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Abstract: In this paper, we consider the reinsurance surplus process. Depending on the type of the reinsurance we obtain for-
mulas for the distribution functions and moments of claims in reinsurance surplus process, then using these moments we give
the asymptotic results for the mathematical expectation and variance in each type of the reinsurance. Then we give numerical
examples to compare the values of mathematical expectation and variance when there is no reinsurance and when the insurer
effects reinsurance.
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1 Introduction

Reinsurance is one of the major risk and capital management tools available to primary insurance companies. Reinsurance is insurance for
insurers. Insurers buy reinsurance for risks they cannot or do not wish to retain fully themselves. Reinsurers help the industry to provide protec-
tion for a wide range of risks, including the largest and most complex risks covered by the insurance system. Insurers also benefit from capital
relief that reinsurance provides and from reinsurers’ product development skills and risk expertise. As such, reinsurance is an indispensable
part of the insurance system that makes insurance more secure and less expensive. This is ultimately for the benefit of policyholders who get
more protection at a lower cost. That is why it is important to investigate surplus process and moments of this process when insurer effects
reinsurance. We will call the insurer’s surplus process as reinsurance surplus process when insurer effects reinsurance. Consider the insurance
risk process

U(t) = u+ ct−
N(t)∑
i=1

Xi, (1.1)

where u = U(0) ≥ 0 is the initial capital of the insurance company, c > 0 is the premium rate, {Xi, i ≥ 1} denotes the sequence of indepen-
dent and identically distributed (i.i.d.) non-negative successive claims, and N(t) (t ≥ 0) denotes the number of claims up to time t, which is a
counting process independent of {Xi, i ≥ 1}.

If N(t) is a renewal process, that is, the times Ti, i ≥ 1, elapsed between successive claims are i.i.d., the model above is the renewal risk
model, which introduced by Sparre Anderson (see, for example, [1] and [4]).

Fig. 1: A trajectory of the process U(t).
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If the insurer effects reinsurance by paying a reinsurance premium continuously at a constant rate, then this process becomes a net of
reinsurance surplus process U∗(t), t ≥ 0 given by

U∗(t) = u+ c∗t−
N(t)∑
i=1

X∗i , (1.2)

where c∗ denotes the insurer’s premium income per unit time net of reinsurance, and X∗i denotes the amount the insurer pays on the ith claim,
net of reinsurance.

Basically there are some types of reinsurance contracts: proportional reinsurance, excess of loss reinsurance and excess stop loss reinsurance.
If the insurer effects reinsurance, then the amount of claim paid by insurer is given by function h in each type of reinsurance, so, if the amount
of claim is x, then the insurer pays the amount of h(x) (see, for example, [2]-[7]-[9]): 0 ≤ h(x) ≤ x. Consequently, in (1.2) we can write
h(Xi) instead of X∗i : X∗i = h(Xi). We will denote by F and Fh the distribution functions of X and X∗ = h(X), respectively.

If the insurer effects proportional reinsurance, then the insurer pays some proportion α of each claim. In this case h(x) = αx, 0 < α ≤ 1.
If the insurer effects excess of loss reinsurance with retention level M , then the reinsurance company pays claims that exceed the level M .

In this case, h(x) = min{x,M}, M > 0.
The reinsurance company can apply some upper bound L to insure itself against big losses, so, the maximum amount which can be paid by

reinsurance company equals to L. In this case, the insurer effects excess stop loss reinsurance with retention level M and upper bound L, then

h(x) = x−min{max{x−M ; 0};L} = max{min{x;M};x− L}.

To distinguish distribution function of claims for each type of reinsurance, we will denote them by Fh,α, Fh,M and Fh,M,L, when the
insurer effects proportional reinsurance, excess of loss reinsurance with retention level M and excess stop loss reinsurance with retention level
M and upper bound L, respectively.

Denote

λk = E{Xk} = k

∫∞
0
xk−1F (x)dx,

λ∗k = E{(X∗)k} = E{hk(X)} = k

∫∞
0
xk−1Fh(x)dx,

Gk(t) = k

∫ t
0
xk−1F (x)dx,

where k = 1; 2.
We will denote the moments of claims by λ∗k,α, λ∗k,M and λ∗k,M,L, when the insurer effects proportional reinsurance, excess of loss

reinsurance with retention level M and the excess stop loss reinsurance with retention level M and upper bound L, respectively.
The following proposition gives us the tail of distribution, first and second moments of claims for each type of reinsurance when insurer

effects reinsurance.

Proposition 1.1. 1) If the insurer effects proportional reinsurance with proportion α, then

Fh,α(x) = F (x/α), (1.3)

λ∗1,α = αλ1, (1.4)

λ∗2,α = α2λ2. (1.5)

2) If the insurer effects excess of loss reinsurance with retention level M , then

Fh,M (x) =

{
F (x), x < M

0, x ≥M
, (1.6)

λ∗1,M = G1(M), (1.7)

λ∗2,M = G2(M). (1.8)

3) If the insurer effects excess stop loss reinsurance with retention level M and upper bound L, then

Fh,M,L(x) = P{h(X) > x} =

{
F (x), x < M

F (x+ L), x ≥M
, (1.9)

λ∗1,M,L = λ1 +G1(M)−G1(M + L), (1.10)

λ∗2,M,L = λ2 +G2(M)−G2(M + L)− 2Lλ1 + 2LG1(M + L). (1.11)
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Proof: 1) If the insurer effects proportional reinsurance with proportion α, then

Fh,α(x) = P{h(X) > x} = P{αX > x} = P{X > x/α} = F (x/α),

λ∗1,α =

∫∞
0
Fh,α(x)dx =

∫∞
0
F (x/α)dx = α

∫∞
0
F (x)dx = αλ1,

λ∗2,α = 2

∫∞
0
xFh,α(x)dx = 2

∫∞
0
xF (x/α)dx = α2 · 2

∫∞
0
xF (x)dx = α2λ2.

2) If the insurer effects excess of loss reinsurance with retention level M , then

Fh,M (x) = P{h(X) > x}

= P{h(X) > x,X > M}+ P{h(X) > x,X ≤M}

= P{M > x,X > M}+ P{X > x,X ≤M}

=

{
F (M), x < M

0, x ≥M
+

{
F (M)− F (x), x < M

0, x ≥M
=

{
F (x), x < M

0, x ≥M
,

λ∗1,M =

∫∞
0
Fh,M (x)dx =

∫M
0
F (x)dx = G1(M),

λ∗2,M = 2

∫∞
0
xFh,M (x)dx = 2

∫M
0
xF (x)dx = G2(M).

3) If the insurer effects excess stop loss reinsurance with retention level M and upper bound L, then

Fh,M,L(x) = P{h(X) > x}

= P{h(X) > x,X > M + L}+ P{h(X) > x,M < X ≤M + L}+ P{h(X) > x,X ≤M}

= P{X − L > x,X > M + L}+ P{M > x,M < X ≤M + L}+ P{X > x,X ≤M}

=

{
F (M + L), x < M

F (x+ L), x ≥M
+

{
F (M + L)− F (M), x < M

0, x ≥M
+

{
F (M)− F (x), x < M

0, x ≥M

=

{
F (x), x < M

F (x+ L), x ≥M
,

λ∗1,M,L =

∫∞
0
Fh,M,L(x)dx =

∫M
0
F (x)dx+

∫∞
M
F (x+ L)dx

= G1(M) +

∫∞
M+L

F (x)dx = λ1 +G1(M)−G1(M + L),

λ∗2,M,L = 2

∫∞
0
xFh,M,L(x)dx = 2

∫M
0
xF (x)dx+ 2

∫∞
M
xF (x+ L)dx

= G2(M) + 2

∫∞
M+L

xF (x)dx− 2L

∫∞
M+L

F (x)dx

= λ2 +G2(M)−G2(M + L)− 2Lλ1 + 2LG1(M + L).

This completes the proof of Proposition 1.1. �

It is not difficult to see that, if we take α = 1 in proportional reinsurance or M =∞ in excess of loss reinsurance and excess stop loss
reinsurance, we obtain insurance without reinsurance. Also, if we take L =∞ in excess stop loss reinsurance, we obtain excess of loss
reinsurance. It can be also seen mathematically from the following relations:
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1) Proportional reinsurance with proportion α = 1:

Fh,α=1(x) = F (x/1) = F (x),

λ∗1,α=1 = 1 · λ1 = λ1,

λ∗2,α=1 = 12 · λ2 = λ2.

2) Excess of loss reinsurance with retention level M =∞:

Fh,M=∞(x) =

{
F (x), x <∞
0, x =∞

= F (x),

λ∗1,M=∞ = lim
M→∞

G1(M) = λ1,

λ∗2,M=∞ = lim
M→∞

G2(M) = λ2.

3) Excess stop loss reinsurance with retention level M =∞ and upper bound L:

Fh,M=∞,L(x) =

{
F (x), x <∞
F (x+ L), x =∞

=

{
F (x), x <∞
0, x =∞

= F (x),

λ∗1,M=∞,L = lim
M→∞

(λ1 +G1(M)−G1(M + L)) = λ1 + λ1 − λ1 = λ1.

Since λ1 exists, then
∫∞
t F (x)dx→ 0 as t→∞. So,

λ∗2,M=∞,L = lim
M→∞

(λ2 +G2(M)−G2(M + L)− 2Lλ1 + 2LG1(M + L)) =

= λ2 + λ2 − λ2 − 2L lim
M→∞

∫∞
M+L

F (x)dx = λ2.

4) Excess stop loss reinsurance with retention level M and upper bound L =∞:

Fh,M,L=∞(x) = lim
L→∞

{
F (x), x < M

F (x+ L), x ≥M
=

{
F (x), x < M

0, x ≥M
= Fh,M (x),

λ∗1,M,L=∞ = lim
L→∞

(λ1 +G1(M)−G1(M + L)) = λ1 +G1(M)− λ1 = G1(M) = λ∗1,M .

Since λ2 exists, then 0 ≤ t
∫∞
t F (x)dx ≤

∫∞
t xF (x)dx→ 0 as t→∞. So,

λ∗2,M,L=∞ = lim
L→∞

(λ2 +G2(M)−G2(M + L)− 2Lλ1 + 2LG1(M + L)) =

= λ2 +G2(M)− λ2 − 2 lim
L→∞

(
L

∫∞
M+L

F (x)dx

)
= G2(M) = λ∗2,M .

2 Asymptotics for the expected value of the reinsurance surplus process

In this section we derive asymptotics for the expected value of U∗(t). For this, let us introduce the following definition from the literature [10]:

Definition 2.1. We call F a non-lattice distribution function if and only if f(θ) 6= 1 for θ 6= 0, and as a special case, we call F strongly
non-lattice if

lim inf
|θ|→∞

| 1− f(θ) |> 0,

where f(θ) is the characteristic function of F defined by

f(θ) =

∫∞
−∞

eiθxdF (x).

The following theorem describes asymptotic expansions for the mathematical expectation of the reinsurance surplus process in each type of
the reinsurance.

Theorem 2.1. If distribution function of T is a strongly non-lattice and λ∗1 = E{X∗}, µk+2 = E{T k+2}, k ≥ 0 exist, then the following
asymptotic expansions as t→∞ can be written for the mathematical expectation of the reinsurance surplus process depending on the type of
reinsurance:
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1) for the proportional reinsurance with proportion α:

E{U∗(t)} =
(
c∗ − αλ1

µ1

)
t+ u− αλ1(µ2 − 2µ21)

2µ21
+ o(t−k), (2.1)

2) for the excess of loss reinsurance with retention level M :

E{U∗(t)} =
(
c∗ − G1(M)

µ1

)
t+ u− G1(M)(µ2 − 2µ21)

2µ21
+ o(t−k), (2.2)

3) for the excess stop loss reinsurance with retention level M and upper bound L:

E{U∗(t)} =
(
c∗ − λ1 +G1(M)−G1(M + L)

µ1

)
t+ u− (λ1 +G1(M)−G1(M + L))(µ2 − 2µ21)

2µ21
+ o(t−k). (2.3)

Proof: From (1.2) we can write the following:

E{U∗(t)} = u+ c∗t− E
{N(t)∑
i=1

X∗i

}
, (2.4)

Since X∗ and T are independent, using Wald’s identity (see, for example, [5]) we can write

E

{N(t)∑
i=1

X∗i

}
= E{N(t)}E{X∗} = λ∗1H(t) (2.5)

where H(t) = E{N(t)} is a renewal function. Under the conditions of this theorem a second-order approximation for the renewal function
has been derived in [10]:

H(t) =
t

µ1
+
µ2 − 2µ21

2µ21
+ o(t−k), t→∞. (2.6)

Taking into account (2.6) in (2.5) we obtain

E

{N(t)∑
i=1

X∗i

}
=
λ∗1
µ1
t+

λ∗1(µ2 − 2µ21)

2µ21
+ o(t−k), t→∞. (2.7)

Then taking into account (2.7) in (2.4) we obtain

E{U∗(t)} =
(
c∗ − λ∗1

µ1

)
t+ u− λ∗1(µ2 − 2µ21)

2µ21
+ o(t−k), t→∞. (2.8)

For the proportional reinsurance with proportion α, taking into account (1.4) in (2.8) we can obtain (2.1), for the excess of loss reinsurance
with retention level M , taking into account (1.7) in (2.8) we can obtain (2.2) and for the excess stop loss reinsurance with retention level M
and upper bound L, taking into account (1.10) in (2.8) we can obtain (2.3).

This completes the proof of Theorem 2.1. �

3 Asymptotics for the variance of the reinsurance surplus process

In this section we derive asymptotics for the variance of U∗(t). For this, let us introduce the following definition from the literature ([6]):

Definition 3.1. A distribution function F is said to belong to the class ϑ if some convolution of F has an absolutely continuous component.

The following theorem describes asymptotic expansions for the variance of the reinsurance surplus process in each type of the reinsurance.

Theorem 3.1. If distribution function of T belongs to the class ϑ and λ∗2 = E{(X∗)2}, µk+3 = E{T k+3}, k ≥ 0 exist, then the following
asymptotic expansions as t→∞ can be written for the variance of the reinsurance surplus process depending on the type of reinsurance:
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1) for the proportional reinsurance with proportion α:

V ar{U∗(t)} = α2
(
λ21µ2
µ31

+
λ2 − 2λ21

µ1

)
t+ α2

(
5λ21µ

2
2

4µ41
− 2λ21µ3

3µ31
+

(λ2 − 2λ21)µ2
2µ21

− λ2 + λ21

)
+ o(t−k), (3.1)

2) for the excess of loss reinsurance with retention level M :

V ar{U∗(t)} =
(
(G1(M))2µ2

µ31
+
G2(M)− 2(G1(M))2

µ1

)
t+

+
5(G1(M))2µ22

4µ41
− 2(G1(M))2µ3

3µ31
+

(G2(M)− 2(G1(M))2)µ2
2µ21

−G2(M) + (G1(M))2 + o(t−k),

(3.2)

3) for the excess stop loss reinsurance with retention level M and upper bound L:

V ar{U∗(t)} =
(
(λ1 +G1(M)−G1(M + L))2µ2

µ31

+
λ2 +G2(M)−G2(M + L)− 2Lλ1 + 2LG1(M + L)− 2(λ1 +G1(M)−G1(M + L))2

µ1

)
t

+
5(λ1 +G1(M)−G1(M + L))2µ22

4µ41
− 2(λ1 +G1(M)−G1(M + L))2µ3

3µ31

+
(λ2 +G2(M)−G2(M + L)− 2Lλ1 + 2LG1(M + L)− 2(λ1 +G1(M)−G1(M + L))2)µ2

2µ21

−(λ2 +G2(M)−G2(M + L)− 2Lλ1 + 2LG1(M + L)) + (λ1 +G1(M)−G1(M + L))2 + o(t−k),

(3.3)

Proof: From (1.2) we can write the following:

V ar{U∗(t)} = V ar

{N(t)∑
i=1

X∗i

}
. (3.4)

Using (3.4) and Wald’s second identity (see, for example, [5]) we get

V ar{U∗(t)} = E{N(t)}V ar{X∗}+ (E{X∗})2V ar{N(t)}. (3.5)

For V ar{N(t)} we can write (see, [3], Corollary 2.3)

V ar{N(t)} =
(
µ2
µ31
− 1

µ1

)
t+

5µ22
4µ41
− 2µ3

3µ31
− µ2

2µ21
+ o(t−k), t→∞. (3.6)

Since V ar{X∗} = λ∗2 − (λ∗1)
2, E{X∗} = λ∗1, then taking into account (2.6) and (3.6) in (3.5), we can write

V ar{U∗(t)} =
(
t

µ1
+
µ2 − 2µ21

2µ21
+ o(t−k)

)
(λ∗2 − (λ∗1)

2)

+(λ∗1)
2
((

µ2
µ31
− 1

µ1

)
t+

5µ22
4µ41
− 2µ3

3µ31
− µ2

2µ21
+ o(t−k)

)
=

(
λ∗2 − (λ∗1)

2

µ1
+ (λ∗1)

2
(
µ2
µ31
− 1

µ1

))
t+ (λ∗2 − (λ∗1)

2)

(
µ2
2µ21
− 1

)
+(λ∗1)

2
(
5µ22
4µ41
− 2µ3

3µ31
− µ2

2µ21

)
+ o(t−k) =

(
(λ∗1)

2µ2
µ31

+
λ∗2 − 2(λ∗1)

2

µ1

)
t

+
5(λ∗1)

2µ22
4µ41

− 2(λ∗1)
2µ3

3µ31
+

(λ∗2 − 2(λ∗1)
2)µ2

2µ21
− λ∗2 + (λ∗1)

2 + o(t−k), t→∞.

(3.7)

For the proportional reinsurance with proportion α, taking into account (1.4) and (1.5) in (3.7) we can obtain (3.1), for the excess of loss
reinsurance with retention level M , taking into account (1.7) and (1.8) in (3.7) we can obtain (3.2) and for the excess stop loss reinsurance with
retention level M and upper bound L, taking into account (1.10) and (1.11) in (3.7) we can obtain (3.3).

This completes the proof of Theorem 3.1. �

4 Numerical examples

In this section we give numerical examples to compare insurance surplus process and reinsurance surplus procces. For this, we take u = 100
as the initial capital of insurance company, c = 0, 6 as the premium rate. Also, we assume that the distribution of T is an Erlang distribution
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with shape parameter n = 2 and scale parameter β = 1, and the distribution of X is an exponential distribution with scale parameter β = 1.
In this case, µ1 = 2, µ2 = 6, µ3 = 24 and λ1 = 1, λ2 = 2. It is not difficult to see that safety loading condition holds:

ρ =
cµ1
λ1
− 1 = 0, 2 > 0.

In the following table the expected value and variance for different values of time are calcluated when the insurer does not effect reinsurance:

µ1

2

µ2

6

µ3

24

λ1

1

λ2

2

c

0, 6

t = 10
Exp. value Variance
101, 25 7, 3125

t = 100
Exp. value Variance
110, 25 74, 8125

t = 1000
Exp. value Variance
200, 25 749, 8125

Table 4.1: No reinsurance

We let ρ to be a constant for every surplus process. Thus we can calculate c∗ from the formula of ρ for each type of reinsurance surplus
process:

c∗ =
λ∗1(ρ+ 1)

µ1
.

In the following table the expected value and variance for different values of time are calcluated when the insurer effects proportional
reinsurance with different values of α:

α

0, 5
0, 65
0, 87

λ∗
1

0, 5
0, 65
0, 87

λ∗
2

0, 5
0, 845
1, 5138

c∗

0, 3
0, 39
0, 522

t = 10
Exp. value Variance
100, 625 1, 8281
100, 8125 3, 0895
101, 0875 5, 5348

t = 100
Exp. value Variance
105, 125 18, 7031
106, 6625 31, 6083
108, 9175 56, 6256

t = 1000
Exp. value Variance
150, 125 187, 4531
165, 1625 316, 7958
187, 2175 567, 5331

Table 4.2: Proportional reinsurance

In the following table the expected value and variance for different values of time are calcluated when the insurer effects excess of loss
reinsurance with different values of M :

M

1
2
3

λ∗
1

0, 6321
0, 8647
0, 9502

λ∗
2

0, 5285
1, 188
1, 6017

c∗

0, 3793
0, 5188
0, 5701

t = 10
Exp. value Variance
100, 7902 1, 6362
101, 0808 4, 0075
101, 1878 5, 633

t = 100
Exp. value Variance
106, 4792 16, 4275
108, 8628 40, 6449
109, 7397 57, 3942

t = 1000
Exp. value Variance
163, 3701 164, 3398
186, 6826 407, 0195
195, 2588 575, 0073

Table 4.3: Excess of loss reinsurance

In the following table the expected value and variance for different values of time are calcluated when the insurer effects excess stop loss
reinsurance with different values of M and L:

M

1
1
2
2

L

1
2
1
2

λ∗
1

0, 7675
0, 6819
0, 9145
0, 883

λ∗
2

1, 0698
0, 7276
1, 4867
1, 2979

c∗

0, 4605
0, 4091
0, 5487
0, 5298

t = 10
Exp. value Variance
100, 9593 3, 7932
100, 8524 2, 4391
101, 1431 5, 2326
101, 1037 4, 4594

t = 100
Exp. value Variance
107, 8664 38, 683
106, 9896 24, 72
109, 3731 53, 3196
109, 0505 45, 3219

t = 1000
Exp. value Variance
176, 9374 387, 5812
168, 3612 247, 5292
191, 6738 534, 1895
188, 5188 453, 9467

Table 4.4: Excess stop loss reinsurance

It can be easily seen from the tables that when the insurer effects reinsurance there does not happen big decrease in expected value in
comparison with no reinsurance. But there happens a distinguishable decrease in variance which can be accepted as a good result.

5 Conclusion

In this paper we consider insurance surplus process when insurer effects reinsurance and derive asymptotic results for the mathematical expecta-
tion and variance of this process. Depending on the type of the reinsurance we first give formulas for the distribution functions and moments of
claims in reinsurance surplus process, then using these moments we give the asymptotic results for the mathematical expectation and variance
in each type of the reinsurance.

Finally, we give numerical examples to compare the values of mathematical expectation and variance when there is no reinsurance and when
the insurer effects reinsurance.
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