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Abstract: For one stochastic optimal control problem described by a linear Ito stochastic equation and linear quality functional a
necessary and sufficient optimality condition form of the Pontryagin maximum principle is obtained. In the case of convexity of the
nonlinear quality functional, a sufficient optimality condition is obtained.In the deterministic case, many authors have studied such
problems using the increment method. The considered work using a stochastic analogue of the increment method necessary and
sufficient conditions for optimality as well as sufficient conditions are established.
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1 Introduction

As is known, in the theory of optimal stochastic control when describing a stochastic controlled model, a convenient mathematical apparatus
is Ito’s stochastic differential equations [1]-[2]. Until now, many authors have obtained various types of necessary optimality conditions for
control problems for Ito stochastic systems [3]-[5]. In this paper, using a stochastic analogue of the method of increments in one linear stochastic
control problem, a necessary and sufficient condition for optimality in the form of the Pontryagin maximum principle [6] is established. In the
case of convexity of the nonlinear quality functional, a sufficient optimality condition is proved.

2 Statement problem

Suppose (€2, F, P) is a full probabilistic space with an allocated non-decreasing o -algebras stream F}, where Fy = o(w(s), to <s<t)
and w(t) is n -dimensional standard Wiener process. L% (to, t1; R™) is the space of concerted processes measurable in (¢, w) and Fy, z(t,w) :

[to, t1] : @ — R", for which ﬁ; |z(t)||2dt < +o0. Here, E is the symbol of mathematical expectation.
Consider system Ito type linear stochastic differential equations in form

dz(t) = (A@)x(t) + f(t,u(®))) dt + B(t)z(t)dw(t), teT = [to,t1], (1)

z(to) = xo.

Here x(t)- is the desired n-dimensional vector, A(t), B(t)- are given continuous (n X n)- coefficients matrices, f(¢,u) - is a given n-
dimensional continuous in (¢, u) vector-function.

u(t) eU C R, (2)

where U is a given nonempty, bounded set. We call such controls admissible controls.
Required to find an admissible control u(t) such that the solution z(¢) of system (1) delivers the smallest possible value to the functional

S(u) = Ec'x(t1), 3)

Here, c- known n- dimensional constant vector.
In this paper, using a stochastic analogue of method, the increment method, we obtain first order optimality conditions.
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3 The increment formula of the quality criterion and the main results

Let u(t) and @(t) = u(t) + Au(t)- two valid controls, z(t) and Z(t) = z(t) + Axz(t) - the corresponding solutions to system (1).
Then it is clear that Az(t) - is a solution the problem

dAx(t) = (A(t)Ax(t) + (f(t,a(t)) — f(t,u(t))))dt + B(t)Azx(t)dw(t), teT = [to,t1],

Az(tg) = 0. @)

Since(4) is a linear stochastic inhomogeneous differential equation relatively Az (t), the solution can be represented as [5].

t
Ax(t) =j F(t,7)(f(ra(r)) — f(r,u(r)))dr, )

to

where F(t,7) — (n X n) - matrix is solution problem

dF (t,7) = F(t,7)A(T)dT + F(t,7)B(1)dw(r), te€T = [to,t1],

F(t,t) = I — (n x n) — unit matriz.

From (5) clear, that

t1
Ax(ty) = L F(ty,6)(f(t, a(t)) — F(tu(t)))dt.

Then increment formula quality criterion (3) can be imagining as:

ty
AS(u) = S(a) — S(u) = Ed Ax(ty) = EJ CF(t, 6)(f(t,a(t)) — f(t, u(t)))dt.

to

Denote by

Then we have

t1
AS(u) = B | 1H( a0, 6(0) ~ Hu), v(0)] dr. ®)

to

Using the expression for ¢ (t), we find a stochastic differential equation that this function satisfies.
From the definition of the function v (¢) it is clear that

dip(t) = = F(ty, 1) A(t)dt — ¢ F(ty, t)B(t)dw(t) = A(t)y(t)dt + B(t)y(t)dw(t),

P(t) = —CIF(tl,tl) = —c.
Therefore, it was proved that ¢ (¢) is the following system of stochastic equations:

dy(t) = A(t)p(t)dt + B(t)y(t)dw(t), teT = [to,t1],

Y(t1) = —c.
Using the relation (6), the following is proved
Theorem 1. For the optimality of the admissible control u(t) in the considered problem (1)-(3), it is necessary and sufficient that

E)neaécEH(t,vm/)(t)) = EH(t,u(l), (1)), ©

satisfied for allt € T.
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Proof.
Necessity. Let us assume that u(¢) is optimal. We prove that the relationship is fulfilled (7). In the power of optimal control u(t) from the
formulas of attachment (6) follows that for any u(t) € U,t € T

ty

B[ Ha),00) - Htu(), o0)] dt 0.
to

Using the function @(¢) , we define it in the form

oy Ju, telf,0+4¢),
u(t){u(t), (20,0 +¢),

where 6 - is the arbitrary point of control continuity u(t), ¢t € T, v € U - is the arbitrary vector, and £ > 0 is the arbitrary sufficient number.
Then from last inequality implies

O+¢
B[ 00) - Bt o) d <o

From here, using the average value formula, we obtain

EH(0,v,9(0)) < EH(6,u(0),1(0)). ®
Hence, since v € U, 6 € T - are arbitrary, the maximum condition (7) follows.
Sufficiency. Suppose that maximum condition (7) is satisfied for an admissible control «(¢) and prove that in this case the control wu(t) is

optimal for the considered problem (1)-(3).
From condition (7) for any v = v(6) € U it follows that

E{H(0,v(0),1(0)) — H(0,u(0),¥(0))} < 0.

Hence, since 6 € T is arbitrary, it follows that

t1
B | H(6,000),(6)) ~ (6. (0), 6(6))] 6 < 0. ©
to
Taking into account inequalities (9), we obtain that

t1

AS(u) = S(v(8)) - S(u(9)) = ij [H(8,v(6),%(6)) — H(8,u(8), 1(8))] db > 0,

to

ie. forallv(f) € U,
S(w(0)) > S(u(8)).

In other words, u(t) is the optimal control.
This completely proves the theorem.
Now consider the case of a nonlinear but convex quality functional. Let it be required to find a minimum of functionality

S(u) = p(x(t1)), (10)

under restrictions (1)-(2).
Here o(z) - is given continuously differentiable convex scalar function.
Then, using Taylor’s formula the increment of functional (10) is written in form

AS(u) = B{yy(x(t1))Ax(tr) + o(||Az(t1)])}-

Put

Then we have

AS(u) = —EJ (H (8, u(t), ¥ (t)) — H(t, u(t), ¥ (t))] dt + Eo(|| Ax(t1)]])- (11)
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Due to ¢(x) - convex differentiable function
Eo([|[Az(t1)]]) > 0.

Therefore, from inequality (11) follows

t1

AS(u) > —Ej [H (1, a(t), (1)) — H(t u(t), (1)) dt.

to
From here we obtain following

Theorem 2. For optimality of the admissible control u(t) in the considered problem (10), (1),(2) it is sufficient that for all v(t) € U satisfied
equality
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