Conference Proceeding of 3rd International E-Conference on Mathematical Advances and

Applications (ICOMAA-2020).

eg-Radical Supplemented Modules

Conference Proceeding Science and Technology, 3(1), 2020, 37-41

Celil Nebiyev^{1,*} Hasan Hüseyin Ökten²

¹ Department of Mathematics, Ondokuz Mayıs University, 55270, Kurupelit, Atakum, Samsun, Turkey, ORCID:0000-0002-7992-7225

² Technical Sciences Vocational School, Amasya University, Amasya, Turkey, ORCID:0000-0002-7886-0815

* Corresponding Author E-mail: cnebiyev@omu.edu.tr

Abstract: In this work, R will denote an associative ring with unity and all module are unital left R-modules. Let M be an R-module. If every essential submodule of M has a g-radical supplement in M, then M is called an essential g-radical supplemented (or briefly eg-radical supplemented) module. In this work, some properties of these modules are investigated.

Keywords: Essential Submodules, g-Small Submodules, Generalized Radical, g-Supplemented Modules.

1 Introduction

Throughout this paper all rings are associative with identity and all modules are unital left modules.

Let R be a ring and M be an R-module. We denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If L = Mfor every submodule L of M such that M = N + L, then N is called a *small* (or *superfluous*) submodule of M and denoted by $N \ll M$. A submodule N of an R -module M is called an *essential* submodule, denoted by $N \trianglelefteq M$, in case $K \cap N \ne 0$ for every submodule $K \ne 0$, or equvalently, $N \cap L = 0$ for $L \leq M$ implies that L = 0. Let M be an R-module and K be a submodule of M. K is called a generalized small (briefly, g-small) submodule of M if for every essential submodule T of M with the property M = K + T implies that T = M, we denote this by $K \ll_g M$. Let M be an R-module and $U, V \leq M$. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a *supplement* of U in M. M is said to be *supplemented* if every submodule of M has a supplement in M. M is said to be essential supplemented (briefly, e-supplemented) if every essential submodule of M has a supplement in M. Let M be an R-module and $U, V \leq M$. If M = U + V and M = U + T with $T \leq V$ implies that T = V, or equivalently, M = U + Vand $U \cap V \ll_g V$, then V is called a g-supplement of U in M. M is said to be g-supplemented if every submodule of M has a g-supplement in M. M is said to be *essential g-supplemented* if every essential submodule of M has a g-supplement in M. The intersection of maximal submodules of an R-module M is called the *radical* of M and denoted by RadM. If M have no maximal submodules, then we denote RadM = M. Let M be an R-module and $U, V \leq M$. If M = U + V and $U \cap V \leq RadV$, then V is called a generalized (Radical) supplement (briefly, Rad-supplement) of U in M. M is said to be generalized (Radical) supplemented (briefly, Rad-supplemented) if every submodule of M has a Rad-supplement in M. The intersection of essential maximal submodules of an R-module M is called a *generalized* radical (briefly, g-radical) of \hat{M} and denoted by Rad_gM . If M have no essential maximal submodules, then we denote $Rad_gM = M$. Let M be an R-module and $U, V \leq M$. If M = U + V and $U \cap V \leq Rad_q V$, then V is called a g-radical supplement of U in M. M is said to be g-radical supplemented if every submodule of M has a g-radical supplement in M.

More details about supplemented modules are in [1]-[9]. More details about essential supplemented modules are in [5]-[6]. More informations about g-small submodules and g-supplemented modules are in [2]-[3]. The definition of essential g-supplemented modules and some properties of them are in [4]. More details about generalized (Radical) supplemented modules are in [7, 8]. The definition of g-radical supplemented modules and some properties of them are in [3].

Lemma 1. Let M be an R-module.

(1) If $K \leq L \leq M$, then $K \leq M$ if and only if $K \leq L \leq M$.

(2) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. If $K \leq N$, then $f^{-1}(K) \leq M$.

(3) For $N \leq K \leq M$, if $K/N \leq M/N$, then $K \leq M$.

(4) If $K_1 \leq L_1 \leq M$ and $K_2 \leq L_2 \leq M$, then $\overline{K_1} \cap K_2 \leq L_1 \cap L_2$. (5) If $K_1 \leq M$ and $K_2 \leq M$, then $K_1 \cap K_2 \leq M$.

Proof: See [9, 17.3].

Lemma 2. Let M be an R-module. The following assertions are hold.

(1) If $K \leq L \leq M$, then $L \ll M$ if and only if $K \ll M$ and $L/K \ll M/K$.

(2) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. If $K \ll M$, then $f(K) \ll N$. The converse is true if f is an epimorphism and $Kef \ll M$.

(3) If $L \leq M$ and $K \ll L$, then $K \ll M$.

(4) If $K_1, K_2, ..., K_n \ll M$, then $K_1 + K_2 + ... + K_n \ll M$.

(5) Let $K_1, K_2, ..., K_n, L_1, L_2, ..., L_n \leq M$. If $K_i \ll L_i$ for every i = 1, 2, ..., n, then $K_1 + K_2 + ... + K_n \ll L_1 + L_2 + ... + L_n$.

ISSN: 2651-544X http://dergipark.gov.tr/cpost

© CPOST 2020

Lemma 3. Let M be an R-module. The following assertions are hold.

- (1) If $K \leq L \leq M$ and $L \ll_g M$, then $K \ll_g M$ and $L/K \ll_g M/K$.
- (2) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. If $K \ll_g M$, then $f(K) \ll_g N$.
- (3) If $L \leq M$ and $K \ll_g L$, then $K \ll_g M$.
- (4) If $K_1, K_2, ..., K_n \ll_g M$, then $K_1 + K_2 + ... + K_n \ll_g M$.
- (5) Let $K_1, K_2, ..., K_n, L_1, L_2, ..., L_n \leq M$. If $K_i \ll_g L_i$ for every i = 1, 2, ..., n, then $K_1 + K_2 + ... + K_n \ll_g L_1 + L_2 + ... + L_n$.

Proof: See [2]-[3].

Lemma 4. Let M be an R-module. The following assertions are hold. (1) $RadM = \sum_{L \ll M} L.$

(2) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. Then $f(RadM) \leq RadN$. If $Kef \leq RadM$, then f(RadM) = Radf(M).

- (3) If $N \leq M$, then $RadN \leq RadM$.
- (4) For $K, L \leq M$, $RadK + RadL \leq Rad(K + L)$.
- (5) $Rx \ll M$ for every $x \in RadM$.

Proof: See [9, 21.5 and 21.6].

Lemma 5. Let M be an R-module. The following assertions are hold. (1) $RadM \leq Rad_g M$. (2) $Rad_g M = \sum_{L \ll_g M} L.$ (3) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. Then $f(Rad_gM) \le Rad_gN$. (4) For $K, L \le M$, $\frac{Rad_gK+L}{L} \le Rad_g \frac{K+L}{L}$. (5) If $N \le M$, then $Rad_gN \le Rad_gM$. (6) For $K, L \leq M$, $Rad_q K + Rad_q L \leq Rad_q (K + L)$. (7) $Rx \ll_g M$ for every $x \in Rad_g M$.

Proof: See [2] and [3].

2 eg-Radical Supplemented Modules

Definition 1. Let M be an R-module. If every essential submodule of M has a g-radical supplement in M, then M is called an essential g-radical supplemented (or briefly eg-radical supplemented) module.

Lemma 6. Let V be a supplement of U in M. Then

- (1) If W + V = M for some $W \leq U$, then V is a supplement of W in M.
- (2) If M is finitely generated, then V is also finitely generated.
- (3) If U is a maximal submodule of M, then V is cyclic and $U \cap V = RadV$ is the unique maximal submodule of V.
- (4) If $K \ll M$, then V is a supplement of U + K in M.
- (5) For $K \ll M$, $K \cap V \ll V$ and hence $RadV = V \cap RadM$. (6) For $L \leq U$, $\frac{V+L}{L}$ is a supplement of U/L in M/L.

Proof: See [9, 41.1].

Lemma 7. Let M be an R-module.

(1) For $M_1, U \leq M$, if $M_1 + U$ has a supplement in M and M_1 is supplemented, then U also has a supplement in M.

(2) Let $M = M_1 + M_2$. If M_1 and M_2 are supplemented, then M is also supplemented.

(3) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also supplemented.

- (4) If M is supplemented, then M/L is supplemented for every $L \leq M$.
- (5) If M is supplemented, then every homomorphic image of M is also supplemented.

(6) If M is supplemented, then M/RadM is semisimple.

(7) If M is supplemented, then every finitely M-generated module is supplemented.

Proof: See [9, 41.2].

Lemma 8. Let M be an R-module.

- (1) If M is supplemented, then M is Rad-supplemented.
 - (2) If V is a Rad-supplement of U in M and W + V = M for some $W \leq U$, then V is a Rad-supplement of W in M.
- (3) If U is a maximal submodule of M and V is a Rad-supplement of U in M, $U \cap V = RadV$ is the unique maximal submodule of V. (4) If V is a Rad-supplement of U in M and $L \leq U$, then $\frac{V+L}{L}$ is a Rad-supplement of U/L in M/L.

 - (5) For $M_1, U \leq M$, if $M_1 + U$ has a Rad-supplement in M and M_1 is Rad-supplemented, then U also has a Rad-supplement in M.
 - (6) Let $M = M_1 + M_2$. If M_1 and M_2 are Rad-supplemented, then M is also Rad-supplemented.

(7) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is Rad-supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also Radsupplemented.

 \square

© CPOST 2020

(8) If M is Rad-supplemented, then M/L is Rad-supplemented for every $L \leq M$.

(9) If M is Rad-supplemented, then every homomorphic image of M is also Rad-supplemented.

(10) If M is Rad-supplemented, then M/RadM is semisimple.

(11) If M is Rad-supplemented, then every finitely M-generated module is Rad-supplemented.

Proof: See [7] and [8].

Lemma 9. Let M be an R-module.

(1) If M is Rad-supplemented, then M is g-radical supplemented.

(2) If V is a g-radical supplement of U in M and W + V = M for some $W \le U$, then V is a g-radical supplement of W in M.

(3) If U is an essential maximal submodule of M and V is a g-radical supplement of U in M, then $U \cap V = Rad_q V$ is the unique essential maximal submodule of V.

(4) If V is a g-radical supplement of U in M and $L \leq U$, $\frac{V+L}{L}$ is a g-radical supplement of U/L in M/L. (5) For $M_1, U \leq M$, if $M_1 + U$ has a g-radical supplement in M and M_1 is g-radical supplemented, then U also has a g-radical supplement in M.

(6) Let $M = M_1 + M_2$. If M_1 and M_2 are g-radical supplemented, then M is also g-radical supplemented.

(7) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is g-radical supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also g-radical supplemented.

(8) If M is g-radical supplemented, then M/L is g-radical supplemented for every $L \leq M$.

(9) If M is g-radical supplemented, then every homomorphic image of M is also g-radical supplemented.

(10) If M is g-radical supplemented, then M/Rad_gM is semisimple.

(11) If M is g-radical supplemented, then every finitely M-generated module is g-radical supplemented.

Proof: See [3].

Proposition 1. Every g-radical supplemented module is eg-radical supplemented.

Proof: Clear from definitions.

Proposition 2. Let M be a g-radical supplemented R-module. Then every factor module is eg-radical supplemented.

Proof: Let M/L be any factor module of M. Since M is g-radical supplemented, by Lemma 9, M/L is g-radical supplemented. Then by Proposition 1, M/L is eg-radical supplemented, as desired.

Proposition 3. Let M be a g-radical supplemented R-module. Then every homomorphic image of M is eg-radical supplemented.

Proof: Let $f: M \longrightarrow N$ be an *R*-module epimorphism with N is an *R*-module. Since M is g-radical supplemented, by Lemma 9, N is g-radical supplemented. Then by Proposition 1, N is eg-radical supplemented, as desired. \square

Proposition 4. Let $M = M_1 + M_2$. If M_1 and M_2 are g-radical supplemented, then M is eg-radical supplemented.

Proof: Since M_1 and M_2 are g-radical supplemented, by Lemma 9, M is also g-radical supplemented. Then by Proposition 1, M is eg-radical supplemented, as desired.

Proposition 5. Let $M = M_1 + M_2 + ... + M_n$. If M_i is g-radical supplemented for every i = 1, 2, ..., n, then M is eg-radical supplemented.

Proof: Clear from Proposition 4.

Proposition 6. Let M be a g-radical supplemented R-module. Then every finitely M-generated module is eg-radical supplemented.

Proof: Since M is g-radical supplemented, by Lemma 9, every finitely M-generated module is g-radical supplemented. Then by Proposition 1, every finitely M-generated module is eg-radical supplemented.

Proposition 7. Let R be any ring. If _RR is g-radical supplemented, then every finitely generated R-module is eg-radical supplemented.

Proof: Clear from Proposition 6.

Proposition 8. Every Rad-supplemented module is eg-radical supplemented.

Proof: Let M be a Rad-supplemented module. Since M is Rad-supplemented, by Lemma 9, M is g-radical supplemented. Then by Proposition 1, M is eg-radical supplemented.

Proposition 9. Let M be a Rad-supplemented R-module. Then every factor module is eg-radical supplemented.

Proof: Let M/L be any factor module of M. Since M is Rad-supplemented, by Lemma 8, M/L is Rad-supplemented. Then by Proposition 8, M/L is eg-radical supplemented, as desired.

 \square

Proposition 10. Let M be a Rad-supplemented R-module. Then every homomorphic image of M is eg-radical supplemented.

Proof: Let $f: M \longrightarrow N$ be an R-module epimorphism with N is an R-module. Since M is Rad-supplemented, by Lemma 8, N is Rad-supplemented. Then by Proposition 8, N is eg-radical supplemented, as desired.

Proposition 11. Let $M = M_1 + M_2$. If M_1 and M_2 are Rad-supplemented, then M is eg-radical supplemented.

Proof: Since M_1 and M_2 are Rad-supplemented, by Lemma 8, M is also Rad-supplemented. Then by Proposition 8, M is eg-radical supplemented, as desired.

Proposition 12. Let $M = M_1 + M_2 + ... + M_n$. If M_i is Rad-supplemented for every i = 1, 2, ..., n, then M is egradical supplemented.

Proof: Clear from Proposition 11.

Proposition 13. Let M be a Rad-supplemented R-module. Then every finitely M-generated module is eg-radical supplemented.

Proof: Since M is Rad-supplemented, by Lemma 8, every finitely M-generated module is Rad-supplemented. Then by Proposition 8, every finitely M-generated module is egradical supplemented.

Proposition 14. Let R be any ring. If $_{R}R$ is Rad-supplemented, then every finitely generated R – module is eg-radical supplemented.

Proof: Clear from Proposition 13.

Proposition 15. Every supplemented module is eg-radical supplemented.

Proof: Let M be a supplemented module. Since M is supplemented, by Lemma 8, M is Rad-supplemented. Then by Proposition 8, M is eg-radical supplemented.

Proposition 16. Let M be a supplemented R-module. Then every factor module is eg-radical supplemented.

Proof: Let M/L be any factor module of M. Since M is supplemented, by Lemma 7, M/L is supplemented. Then by Proposition 15, M/L is eg-radical supplemented, as desired.

Proposition 17. Let M be a supplemented R-module. Then every homomorphic image of M is eg-radical supplemented.

Proof: Let $f : M \longrightarrow N$ be an R-module epimorphism with N is an R-module. Since M is supplemented, by Lemma 7, N is supplemented. Then by Proposition 15, N is egradical supplemented, as desired.

Proposition 18. Let $M = M_1 + M_2$. If M_1 and M_2 are supplemented, then M is eg-radical supplemented.

Proof: Since M_1 and M_2 are supplemented, by Lemma 7, M is also supplemented. Then by Proposition 15, M is eg-radical supplemented, as desired.

Proposition 19. Let $M = M_1 + M_2 + ... + M_n$. If M_i is supplemented for every i = 1, 2, ..., n, then M is egradical supplemented.

Proof: Clear from Proposition 18.

Proposition 20. Let M be a supplemented R-module. Then every finitely M-generated module is eg-radical supplemented.

Proof: Since M is supplemented, by Lemma 7, every finitely M-generated module is supplemented. Then by Proposition 15, every finitely M-generated module is eg-radical supplemented.

Proposition 21. Let R be any ring. If $_{R}R$ is supplemented, then every finitely generated R-module is eg-radical supplemented.

Proof: Clear from Proposition 20.

Proposition 22. Every g-supplemented module is eg-radical supplemented.

Proof: Let M be a g-supplemented module. Since M is g-supplemented, then M is g-radical supplemented. Then by Proposition 1, M is g-radical supplemented.

Proposition 23. Every essential g-supplemented module is eg-radical supplemented.

Proof: Let M be an essential g-supplemented module and $U \leq M$. Then U has a g-supplement V in M. Here M = U + V and $U \cap V \ll_g V$. Since $U \cap V \ll_g V$, by [2, Lemma 5], $U \cap V \leq Rad_g V$. Hence V is a g-radical supplement of U in M. Therefore, M is eg-radical supplemented.

Proposition 24. Let M be an eg-radical supplemented module. If every nonzero submodule of M is essential in M, then M is g-radical supplemented.

Proof: Let $U \leq M$. If U = 0, then M is a g-radical supplement of U in M. If $U \neq 0$, then by hypothesis, $U \leq M$ and since M is egradical supplemented, U has a g-radical supplement in M. Hence M is g-radical supplemented.

Proposition 25. Every essential supplemented module is eg-radical supplemented.

Proof: Let M be an essential supplemented module. Then M is essential g-supplemented and by Proposition 23, M is eg-radical supplemented.

Corollary 1. Let $M = M_1 + M_2 + ... + M_n$. If M_i is essential supplemented for every i = 1, 2, ..., n, then M is egradical supplemented.

Proof: Since M_i is essential supplemented for every i = 1, 2, ..., n, by [5, Corollary 2.8], M is essential supplemented. Then by Proposition 25, M is eg-radical supplemented. \square

Corollary 2. Let M be an essential supplemented module. Then every finitely M-generated module is eg-radical supplemented.

Proof: Clear from Corollary 1.

Corollary 3. Let R be a ring. If $_{R}R$ is essential supplemented, then every finitely generated R-module is eg-radical supplemented.

Proof: Clear from Corollary 2.

3 References

- J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006. 1
- B. Koşar, C. Nebiyev, A. Pekin, A Generalization of g-Supplemented Modules, Miskolc Math. Notes, 20(1) (2019), 345-352. 2
- 3
- 4 Nebiyev, H. H. Ökten, Essential g-Supplemented Modules, Turkish St. Inf. Tech. and Appl. Sci., 14(1) (2019), 83-89.
- Nebiyev, H. H. Ökten, A. Pekin, Essential Supplemented Modules, Int. J. of Pure and Appl. Math., 120(2) (2018), 253-257. 5
- 6 Nebiyev, H. H. Ökten, A. Pekin, Amply Essential Supplemented Modules, J. of Sci. Res. and Rep., 21(4) (2018), 1-4. 7
- W. Xue, Characterizations of Semiperfect and Perfect Rings, Publ. Mat., 40 (1996), 115-125.
 Y. Wang, N. Ding, Generalized Supplemented Modules, Taiwanese J. of Math., 10(6) (2006), 1589-1601. 8
- R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.