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Abstract

Parabolic equation on the unit sphere arise naturally in geophysics and oceanography when we model a
physical quantity on large scales. In this paper, we consider a problem of finding the initial state for
backward parabolic problem on the sphere. This backward parabolic problem is ill-posed in the sense of
Hadamard. The solutions may be not exists and if they exists then the solution does not continuous depends
on the given observation. The backward problem for homogeneous parabolic problem was recently considered
in the paper Q.T. L. Gia, N.H. Tuan, T. Tran. However, there are very few results on the backward problem
of nonlinear parabolic equation on the sphere. In this paper, we do not consider the its existence, we only
study the stability of the solution if it exists. By applying some regularized method and some techniques on
the spherical harmonics, we approximate the problem and then obtain the convalescence rate between the
regularized solution and the exact solution.
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1. Introduction

Boundary value problem and parabolic equations and also related models have many applications in
various fields, for example, heat transfer, biology, physics. Let us refer some works concerning the existence
of parabolic equations, for example [13, 14, 15, 16, 17] and the references therein.
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In this paper, we consider a final value problem (often called the backward problem) for the following
parabolic equation

∂

∂t
u(x, t)−∆∗u(x, t) = F (u(x, t)), (x, t) ∈ Sn × [0, T ]

u(x, T ) = g(x),
(1)

where Sn is the unit sphere on Rn. This backward parabolic problem is ill-posed in the sense of Hadamard.
Indeed, our above problem is non well-posed in the sense of Hadamard, the solutions may be not exists and
if they exists then the solution does not continuous depends on the given observation. If the given data is
noise by the measured data with small error then the corresponding solutions may have big errors. This is
disadvantage point for compute the numerical solution of the problem. Let us assume that if the given final
observation data g is noisy by the data gε which satisfies that

‖gε − g‖L2(Sn) ≤ ε. (2)

Here, our main goal in this paper is to construct a regularization problem and prove that it is well-posed.
Backward problem is also ill-posed and there are many publications about regularization, for example, N.H.
Tuan et al. [10, 11, 12]. Partial Differential Equations (PDEs) on the sphere has many applications in various
fields, for example, physical geodesy, geophysics, oceanography, and biology. Let us refer the reader to many
papers of Q.T. Le Gia and his group [8, 9]. However, to the best of our knowledge, there are limited results
on backward problem of PDEs on the sphere.

To the best of author’s knowledge, there are very few papers on backward problem on the sphere. In order
to study the models on the sphere, we can apply some techniques and knowledge on Spherical harmonics.
In this paper, we apply two various methods for approximate the backward problem. In the linear case
F = F (x, t), we use the Fourier truncation method. In the nonlinear case F = F (u), we use the method of
quasi-reversibility.

The paper is organized as follows. In the section 3, we use truncation method to give approximate
solution. In section 4, we present a quasi-reversibility regularization method and establish the convergence
estimates between the regularized solution and the exact solution.

2. Preliminaries

From [8], we know that the eigenvalues for −∆ are as follows

λl = l(l + n− 1), l = 0, 1, 2, ......

and the eigenfunctions Yl(x) such that

∆Yl(x) = −λlYl(x).

Let us denote the space Vl which contain all spherical harmonics in the following

{Ylk(x) : k = 1, 2, 3, ...N(n, l)},
where

N(n, 0) = 1, N(n, l) =
(2l + n− 1)Γ(l + n− 1)

Γ(l + 1)Γ(n)
, l ≥ 1.

For any function f ∈ L2(Sn), we have the expansion of spherical harmonics as follows

f =
∞∑
l=0

N(n,l)∑
k=1

f̂lkYlk, f̂lk =

∫
Sn
fY lkdS.

Here dS is called by the surface measure of Sn. The Sobolev space Hσ(Sn) for σ > 0 is the space which
consists of all function f such that

‖f‖2Hσ(Sn) =
∞∑
l=0

N(n,l)∑
k=1

(1 + λl)
σ|f̂lk|2 <∞.
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3. Inhomogeneous linear backward parabolic on the sphere

3.1. The inverse problem
Let u(x, T ) = g(x) and the source term F (x, t) be given. The linear backward parabolic problem is of

finding u(x, 0) from the system
∂

∂t
u(x, t)−∆u(x, t) = F (x, t), 0 < t < T,

u(x, T ) = g(x), g ∈ Hσ(Sn).
(3)

Theorem 3.1. The Problem (3) has a unique solution if and only if the following holds

∞∑
l=0

N(k,l)∑
k=1

e2λT
[
ĝlk −

∫ T

0
eλ(s−T )F̂lk(s)ds

]2
<∞. (4)

Then, its solution has the form

u(x, t) =
∞∑
l=0

N(k,l)∑
k=1

eλ(T−t)
[
ĝlk −

∫ T

t
eλ(s−T )F̂lk(s)ds

]
Ylk(x). (5)

Proof. Suppose the Problem (3) has a unique solution u. Let u(x, 0) = h(x) ∈ L2(Sn). Then u is given by

u(x, t) =

∞∑
l=0

N(k,l)∑
k=1

e−λt
[
ĥlk +

∫ t

0
eλ(s−t)F̂lk(s)ds

]
Ylk(x), (6)

where ĥlk =
∫
Sn u(x, 0)Y`kdS. By letting t = T , we have

g(x) = u(x, T ) =
∞∑
l=0

N(k,l)∑
k=1

e−λT
[
ĥlk +

∫ T

0
eλ(s−T )F̂lk(s)ds

]
Ylk(x).

This implies that

ĝlk = e−λT
[
ĥlk +

∫ T

0
eλ(s−T )F̂lk(s)ds

]
.

Or

ĥlk = eλT
[
ĝlk −

∫ T

0
eλ(s−T )F̂lk(s)ds

]
. (7)

Hence

‖u(., 0)‖2L2(Sn) =
∞∑
n=1

|ĥlk|2 =
∞∑
n=1

e2λT
[
ĝlk −

∫ T

0
eλ(s−T )F̂lk(s)ds

]2
<∞. (8)

Suppose that (4) holds. Define the function

v(x) =
∞∑
l=0

N(k,l)∑
k=1

eλT
[
ĝlk −

∫ T

0
eλ(s−T )F̂lk(s)ds

]
Ylk(x),

then from (4) we have v ∈ L2(Sn).
We consider the problem of finding a solution u from the original value u(x, 0) = v(x)

∂

∂t
u(x, t)−∆u(x, t) = F (x, t), 0 < t < T,

u(x, 0) = v(x), f ∈ L2(Sn).
(9)
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By Theorem 1, Problem (23) has a unique solution u ∈ L2(Sn). It is given by

u(x, t) =
∞∑
l=0

N(k,l)∑
k=1

e−λt
[
v̂lk +

∫ t

0
eλ(s−t)F̂lk(s)ds

]
Ylk(x). (10)

Since

v̂lk =

∫
Sn
v(x)Y`kdS =

∫
Sn

 ∞∑
l=0

N(k,l)∑
k=1

eλT
[
ĝlk −

∫ T

0
eλ(s−T )F̂lk(s)ds

]
Ylk(x)

 ȲlkdS

= eλT
[
ĝlk −

∫ T

0
eλ(s−T )F̂lk(s)ds

]
.

We get

u(x, T ) = g(x).

So, we deduce that u is a solution of Problem (23). And we also have (5).

3.2. Truncation regularization method
In this subsection, we give a regularized solution as follows

uε(x, t) =

λl≤M(ε)∑
l=0

N(k,l)∑
k=1

eλ(T−t)
[
ĝεlk −

∫ T

t
eλ(s−T )F̂ εlk(s)ds

]
Ylk(x), (11)

whereM(ε) is chosen later.

Theorem 3.2. Let gε, F ε be as follows

‖gε − g‖L2(Sn) + ‖F ε − F‖L∞(0,T ;L2(Sn)) ≤ ε. (12)

Let us chooseM(ε) = 1
m log(1/ε) for any 0 < m < 1, then we obtain

‖uε(., t)− u(., t)‖L2(Sn) ≤
(

1 +
1

m
log(1/ε)

)−σ
‖u‖L∞(0,T ;Hσ(Sn)) + 2ε1−m. (13)

Proof. Set the following function

vε(x, t) =

λl≤M(ε)∑
l=0

N(k,l)∑
k=1

eλl(T−t)
[
ĝεlk −

∫ T

t
eλ(s−T )F̂ εlk(s)ds

]
Ylk(x). (14)

Let us first obtain the following estimate

‖u(., t)− vε(., t)‖L2(Sn) =

√√√√λl>M(ε)∑
l=0

N(k,l)∑
k=1

|ûlk|2 =

√√√√λl>M(ε)∑
l=0

N(k,l)∑
k=1

(1 + λl)−σ(1 + λl)σ|ûlk|2. (15)

Noting that if λl >M(ε) then we get

(1 + λl)
−σ ≤ (1 +M(ε))−σ. (16)

This latter inequality implies that

‖u(., t)− vε(., t)‖L2(Sn) ≤ (1 +M(ε))−σ‖u(., t)‖Hσ(Sn) ≤ (1 +M(ε))−σ‖u‖L∞(0,T ;Hσ(Sn)). (17)
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Then, we get the following estimate

‖uε(., t)− vε(., t)‖L2(Sn) ≤
∥∥∥ λl≤M(ε)∑

l=0

N(k,l)∑
k=1

eλl(T−t)
(
ĥεlk − ĥlk

)∥∥∥
L2(Sn)

+
∥∥∥∫ T

t

λl≤M(ε)∑
l=0

N(k,l)∑
k=1

eλl(s−t)
(
F̂ εlk − F̂lk

)
ds
∥∥∥
L2(Sn)

≤ eM(ε)(T−t)

√√√√λl≤M(ε)∑
l=0

N(k,l)∑
k=1

(
ĥεlk − ĥlk

)2

+

∫ T

t

√√√√λl≤M(ε)∑
l=0

N(k,l)∑
k=1

e2λl(s−t)
(
F̂ εlk − F̂lk

)2
ds

≤ eM(ε)(T−t)‖hε − h‖L2(Sn) +

∫ T

t
eM(ε)(s−t)‖F ε(., s)− F (., s)‖L2(Sn)ds

≤ eM(ε)(T−t) (‖hε − h‖L2(Sn) + ‖F ε − F‖L∞(0,T ;L2(Sn))

)
. (18)

Since the fact that
‖hε − h‖L2(Sn) + ‖F ε − F‖L∞(0,T ;L2(Sn)) ≤ 2ε,

we deduce that

‖uε(., t)− vε(., t)‖L2(Sn) ≤ 2εeM(ε)T . (19)

Combining (17) and (19), we conclude that

‖u(., t)− vε(., t)‖L2(Sn) ≤ (1 +M(ε))−σ‖u‖L∞(0,T ;Hσ(Sn)) + 2εeM(ε)T . (20)

By chooseM(ε) = 1
m log(1/ε) and noting that 0 < m < 1, we find that

‖u(., t)− vε(., t)‖L2(Sn) ≤
(

1 +
1

m
log(1/ε)

)−σ
‖u‖L∞(0,T ;Hσ(Sn)) + 2ε1−m, (21)

which allows us to get the desired result.

4. Nonlinear backward parabolic on the sphere

To more clear, we discuss some details on the direct problem for nonlinear parabolic equation on the
sphere.

4.1. The direct problem
The direct problem is of finding u(x, t) from the known data u(x, 0)

∂

∂t
u(x, t)−∆∗u(x, t) = F (u(x, t)), 0 < t < T,

u(x, 0) = u0(x), u0 ∈ H2σ(Sn).
(22)

Theorem 4.1. Let F ∈ C∞(Rn+1) and u0 ∈ H2σ(Sn) with σ ≥ 1. Then there is a time T > 0 such that
(1.1), (1.2) has a unique solution u satisfying

u ∈ C([0, T ];H2σ(Sn−1)) ∩ C1([0, T ];H2σ−2(Sn−1)).
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And u has the form

u(x, t) = S(t)u0 +

∫ t

0
S(s− t)F (u(s))ds,

where S(t)f = e−t∆
∗ are defined as

S(t)f =

∞∑
L=0

m=L∑
m=−L

e−λLtf̂L,mYL,m.

4.2. The backward in time problem
In this section, we are looking for solution u of the following backward in time problem

∂

∂t
u(x, t)−∆∗u(x, t) = F (u(x, t)), (x, t) ∈ Sn × [0, T ],

u(x, T ) = uT (x).
(23)

Let PN be the orthogonal projection of L2(Sn) on to HN , where HN is the linear space spanned by the set

HN = {Ylk : |k| = 0, 1, ..., l; l = 0, 1, 2, ...N}.

For w ∈ L2(Sn) we let PNw =
∑N

L=0

∑m=L
m=−L ŵL,mYL,m. The approximate problem is


∂

∂t
uN (x, t)−∆uN (x, t) = PNF (uN (x, t)), (x, t) ∈ S2 × [0, T ],

uN (x, T ) = PNuT (x).
(24)

4.3. The backward in time problem with a global Lipschitz continuous source term
Lemma 4.2. There exists a unique solution of problem (24) in C([0, T ];Hσ(Sn)).

Proof. Let uN and vN be two solution of problem (24) such that uN , vN ∈ C([0, T ];Hσ(Sn)). Put

uNk (t) = e−k(t−T )uN (t), vNk (t) = e−k(t−T )vN (t), wNk (t) = uNk (t)− vNk (t) k > 0.

By direct computation, we have wNk satisfying the equation

d

dt
wNk −∆wNk (t)− kwNk (t) = ek(t−T )

(
PNF (t, uNk (t))− PNF (t, vNk (t))

)
. (25)

It follows that

<
d

dt
wNk (t) − ∆wNk (t)− kwNk (t), wNk (t) >Hσ(Sn)

= < ek(t−T )
(
PNF (t, uNk (t))− PNF (t, vNk (t))

)
, wNk (t) >Hσ(Sn) . (26)

Recall the the Lipchitz property of F given in Theorem 1, we have∣∣∣ < ek(t−T )
(
PNF (t, uNk (t))− PNF (t, vNk (t))

)
, wNk (t) >Hσ(Sn)

∣∣∣
≤ ek(t−T )‖PNF (t, uNk (t))− PNF (t, vNk (t))‖Hσ‖wNk (t)‖Hσ(Sn)

≤ ek(t−T )‖F (t, uNk (t))− F (t, vNk (t))‖Hσ‖wNk (t)‖Hσ(Sn)

≤ K‖wNk (t)‖2Hσ(Sn).

Therefore, we get

< ek(t−T )
(
PNF (t, uNk (t))− PNF (t, vNk (t))

)
, wNk (t) >Hσ(Sn) ≥ −K‖wNk (t)‖2Hσ(Sn), (27)
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and we have

| < ∆wNk (t), wNk (t) >Hσ(Sn) | =
N∑
L=1

m=L∑
m=−L

λ2σ+1
L |(ŵNk )L,m|2

≤ λN

N∑
L=1

m=L∑
m=−L

λ2σ
L (Sn)|(ŵNk )L,m|2 = λN‖wNk (t)‖2Hσ(Sn). (28)

Combining (26), (27), (28), we get

1

2

d

dt
‖wNk (t)‖2Hσ(Sn) ≥ k‖w

N
k (t)‖2Hσ(Sn) −K‖w

N
k (t)‖2Hσ(Sn) − λN‖w

N
k (t)‖2Hσ(Sn).

By taking the integration with respect to s from t to T , we have

‖wNk (T )‖2Hσ(Sn) − ‖w
N
k (t)‖2Hσ(Sn) ≥ 2

∫ T

t
(k −K − λN ) ‖wNk (s)‖2Hσ(Sn)ds.

This follows that

‖uN (T )− vN (T )‖2Hσ(Sn) − e
−2k(t−T )‖uN (t)− vN (t)‖2Hσ(Sn) (29)

≥ 2

∫ T

t
(k −K − λN ) e−2k(s−T )‖uN (s)− vN (s)‖2Hσ(Sn)ds. (30)

Choosing k = K + λN and noting that uN (T ) − vN (T ) = 0, we get uN (t) = vN (t) ∀0 ≤ t ≤ T . This ends
the proof.

Theorem 4.3. Assume that the Problem with g ∈ Hσ has a weak solution u ∈ C([0, T ];Hσ(Sn)). For any
ε > 0, let gε ∈ Hσ(Sn) such that

‖gε − g‖Hσ(Sn) ≤ ε.

Suppose that F satisfies the Lipschitz condition on Hσ, i.e., there exists a constant K such that

‖F (u)− F (v)‖Hσ(Sn) ≤ K‖u− v‖Hσ(Sn), (31)

for any u, v ∈ Hσ. Denote by uε the solution of Problem (24) with g = gε.
(i) If u satisfies the following condition

∞∑
L=0

m=L∑
m=−L

λ2σ
L e

2tλL |û(t)L,m|
2 ≤ A2

1,

then

‖uε(t)− u(t)‖2Hσ(Sn) ≤ e
−2λN t

(
4e2λNT ε2 + 2A2

1

)
exp{4TK2(T − t)}.

(ii) If u satisfies the following condition

∞∑
L=0

m=L∑
m=−L

λ2σ+2r
L e2tλL |û(t)L,m|

2 ≤ A2
2,

then

‖uε(t)− u(t)‖2Hσ(Sn) ≤ e
−2λN t

(
4e2λNT ε2 + 2λ−2r

N A2
2

)
exp{4TK2(T − t)}.
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Proof. First, we have the following estimate

‖uε(t)− PNu(t)‖2Hσ(Sn)

=
N∑
L=1

λ2σ
L

m=L∑
m=−L

∣∣∣(ûε)L,m − (û)L,m

∣∣∣2
=

N∑
L=1

λ2σ
L

m=L∑
m=−L

∣∣∣eλL(T−t)(ĝε − g)L,m −
∫ T

t
eλL(s−t)

(
̂F (s, uε(s))− ̂F (s, u(s))

)
L,m

ds
∣∣∣2

≤ 2

N∑
L=1

λ2σ
L

m=L∑
m=−L

e2λN (T−t)
∣∣∣(ĝε − g)L,m

∣∣∣2
+2T

∫ T

t

N∑
L=1

λ2σ
L

m=L∑
m=−L

e2λN (s−t)
∣∣∣ ( ̂F (s, uε(s))− ̂F (s, u(s))

)
L,m

∣∣∣2ds
≤ 2e2λN (T−t)‖gε − g‖2Hσ + 2T

∫ T

t
e2λN (s−t)

∥∥∥F (s, uε(s))− F (s, u(s))
∥∥∥2

Hσ(Sn)
ds

≤ 2e2λN (T−t)ε2 + 2TK2

∫ T

t
e2λN (s−t)

∥∥∥uε(s)− u(s)
∥∥∥2

Hσ(Sn)
ds. (32)

We also have
a. The case

∑∞
L=0

∑m=L
m=−L λ

2σ
L e

2tλL |û(t)L,m|2 ≤ A2
1. Then

‖u(t)− PNu(t)‖2Hσ =
∞∑

L=N+1

λ2σ
L

m=L∑
m=−L

|û(t)L,m|
2

≤ e−2λN t
∞∑

L=N+1

m=L∑
m=−L

λ2σ
L e

2tλL |û(t)L,m|
2

≤ e−2λN tA2
1. (33)

b. The case
∑∞

L=0

∑m=L
m=−L λ

2σ+2r
L e2tλL |û(t)L,m|2 ≤ A2

2. Then

‖u(t)− PNu(t)‖2Hσ(Sn) =
∞∑

L=N+1

λ2σ
L

m=L∑
m=−L

|û(t)L,m|
2

≤ e−2λN tλ−2r
N

∞∑
L=N+1

m=L∑
m=−L

λ2σ+2r
L e2tλL |û(t)L,m|

2

≤ e−2λN tλ−2r
N A2

2. (34)

(i) With the case (a), combining (32) and (33), we obtain

‖uε(t)− u(t)‖2Hσ(Sn) ≤ 2‖uε(t)− PNu(t)‖Hσ(Sn) + 2‖u(t)− PNu(t)‖Hσ(Sn)

≤ 4e2λN (T−t)ε2 + 4TK2

∫ T

t
e2λN (s−t)

∥∥∥uε(s)− u(s)
∥∥∥2

Hσ(Sn)
ds+ 2e−2λN tA2

1.

Hence

e2λN t‖uε(t)− u(t)‖2Hσ ≤
(

4e2λNT ε2 + 2A2
1

)
+ 4TK2

∫ T

t
e2λNs

∥∥∥uε(s)− u(s)
∥∥∥2

Hσ
ds.

Applying the Gronwall’s inequality, we obtain

e2λN t‖uε(t)− u(t)‖2Hσ(Sn) ≤
(

4e2λNT ε2 + 2A2
1

)
exp{4TK2(T − t)}.
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This implies that

‖uε(t)− u(t)‖2Hσ(Sn) ≤ e
−2λN t

(
4e2λNT ε2 + 2A2

1

)
exp{4TK2(T − t)}.

(ii) With the case (b), combining (32) and (34), we obtain

‖uε(t)− u(t)‖2Hσ(Sn) ≤ 2‖uε(t)− PNu(t)‖Hσ + 2‖u(t)− PNu(t)‖Hσ(Sn)

≤ 4e2λN (T−t)ε2 + 4TK2

∫ T

t
e2λN (s−t)

∥∥∥uε(s)− u(s)
∥∥∥2

Hσ(Sn)
ds

+ 2e−2λN tλ−2r
N A2

2. (35)

Hence

e2λN t‖uε(t)− u(t)‖2Hσ ≤
(

4e2λNT ε2 + 2λ−2r
N A2

2

)
+ 4TK2

∫ T

t
e2λNs

∥∥∥uε(s)− u(s)
∥∥∥2

Hσ
ds.

Applying the Gronwall’s inequality, we obtain

e2λN t‖uε(t)− u(t)‖2Hσ(Sn) ≤
(

4e2λNT ε2 + 2λ−2r
N A2

2

)
exp{4TK2(T − t)}.

This implies that

‖uε(t)− u(t)‖2Hσ(Sn) ≤ e
−2λN t

(
4e2λNT ε2 + 2λ−2r

N A2
2

)
exp{4TK2(T − t)}.
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