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Abstract: For one stochastic optimal control problem described by a linear Ito stochastic equation and linear quality functional a
necessary and sufficient optimality condition form of the Pontryagin maximum principle is obtained. In the case of convexity of the
nonlinear quality functional, a sufficient optimality condition is obtained.In the deterministic case, many authors have studied such
problems using the increment method. The considered work using a stochastic analogue of the increment method necessary and
sufficient conditions for optimality as well as sufficient conditions are established.
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1 Introduction

As is known, in the theory of optimal stochastic control when describing a stochastic controlled model, a convenient mathematical apparatus
is Ito’s stochastic differential equations [1]-[2]. Until now, many authors have obtained various types of necessary optimality conditions for
control problems for Ito stochastic systems [3]-[5]. In this paper, using a stochastic analogue of the method of increments in one linear stochastic
control problem, a necessary and sufficient condition for optimality in the form of the Pontryagin maximum principle [6] is established. In the
case of convexity of the nonlinear quality functional, a sufficient optimality condition is proved.

2 Statement problem

Suppose (Ω, F, P ) is a full probabilistic space with an allocated non-decreasing σ -algebras stream Ft, where Ft = σ(w(s), t0 ≤ s ≤ t)
and w(t) is n -dimensional standard Wiener process. L2

F (t0, t1;Rn) is the space of concerted processes measurable in (t, ω) and Ft, x(t, ω) :

[t0, t1] : Ω→ Rn, for which
∫t1
t0
‖x(t)‖2dt < +∞. Here, E is the symbol of mathematical expectation.

Consider system Ito type linear stochastic differential equations in form

dx(t) = (A(t)x(t) + f(t, u(t))) dt+B(t)x(t)dw(t), t ∈ T = [t0, t1], (1)

x(t0) = x0.

Here x(t)- is the desired n-dimensional vector, A(t), B(t)- are given continuous (n× n)- coefficients matrices, f(t, u) - is a given n-
dimensional continuous in (t, u) vector-function.

u(t) ∈ U ⊂ Rr, (2)

where U is a given nonempty, bounded set. We call such controls admissible controls.
Required to find an admissible control u(t) such that the solution x(t) of system (1) delivers the smallest possible value to the functional

S(u) = Ec′x(t1), (3)

Here, c- known n- dimensional constant vector.
In this paper, using a stochastic analogue of method, the increment method, we obtain first order optimality conditions.
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3 The increment formula of the quality criterion and the main results

Let u(t) and ū(t) = u(t) + ∆u(t)- two valid controls, x(t) and x̄(t) = x(t) + ∆x(t) - the corresponding solutions to system (1).
Then it is clear that ∆x(t) - is a solution the problem

d∆x(t) = (A(t)∆x(t) + (f(t, ū(t))− f(t, u(t)))) dt+B(t)∆x(t)dw(t), t ∈ T = [t0, t1],

∆x(t0) = 0. (4)

Since(4) is a linear stochastic inhomogeneous differential equation relatively ∆x(t), the solution can be represented as [5].

∆x(t) =

∫ t
t0

F (t, τ)(f(τ, ū(τ))− f(τ, u(τ)))dτ, (5)

where F (t, τ) – (n× n) - matrix is solution problem

dF (t, τ) = F (t, τ)A(τ)dτ + F (t, τ)B(τ)dw(τ), t ∈ T = [t0, t1],

F (t, t) = I − (n× n)− unitmatrix.

From (5) clear, that

∆x(t1) =

∫ t1
t0

F (t1, t)(f(t, ū(t))− f(t, u(t)))dt.

Then increment formula quality criterion (3) can be imagining as:

∆S(u) = S(ū)− S(u) = Ec′∆x(t1) = E

∫ t1
t0

c′F (t1, t)(f(t, ū(t))− f(t, u(t)))dt.

Denote by

ψ(t) = −c′F (t1, t),

H(t, u(t), ψ(t)) = ψ′(t)f(t, u(t))

Then we have

∆S(u) = −E
∫ t1
t0

[H(t, ū(t), ψ(t))−H(t, u(t), ψ(t))] dt. (6)

Using the expression for ψ(t), we find a stochastic differential equation that this function satisfies.
From the definition of the function ψ(t) it is clear that

dψ(t) = −c′F (t1, t)A(t)dt− c′F (t1, t)B(t)dw(t) = A(t)ψ(t)dt+B(t)ψ(t)dw(t),

ψ(t1) = −c′F (t1, t1) = −c.

Therefore, it was proved that ψ(t) is the following system of stochastic equations:

dψ(t) = A(t)ψ(t)dt+B(t)ψ(t)dw(t), t ∈ T = [t0, t1],

ψ(t1) = −c.

Using the relation (6), the following is proved

Theorem 1. For the optimality of the admissible control u(t) in the considered problem (1)-(3), it is necessary and sufficient that

max
v∈U

EH(t, v, ψ(t)) = EH(t, u(t), ψ(t)), (7)

satisfied for all t ∈ T .
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Proof.
Necessity. Let us assume that u(t) is optimal. We prove that the relationship is fulfilled (7). In the power of optimal control u(t) from the
formulas of attachment (6) follows that for any ū(t) ∈ U , t ∈ T

−E
∫ t1
t0

[H(t, ū(t), ψ(t))−H(t, u(t), ψ(t))] dt ≥ 0.

Using the function ū(t) , we define it in the form

ū(t) =

{
v, t ∈ [θ, θ + ε) ,

u(t), t∈̄ [θ, θ + ε) ,

where θ - is the arbitrary point of control continuity u(t), t ∈ T , v ∈ U - is the arbitrary vector, and ε > 0 is the arbitrary sufficient number.
Then from last inequality implies

E

∫θ+ε
θ

[H(t, v, ψ(t))−H(t, u(t), ψ(t))] dt ≤ 0.

From here, using the average value formula, we obtain

EH(θ, v, ψ(θ)) ≤ EH(θ, u(θ), ψ(θ)). (8)

Hence, since v ∈ U , θ ∈ T - are arbitrary, the maximum condition (7) follows.
Sufficiency. Suppose that maximum condition (7) is satisfied for an admissible control u(t) and prove that in this case the control u(t) is
optimal for the considered problem (1)-(3).
From condition (7) for any v = v(θ) ∈ U it follows that

E {H(θ, v(θ), ψ(θ))−H(θ, u(θ), ψ(θ))} ≤ 0.

Hence, since θ ∈ T is arbitrary, it follows that

E

∫ t1
t0

[H(θ, v(θ), ψ(θ))−H(θ, u(θ), ψ(θ))] dθ ≤ 0. (9)

Taking into account inequalities (9), we obtain that

∆S(u) = S(v(θ))− S(u(θ)) = −E
∫ t1
t0

[H(θ, v(θ), ψ(θ))−H(θ, u(θ), ψ(θ))] dθ ≥ 0,

i.e. for all v(θ) ∈ U ,

S(v(θ)) ≥ S(u(θ)).

In other words, u(t) is the optimal control.
This completely proves the theorem.
Now consider the case of a nonlinear but convex quality functional. Let it be required to find a minimum of functionality

S(u) = ϕ(x(t1)), (10)

under restrictions (1)-(2).
Here ϕ(x) - is given continuously differentiable convex scalar function.
Then, using Taylor’s formula the increment of functional (10) is written in form

∆S(u) = E{ϕ′
x(x(t1))∆x(t1) + o(‖∆x(t1)‖)}.

Put

ψ(t) = −ϕ′
x(x(t1))F (t1, t),

H(t, u(t), ψ(t)) = ψ′(t)f(t, u(t)).

Then we have

∆S(u) = −E
∫ t1
t0

[H(t, ū(t), ψ(t))−H(t, u(t), ψ(t))] dt+ Eo(‖∆x(t1)‖). (11)
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Due to ϕ(x) - convex differentiable function

Eo(‖∆x(t1)‖) ≥ 0.

Therefore, from inequality (11) follows

∆S(u) ≥ −E
∫ t1
t0

[H(t, ū(t), ψ(t))−H(t, u(t), ψ(t))] dt.

From here we obtain following

Theorem 2. For optimality of the admissible control u(t) in the considered problem (10), (1),(2) it is sufficient that for all v(t) ∈ U satisfied
equality

E

∫ t1
t0

[H(t, v(t), ψ(t))−H(t, u(t), ψ(t))] dt ≤ 0.
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