R is a right PP, injective modules are closed under quotients by
[24, Corollary 2.13], and this would imply that R is also right hereditary. If a module TR

is non-torsionfree, then either HomR(U, T ) = 0 or HomR(U, T ) ̸= 0. The former is im-
possible, since U is T -subprojective and U is rdp-indigent. Then HomR(U, T ) ̸= 0. Since
U is simple, w.l.o.g. we may take U as a submodule of T . Then, since R is hereditary and
U is i-test, T is i-test by [14, Proposition 4.3]. �

For easy reference, we define the following for R:
(Q) Every non-projective simple right R-module is srdp-indigent.

Corollary 3.9. If R is a right SRDP ring with property (Q), then it is right IF ring or
its weak dimension is ≤ 1.

Proof. By our hypothesis, TFR = FR. By Lemma 3.1, R is either a left fp-injective ring
or a left PP ring. In the former case, injective right R-modules are flat, i.e. R is a right
IF by Lemma 3.7. In the latter case, since TFR = FR, all right ideals of R are flat, i.e.
the weak dimension of R is ≤ 1. �

An R-module V is extending (or CS) provided each of its closed submodules is direct
summand of V . Similar to Σ-injective modules, K is called a (finitely) Σ-CS module if all
direct sum of (finitely many) copies of K is CS (see [12]).

Lemma 3.10. If R is a right SRDP but not IF ring without an infinite family of orthogonal
idempotents, then R satisfies (Q) if and only if the following cases occur:

(i) R is a right hereditary right noetherian right C-ring with unique simple singular
module VR.

(ii) R is a right finitely Σ-CS ring.
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Proof. (⇒) (i) follows by Theorem 3.8. Let W be a f.g projective module and H a
closed submodule of W . Note that closed submodules are neat by [9, 10.10]. Then V
is W

H -subprojective. Since V is srdp-indigent, W
H is flat module. Let us point out that

W
H is finitely presented since R is a right noetherian. Thus W

H is a projective module,
implying that H is a direct summand of W . Therefore, RR is finitely Σ-CS. (⇐) Let
X ∈ Pr−1(V ). We claim that X is a flat module. Since RR is nonsingular and V is
singular, HomR(V,X) = 0. Assume contrary that X is not flat, then, by [28, Corollary
3.49], X has a f.g. non-flat submodule, say A. Since Hom(V,X) = 0, Hom(V,A) = 0.
Now, consider the singular submodule Z(A) of A. However, R is a right C-ring and V is
unique. The singular submodule Z(A) of A has submodule K such that K ∼= V , implying
Hom(V,A) ̸= 0, a contradiction. Therefore Z(A) = 0, hence A is a nonsingular. Since RR

is finitely Σ-CS, A must be projective by [12, Corollary 11.4], a contradiction. Therefore,
X is a flat module by [28, Corollary 3.49]. �
Theorem 3.11. If a ring R is left Noetherian right C-ring and right SRDP ring with
property (Q), then only one of the following cases occurs:

(i) a) Non-torsionfree right R-modules are i-test.
b) Divisible (m-injective) right R-modules are injective.
c) The classes of torsionfree right R-modules and nonsingular right R-modules

coincide.
d) R is a right hereditary right noetherian.

(ii) R ∼= R1 × R2, where R1 is a semisimple artinian and R2 is an indecomposable
n-saturated ring which is a matrix ring over a local QF-ring.

Proof. By Corollary 3.9, R is either left fp-injective or wD(R) ≤ 1. Since R is a right
C-ring and right SRDP ring, every divisible (fp-injective, m-injective) right R-module is
injective, implying that R is a right noetherian. In the case of wD(R) ≤ 1, (i) follows.
On the other hand, since wD(R) ≤ 1, every right ideal of R is flat. Since R is a right
noetherian, every right ideal of R is finitely presented, implying that R is a right hereditary.
It remains to show (i-c) and (i-a). For (i-c), since Hom(U,N) = 0 for each nonsingular
module N and U is srdp-indigent, all nonsingular right R-modules are torsionfree (and
flat). Let XR be a torsionfree module. There is a sequence 0 → A1 → A2 → X → 0 with
A2 free. This sequence is closed exact since Pr−1(U) = TF and R is a right C-ring. Since
R is a right nonsingular, A2 is nonsingular, and so X would be nonsingular by [29, Lemma
2.3]. For (i-a), let Y be a non-torsionfree right R-module. Hom(U, Y ) ̸= 0, otherwise U is
Y -subprojective, hence Y is torsionfree, a contradiction. Then, noting that U is simple, U
is isomorphic to a submodule of Y . Let us point out that, U is an i-test module, since R is
a C-ring. Since RR is hereditary and U is i-test, Y is i-test by [14, Proposition 4.3]. Recall
that every fp-injective right R-module is injective if and only if R is a right Noetherian
([26, Theorem 3]). If RR is fp-injective, then R is a QF -ring since R is a left noetherian
by [22, Theorem 15.1]. By our hypothesis, Pr−1(N) would be the class of projective right
R-modules, i.e. N is p-indigent. Now (ii) follows by [13, Theorem 3.1]. �
Corollary 3.12. If R is a left Noetherian right PIR ring with property (Q), then only
one of the following cases occurs:

(i) The following statements hold.
a) R is a right hereditary right noetherian.
b) Every divisible (m-injective) right R-module is injective.
c) The classes of torsionfree right R-modules, flat right R-modules and nonsin-

gular right R-modules coincide.
d) Every non-torsionfree right R-module is i-test.

(ii) R ∼= R1 ×R2, where R1 is a semisimple artinian ring and R2 is an indecomposable
n-saturated ring which is matrix ring over a local QF-ring.
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Proof. A right PIR ring satisfying the condition (Q) is a right C-ring. By the condition
(Q), TFR = FR, and hence Pr−1(U) = F. Let XR be an m-injective module, equivalently,
Ext1R(U,X) = 0 by uniqueness of U . Soc(E(X)/X) is projective as in the proof of
Theorem 3.8. Then HomR(U, E(X)

X ) = 0. Since Pr−1(U) = F, E(X)
X is flat, hence X is

fp-injective. By right noetherianity, X is injective, implying that R is a right C-ring. Now,
the claim follows by Theorem 3.11. �

Theorem 3.13. If R is a two-side noetherian right SRDP ring satisfying property (Q),
then R ∼= R1 × R2, where R1 is a semisimple artinian and R2 is an indecomposable
noetherian ring satisfying only one of the following statements:

(i) R2 is a right matrix ring over local QF -ring; or,
(ii) R2 is a prime hereditary ring; or,
(iii) R2 is a Morita-equivalent to a lower triangular matrix ring over a division algebra.

Proof. Following Corollary 3.9, R is either wD(R) ≤ 1 or left fp-injective. Since U is
singular, every nonsingular module is flat by our hypothesis. By mimicking the proof of
the previous corollary, it can be easily shown that m-injective right R-modules are fp-
injective. However, R is a right Noetherian, all m-injective right R-modules are injective,
i.e. R is a right C-ring. If wD(R) ≤ 1, noting that R is two-sided noetherian, R is
two-sided hereditary. Now, since U is a srdp-indigent, the classes of torsionfree right
R-modules and flat right R-modules are the same. Moreover, the class of flat right R-
modules coincides with the class of nonsingular right R-modules, since flat modules are
nonsingular by [14, Proposition 4.4]. By [3, Theorem 5.5], R ∼= R1 × R2, where R1 is
semisimple Artinian ring and R2 satisfies either (ii) or (iii). If RR is fp-injective, then R
is QF, thus U is p-indigent. Now, (i) follows by [13, Theorem 3.1]. �
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