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Abstract
The objective of this article is to analyze the stability of solutions for the following fourth- order nonlinear
wave equations with an internal delay term:

up + A%u +u + o1 (t)|us(z, 2™ 2us (0, ) + oo () Jug(z, t — 7)]*" 2us(2,t — 7) = 0.

We obtain appropriate conditions on o1 (¢) and o(t) for the decay properties of the solutions. The
multiplier technique and nonlinear integral inequalities are used in the proof.
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1. Introduction

In this study, we examine the following initial boundary value problem for the nonlinear fourth-order time-
delayed wave equations:

wgs + A%u A+ u + oy ()| ug (@, £) 2™ 2ug (2, 1)

+ oo () |ug(z,t — )P 2uy(z,t — 7) = 0,in - Q x (0,00), (1.1)
u(x,t) = % =0, 90 x(0,00), (1.2)
u(x,0) = uo(x), ur(x,0) =us(x) in Q, (1.3)
up(z, t —7) = f(z,t—7) in Qx (0,7), (1.4)

where m > 1is a constant; o1 and o9 are positive functions;  C R"(n > 4) is a bounded domain; 912 is a smooth
boundary of Q; 7 is the time delay and initial function (ug,u1, fo) in a suitable space.

Without the delay term (o2 = 0), the behaviors of the solutions of the fourth-order wave equations have been
broadly analyzed in the literature (see [5],[7], [8], [14] and the references therein). Moreover, there are fewer results
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on the stability analysis of the solutions of time- delayed wave equations (see [1], [6], [11], [13] and the references
therein). However, there is no detection of the decay rate of the nonlinear fourth-order wave equations with a delay
term.

In [2], Benaissa, Benaissa and Messaoudi considered a nonlinear wave equation,

Uy — Au A+ pro(t)gy (u(w,t)) + pzo(t)gz (ue(z, t — 7(t))) =0,

where 7(t) > 0 is a time dependent delay term, and ;1 and s are positive constants. The existence and decay
estimates for the solutions of the initial boundary value problem were proven.
In [3], Benaissa and Messaoudi analyzed the following nonlinear wave equation:

utr — Au+ pyo(t)u(z,t) + poo(H)us(x, t — 7(t)) + 0(t)h (Vu(z,t)) =0,

and the decay properties of the solutions were determined.
In [12], Ning, Shen and Zhao examined a wave equation of the form

ug + Au + a(z) [ (x, t) + poug(z, t — 7)) = 0,

where Au = —divA(z) = (a;;(x)) is a symmetric matrix, a(z) is a positive bounded function, and z; and ps are
positive constants. The well-posedness of the system and exponential decay of the solutions were established.
In [4], Benaissa, Benguessoum and Messaoudi analyzed the following linear wave equation:

wpr — Au A+ py (H)ug (2, t) + po(t)u (2, t —7(t)) =0,

under assumptions about 1 (t) and u2(t), the existence and decay properties of the solutions of the above equation
with the initial boundary values were investigated.
In [9], Li and Chai examined the following damped plate equation:

uge + A*u+ b(@) (118 (ur(2,1)) + p2gp (ue (.t — 7))] = 0,

where Au = div (A(z)Vu). The existence of solutions was proven, and the decay rate estimates for the energy were
obtained.

The main goal of the present study is to deduce the decay properties of the solutions of the time-delayed fourth-order
problem (1.1)-(1.4). To the best of our insight, this problem has not been considered in this respect.

The proof of our principle result is founded on the following Lemma which was demonstrated by Martinez in ([10]).

Lemma 1.1. ([10]) Let E : R™ — R be a non increasing function and ¢ : R* — R a strictly increasing function of class
C* such that
#(0)=0 and ¢(t) =00 as t— oco. (1.5)

Assume that there exist o > 0 and w > 0 such that
oo / 1
Et) ¢ (t)dt < ;E(O)"E(S), 0< S < oo, (1.6)
s

then E(t) has the following decay properties:

if 0=0, then E(t)< E(0)e'~**® vi>o0, (1.7)
1 >
if o>0, then E(t)< E(O)(H_%UZ@Q V> 0. (1.8)

2. asymptotic behavior

In the present section, we aim to constitute a decay property of the solutions of the problem (1.1)-(1.4) using
multiplier method and integral inequalities. We use the following variable as in [11].

z(z, p, t) = ue(x, t — 7p). (2.1)
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Hence, we change problem (1.1)-(1.4) to the following problem:

wer + A%u A u + o ()| ug (@, 6) |2 2ug (2, 1)

+ oo (t)|2(z, 1, 1) [* 2 2(z,1,t) =0 in Q x (0,00), (2.2)
Tze+2,=0 in Qx(0,1) x (0,00), (2.3)
u(z,t) = % =0 990 x (0,00), (2.4
2(x,0,t) = ug(z,t) in Q x (0,00), (2.5)
Z(.’E, Ps 0) = ut(l’7 _Tp) = f(S(}, _Tp) in Qx (05 1) (26)

Lemma 2.1. Assume that (u, z) is a solution of the new problem (2.2)-(2.6) and o1 (t), o2(t) satisfy the following properties
Al: g1(t) : RT — (0, 00) is a non-increasing function on C* (R™) such that

low(t)] < M.
A2: o5(t) : RT — (0, 00) is a function on C* (RT) such that
|02(t)] < Mo (1),
where M and My are positive constants. Then, the positive energy of problem (2.2)-(2.6) satisfies the following inequality:
d()§ 1—91/|ut| dr — oy (t 02/|zw,1,t m g
where . .
My + M M + (2m — 1)M,

9, = 0, =
! om 2 2m ’

(2m — 1)My < M < 2m — M. (2.7)

Proof. By multiplying equation (2.2) by u; and integrating over {2 we obtain

d (1. o 1 o 1,0\ S
i (el + 5 1+ S0 = = [ ot~
— / oo ()ue|2(2, 1,8)*" " 22(x, 1, t)da. (2.8)
Q
Furthermore, multiplying equation (2.3) by function v1(¢) |z(z, p, 87" 2 2(x, p,t) and integrating over (0,1) x Q
we derive
2m _ 2m
% (2m// Y (t) |2(z, p, t)]| dpd:v) = // () [2(z, p, 1) "™ dpd
2m
- moQ@mw| —|2(2,0,0)"" ) da, 29)
where -
7(t) = Mo (t), (2.10)
~Yi(t) < 0. (2.11)
We define
B0) = ol + S 18P + L1l + 57 [ 0(0) [ o, 0" dp @12)

Hence, by combining equations (2.8) and (2.9), we have

d

4 gy = /Ul(t)ut\ut|2m_ldx—/ag( Yurl2(z, 1, 8)[2" 1 da

1
T m
o [ R0 )P dpde = 5 [ n(0) (a1 0P — ") do
mJaJo
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Then, using the definition of 1 (¢) (2.10), condition (2.5) and property (2.11) we get

d
e < - / o1 (£ g2 o — / oo (el (w, 1,6) P22, 1, 1) da
1

N 7/91(401(15) (|z(;z:,1,t)|2m - |ut|2m) da.

2m

To estimate the second integral of the above equation, we use Young Inequality to obtain

1 m 2m -1 m
/Qag(t)ut\z(x, L))" de < %/ﬂ o (£)] |ue|*™ daz + o /Q oo ()] |2]°™ da. (2.13)
Moreover, we have
|O’2(t)| < MQO'l(t). (214)
Thus, we deduce that inequality
LBt < —or(t)[1 - 0] / Jug|*™ da — Jl(t)QQ/ 2™ de, (2.15)
where }
M + M.
g, — L M2 (2.16)
2m
and .
g, = M+ @m— DM, 2.17)
2m
Recalling the property of M (2.7) we have
d
—E(t) <0. 2.1
ZE#) <0 (2.18)

Hence, the positive energy is non-increasing.

Now, we are ready to obtain the decay rate of the solutions of problem (2.2)-(2.6).

Theorem 2.1. Assume that A1 and A2 hold. Then, there exist positive constants q and w such that the energy of problem
(2.2)-(2.6) satisfies the following property

E(t) < E(0) sl . VE>0,
14 wq [, o1(s)ds

where
N 2m —1
q B )
and
27 27\ 9 _ q+1
-l 2e max{ZM, 2 7(Zjlcqe ) ( 1-6, ) ’ qM
3 (g+1)(1—061)" \ E(0) 2(¢g+1) M+1

)

2m m 1—91+ 92

m— 2
(Qm — ]_)E(O)ﬁ <2m+262T(M26%)m> T ( 1 M22'm.71 )

MM }
’ 1 1 '
om(q+ 1) (9—2 + 1_91)
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Proof. To establish a decay rate estimate of the positive energy; by multiplying the equation (2.2) by function
@' (t)E9(t)u(x,t) and integrating over (S, T) x 2 we deduce the following equation,

T
0= / / ¢’ Elu [utt + A%+ u+ oy (8) w2y + oo ()] 2(2, 1, 8) P22 (2, 1, 1) | dadt,
s Ja
where ¢(t) satisfies the hypothesis of Lemma 1.1. Using the boundary conditions, we have
T d )
0 :/ / [ (¢' Bluuy) — (¢' EY) wuy — qS’Equf] dxdt
T T
+ / o' E1 / (Au)?dzdt + / &' B0 (t) / w|ug|*" % wpdadt
s Q s Q
T T
+ / ¢ E1 / u dadt + / ¢ E%05(t) / w|z|?™ 7% 2(x, 1, t)dadt. (2.19)
s Q s Q

Furthermore, by multiplying equation (2.3) by ¢/ (¢)E4(t)v (t)e =277 |z|*™ 2 z(x, p, t) and integrating over (S, T) x
Q x (0,1), we obtain

T 1
0= / ¢/ (1) E*(t) / / (D2 |22 2z, pot) (72 + 2,) dpdadt,
S e Jo
with the boundary conditions, we get
T ! om |7 I 2m |1
0= —/ / ¢ Ely1e 2™ |2 m‘ dpdz + —/ qS'Eqvl/ e 2P |z m‘ dxdt
2m oJo S 2m S Q 0

T 1
+l/ qS’Eq'yl// e~ 2 2™ dpdadt
mJs QJo

T 1
—ﬁ /S (' Ey,) /Q / e 2™ dpdudt. (2.20)
0

By taking the sum of equations (2.19) and (2.20), we have

T T
0= [ o~ [ [ (659 i~ o0 o
Q s s Ja

T T
+/ qﬁ’Eq/(Au)dedtJr/ QS’E‘Z/ u?dxdt
S Q S Q

T
+/ qS’Eqal(t)/ g™ wpdadt
s Q

T
—|—/ (;S’chrg(t)/ wl|z)*™ 72 (1, t)dadt
s Q

T ! T
+ 7/ / ¢ By e 270 2™ ‘ dpdx
2m QJo S

T

T 1
- — By e~ 2P |2|*™ dpdxdt
(¢'Ely P
2m Jg aJo

1/t am |1
+ —/ qS’Eqvl/ e 2P |z m‘ dxdt
2m S Q 0

T 1
JFL/ ¢/Eq71// e 27 | 2|*™ dpdadt. (2.21)
2m Js QJo

Because of the definition of E(t), we get the following inequality,

T 1
L/ d)’Eq’yl// e~ |2)*™ dpdadt >
2m Js aJo

T
[ B (200 — el = Al = ) at.
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By combining the last inequality with equation (2.21), we obtain

T T T
2/ P ET e dt < — {¢’Eq/ uutdx} ‘ +2/ ¢’Eq/ u?dxdt
s Q s s Q
T
—/ ¢’Eqal(t)/u|ut|2m*1dxdt
Q

S
T
- @' Eloy(t) / w|z)*™ 2 2(x, 1, t)dadt
S Q

T
+/ ((b'Eq)’/ uudzdt
s Q

T

1 T
- — ' F9y e 27 2™ dpdx
¥ P
2m aJo S

T 1
+ — (¢’Eq71)// / e~ |2)*™ dpdadt
s aJo

1" 2m |1
- —/ gb’quyl/ e 2P 2P| dudt.
2m S Q 0

(2.22)

By virtue of Young’s Inequality, Sobolev inequality, the definition of function 1 (¢) (2.10), hypothesis of theorem 2.1
, conclusion of lemma 2.1 and assumption that ¢/(¢) : Rt — R is a bounded function (0 < |¢| < M) we reach the

following inequalities;

¢ E1 /Q uugdz| < 2METT(t).

T
< 2METTY(S).
S

¢’Eq/ uugdx
Q

/ST(QS’EQ)’/Quutdmdt

T N TEE T
/S ' Eloy(t) /Q wug P dadt < @m=le, 777 / [—E'(t)]dt

2m S

<2METTY(S) + 2—MqEq“(S).
qg+1

1 2m
2m T 2m i
5 (Ul C1¢>’4(22 212 ) (Equ%) . dt.

% S (1—91)ﬁ

2m
T T 2m—1 T
_ 2m —1
/S ¢1Eq02(t)/ﬂu|z|2m 2Z(x,l,t)d$dt§%/ [—El(t)]dt

m S

2m—1

2m Jg 0,7

1 T
- / ¢ Elyye 2P |2)*™ ’ dpdr < MET(S).
2m aJo S

r [F , v, 9 Mg .,
— 'EB1 // TP 2|* " dpdadt < —=E1T1(8S).
e | @B [ [ e o dpdar < ZLEr(s)

1 T 9 MM
— E1 -2 L))" dedt < ———— BITH(S).
s [ OB [ s )P dnd < B (S)

1, ) MM
— E1 0,07 dadt < EIHL(9).
Qm/S 6 'h/ng(x P et < o ()

ezm T UﬁMC(bIQ% o 1\ 2m
+ 2 g1 Fea@ Lt (Eq+§) dt.

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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Based on the estimates (2.23)-(2.31) and equation (2.21),

T T
2 / ¢ ET e dt <AMETTY(S) + 2 / ¢ E1 / u?dxdt
S Q

R /T[—E’(t)]dt

2m S
1 2m
om T Im 9% 2m
O [ tad2t (Brt3) " ar
2m S (1 — 91) 2m

4 @m=Deg™ - /T [—E/(t)] dt

2m S

2m

2m T ﬁM /2l 2m
[ () oy

2m S 9 I
MM
2mbs(q+ 1)

20
+ = patig) +
q+1

MM q+1
T omi—rn s O (2.32)

ET(S)

where €; and e, are positive constants, which will be later selected. Let us define ¢(t) as follows;

o) = [ ou(s)ds,

Dividing region € such that ; = {z; |u,] > 1} and Qs = {z; |us| < 1}, we get

T T T
2 / ¢ E1 / uZdrdt = 2 / @' E1 / uldxdt + 2 / ¢ E1 / uldxdt.
S Q S Q1 S Q2

Moreover, using Young's inequality, lemma 2.1 and the definition of ¢(t) we infer the following inequalities

and

q 2 .
/¢E/521 dxdt<mE+l(S), (2.33)

k—1 2 = a(k+1)
( ) | ortar (234
(k4 Dl N0 s

where k£ > 2m and €3 is a positive constant, which will be later selected. From the estimates (2.33), (2.34) and
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inequality (2.32), we obtain

T
2
2 *27/ ‘Bl <oMEITYS)+ — = patl(g
¢ s s1¢ - (5) (1-01)(g+1) (5)
(k=1 =1 (2 \FF /T (2m —1)e, 7T
—1)eg 1 atk+1) m—1)e, ™™~
+ k+1 (1—91> g YETTdE+ 2m E(S)

m— 1 m T 1 1 2m m
+ (2m — 1)62 e E(S) 4 i <( Ufcl¢,22 ) (Eq+%)2 dt

2m 2m Jg 1_91)272";51
2m

2m T b 1 m
() sy Bl
2m S 92 2m q + 1

MM 1 1
_ q+1
k‘—|—1 ( )+2m(q—|—1) <92+1—91>E (S)

Selecting k = 2¢g + 1, we deduce the following inequality,

27 g ! 1q+1 q 72 q
/S /Q¢>E e SAMEY0)B(S) + =gy gy EYO)E(S)

lat1) qe—%l i
+ 3 E(8)+ =3 / "Bt
g+1 () g+1 (1—91> ¢

2m 2m
2 -1 T 2m-—1 2 -1 T 2m-—1

E(S)

2m

2m
M2 e2m ¢ 2% T
+ ! | B0 / ¢ B dt
2m (1 —_ 01) 2m S

2m
2m My, 22 2M
+;m<2m1> / OB+ LB (0)E(S)

+1
ﬂ) (912 + 1 191> E1(0)E(S),

1 1
. —27(1_g,\2m—1 \ 2m —27 p2m—1 b
where § = m(2q + 1) — (¢ + 1). Selecting ¢; = (528)92”5"+2(11\/32c%)m) , €9 = (E(O);;LEJ&(A}%M%%)W )
and e3 = 1_201 <(q+14);727’) o we get

T 1
/ &' (HET(t)dt < aECI(O)E(S),

s
where
26 2 4ge2\? /[ 1—6, \""" qMm
W~ = ——max {2M7 , ,
3 (¢g+1)(1—-061)" \E(0) 2(g+1) M+1
m—1 1 2
(2m _ 1)E(0)m 2m+2€27(M26%)m 2771.171 1 N M22m—1
’ 2m m 1-6; 0
MM }
2m(g+1) (& + 277)
and

2m —1

>
1 2
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Hence, we deduce the following result from the conclusion of Lemma 1.1
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