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Abstract

In this article, we derive a generalised nonlinear Picone’s identity for p sub-Laplacian on the Heisenberg
group. As an application of Picone’s identity, we prove a Hardy type inequality and Picone’s inequality. We
also establish some qualitative results involving the system of nonlinear equations involving p-sub-Laplacian.
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1. Introduction

It is well known that Picone type identities play an important role in the study of qualitative properties
of elliptic partial differential equations. The classical Picone’s identity [25] is as follows: If w > 0 and v > 0
are sufficiently smooth functions, then
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For some of the applications of this identity, we refer to [Il, 2| B, 22] and the references cited therein. W.
Allegretto and Y.X. Huang [4] obtained Picone’s identity for p-Laplace equations. Their identity is as follows:
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J. Tyagi [26] generalised and proved the following nonlinear Picone type identity:

2
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where f(y) #0,V0 #y € R and o > 0 is such that f'(y) > é, V0 #yeR.
K. Bal [5] established a nonlinear Picone’s identity for p-Laplace operators. They showed that

up
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where f'(y) > (p— 1)[f(y)»~] for all y.
T. Feng [14] further generalised Picone’s identity for p-Laplace equations as follows:

A O 0 o R 7 S
Vel 10 T R Ve v(f(v)>N| Ve

where v > 0, u > 0, g(u) and f(v) satisfy that for p > 1,q > 1, zl? + % =1,

|VulP — |VulP — V( )| VolP~2Vo.

g(u)f'(W)[VolP _p ' (w)|Volp—11°
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where g(u), ¢’'(u) > 0 for u > 0; g(u), ¢'(u) =0 for u = 0; f(v), f'(v) > 0.

For some interesting Picone type identities and related results in Euclidean domains, we refer to [6] 11,
12] [15] 18], 19, 28].

Research works available for Picone type identities in Heisenberg group are not as exhaustive as it is in
the case of Euclidean domain. Niu et al. [24] obtained Picone’s identity for p-sub-Laplacian in bounded
domains of Heisenberg group. Their identity is as follows:
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For some further results involving Picone’s identity and its applications on the Heisenberg groups, we
refer to [16], 17, 20, 21, 27] and references therein. For a nonlinear Picone identity for biharmonic operator
on the Heisenberg group, see [13].

Motivated by the above research works, aim of this article is to prove a nonlinear analogue of Picone’s
identity for p-sub-Laplacian on the Heisenberg group. Our main result is stated below:

Theorem 1.1. Let Q@ C H" and u > 0,v > 0 be differentiable functions. Suppose f,g : R — (0,00) are
continuously differentiable functions such that f(y), f'(y) > 0 if y > 0; f(0) = 0, f(0) = 0 and g(y) >
0,9 (y) > 0. We further assume that
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Let us denote
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Then
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(i) L(u,v) = R(u,v) = 0;
(ii) L(u,v) =0 a.e. in Q if and only if

vir () =0 ©
|Vinu| = (gg((zo_ |Vl (7)

L (F@\T fu)d )
<p1%m@> = w2 ®)

Remark 1.1. If we choose f(s) = s and g(s) = sP~', then our result reduces to ().

The article is organized as follows: In Section 2, we recall some brief results on the Heisenberg group.
Section 3 deals with the proof of Theorem In section 4, we discuss some applications of the Theorem
L1

2. Preliminaries

In this section, we present some definitions related to the Heisenberg group. The Heisenberg group
H" = (R?"*!, .), is a non-commutative group equipped with the product

(x1,y1,t1) - (22,92, t2) = (x1 + 22, Y1 + Y2, t1 + t2 + 2({y1, x2) — (1, ¥2))),

where x1, y1, T2, y2 € R", t1, t2 € R and (-,-) is the usual scalar product in R™. With this operation H" is
a Lie group and the Lie algebra of H" is generated by the left-invariant vector fields

T—gt, Xi—aii—l—Qyigt, 1@—88%—2@;, i=1,2.3 ... n
X;, Y; and T satisfy
(X, Yj] = —4045T, [Xi, X;] = [V3, V)] = [Xi, T] = [Y;, T] = 0.

The norm on H" is given by

l€llez = (21" + )1 = (@ +97)° +6)1.
The distance between & = (z, t) and & = (2, t') on H" is defined as follows:

d(¢,€) =d((</, )" (2, 1))

The Heisenberg gradient is defined as

Viur = (X1, Xo, ..., Xp,, Y1, Yo, ..., V)

and hence the Heisenberg Laplacian is defined as
n
i=1

The p-sub-Laplacian is defined as

AHnJOU = VHn (|VHH |p_2VHnU).
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Definition 2.1 (S'?(Q) and S’é’p(Q) Space). For an open subset Q CH"™ and 1 < p < oo, we define
SUP(Q) = {u: Q — R such that u, |Vgnu| € LP(Q)}.

The space SYP(Q) is equipped with the norm

S

lllsin@y = (o) + Vil o

By Sé’p(Q), we denote the closure of C3°(S2) with respect to the norm

1
P

= P
Hu”SévP(Q) = </Q ’VHnU‘ dzdt> .

For further details on Heisenberg group, see [7, [@].

3. Proof of Theorem [I.1]

It is easy to see that

On using (9), we obtain

Rlu,0) = Vel = Vi (L) [Geolr 290
g9(v)
! /
= |VHnu|p - M|VHnU‘p_2VHnU . VHHU + MIVHTL’UV)
g9(v) 9*(v)
= L(u,v).
Next, we show that L(u,v) > 0. Let ¢ be conjugate of p, i.e., % + % = 1. Then
/ /
Ll 0) = |Vanuf? — L [ P2Vt - Vignw + f(“29 ©) | gnvf?
g9(v) 9*(v)
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. (!VHnUIer 1 (f (w)|Vinv| ) > S| Veru|[ Vo
p q pg(v) 9(v)
T
fw)g' ()| VenolP p (f’(U)!Van|p1>q
+ - - <
9%(v) q pg(v)

T
N J' ()| Vimo[P—2
g(v)

T3
Now, we will show that T; > 0, ¢ = 1,2, 3. Let us recall Young’s inequality
a? b

abgi_{_ia
p q

(10)
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where % + % = 1. Equality in holds if and only if a? = b?. On choosing a = |Vgnu| and b =
/ Vi p—1
F(w)[ Vvl n , we obtain

pg(v)
f’(u)|Van|P—1’VHnu| < E\VHan’—k} (f’(u)|an,U|p—l>q.
pg(v) P pg(v)

This shows that 77 > 0.

shows that 75 > 0. Since Vgnu - Vgnv < |Vgnu||Vinv|, we obtain T3 > 0. This completes the proof
of (i).

It is easy to see that if @ and are satisfied then 75 = 0 and T35 = 0. By the equality case of Young’s
inequality , it is easy to see that 77 = 0 if is satisfied. Thus L(u,v) = 0 if @, and are
satisfied.

Finally, we need to show that if L(u,v) = 0 then (6)), (7) and (8) are satisfied. If L(u,v) = 0, then

(LY <u>\anu|ranv|p—L
p(plvmor+  (FEIEE)) ey - "
f(u) 9'(U)WHW|’J p ([ (w)| Va0~ 1\
72(v) q( pg(v) ) B "2
and
: (U)|9v(il;v’p 2(’VHnUHVHnU\ — Viru - Vino) = 0. (13)

From and equality case of , we obtain
Faf? = (f’(uanv\“)q,
pg(v)
which gives . It is easy to see that implies . If u(z) # 0, then u = cv, for some constant c. This
shows that Vpn <E> = 0. If u(z) = 0 for some z € Q, then consider the set N = {z € Q : u(x) = 0} and
then Vgnu =0, fE)u) =0, f/(u) =01in N. Thus (6) holds. This proves (ii). O

4. Applications of Theorem
Theorem 4.1. Let 0 < v € C?(Q) be such that
— Apn pv > Mh(z)g(v) in €,

where h € L*>(Q) is a nonnegative weight function. Let 0 < u € Sé’p(Q) and f(u) € Sé’p(Q). Further, if f
and g satisfy conditions of Theorem we have

/ |Vimu|Pdr > )\/ h(z) f(u)dx. (14)
Q Q

Proof. Let K be a compact subset of Q and 0 < ¢ € C§°(2). By Theorem [1.1]

Og/ L(d),v)da:ﬁ/L(gb,v)da?—/QR(gb,v)dx

/van \de—/an< Ef;) Vv [P Vinvda

:/ |VHn¢‘pd$+/ LAHn’p’l}dﬂf
Q o 9(v)

< [ 1Vaopds—x [ noy s

As ¢ tends to u, we obtain (|14)). O
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Remark 4.1. On choosing f(u) = uP and g(v) = vP~L, we obtain Hardy type inequality proved by Niu et al.

[23, Theorem 2.1].

Theorem 4.2. Suppose that hi(x) and ha(z) are continuous functions such that hy(z) < ha(x) on Q C R™.

If f and g satisfy conditions of Theorem and there exists u € C?(Q) such that

Ay = @@ o
u
u>0,g(u)>0inQ,
=0 = g(u) on O0.

Then any nontrivial solution v of
— Apn pv = ho(x)g(v) in Q

changes sign.

Proof. Assume that v does not change sign, then

0</ (uvdaz—/Ruvd:L‘

/ |VHILU| dr — /VHVL (f(U)> ‘VHH’U|p72VHn’Ud$

(v)
:/ ‘VHnu’pdx—i—/ LAHnmvdm
9) o 9(v)

_ /Q (h(z) — ha(2)) f(u)da
< 0,

which is a contradiction. This completes the proof.

(15)

(16)

O

Theorem 4.3. Let f and g satisfy conditions of Theorem and (u,v) € C%(Q) x C%(Q) be a positive

solution to the system

u>0,v>0,9(u), f(v) >0 inQ,
u=0=g(u) on 09,

/ 1/p—1
then |Vygnu| = <f (u)> |VEnv.
pg(v)

Proof. For any ¢1, ¢y € Sé’p(Q)7

/Q\VHnuP’ZVHanHngﬁldx:/Qg(v)qﬁldx,

2
/Q|VH”U’p2VH”UvH"¢2d$:/Q(g§:(}’)u))U

(u)

g(v)

On choosing ¢1 = u, ¢o = , we get

/|VHnu|pdx:/g(v)udx
Q Q

podx.

(17)

(18)

(19)
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/Q |V 0[P 2 Va0V <f(“)> dx = /Q ug(v)dz. (21)

g(v)
On using and , we get

/Q’VHTLUV_QVHWVW <‘§§Z))> dx = /ng(v)dx

= / |VanulPde,
Q
which gives
/L(u,v)d:n = / R(u,v)dx = 0.
Q Q
- 1w\ P -
On applying Theorem |11} we get |Vgnu| = (pg(v)) |Vinv| a.e. in Q. O

Next, we prove a generalised Picone type inequality in the spirit of [10].

Theorem 4.4. Let Q be a bounded domain in H" and f,g satisfy the conditions in Theorem [I.1l Let
0<uce Sé7p(§2), and 0 <wv € Sé’p(Q) be such that —Agnv > 0 is a bounded Radon measure. We further
assume that v Z 0 in Q and v =0 on 0. Then

ppro [0
[ Waupds > [ T s (22)

Proof. Since v > 0 and v = 0 on 952, therefore by strong maximum principle [§] either v > 0 or v =0 in Q.
Since v £ 0 in Q, v > 0 in Q. Let vy, (£) = v(§) + L, then —Agnvy, = —Agnov and vy, — v in S1P(Q) and
almost everywhere. Now, we consider 0 < u € Sé’p (€2), then there exists a sequence {u,} in C§°(2) such
that u, > 0 for each n and w,, = u in Sé’p(Q). By using Theorem , we obtain

Q o 9(vm) + =
Fatou’s lemma and Lebesgue dominated convergence theorem implies that as n, m — oo, we obtain
f(w)
/Q a 9(v)
This completes the proof. O

Remark 4.2. Theorem|].4] reduces to the classical Picone’s inequality for p-sub-Laplacian on the Heisenberg
in case of f(u) = u? and g(v) = vP~L. See [23, Corollary 3.1] for further details.
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