More details about supplemented modules are in [2]-[10]. More informations about cofinitely supplemented modules are in [1]. More details about essential supplemented modules are in [9]. More details about cofinitely essential supplemented modules are in [4]. More informations about g-small submodules and g-supplemented modules are in [5]-[6]. The definition of cofinitely g-supplemented modules and more informations about these modules are in [3]. The definition of essential g-supplemented modules and some properties of them are in [7].

Lemma 1. Let M be an R-module.

(1) If $K \leq L \leq M$, then $K \leq M$ if and only if $K \leq L \leq M$.

(2) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. If $K \leq N$, then $f^{-1}(K) \leq M$.

(3) For $N \leq K \leq M$, if $K/N \leq M/N$, then $K \leq M$. (4) If $K_1 \leq L_1 \leq M$ and $K_2 \leq L_2 \leq M$, then $K_1 \cap K_2 \leq L_1 \cap L_2$.

(5) If $K_1 \leq M$ and $K_2 \leq M$, then $K_1 \cap K_2 \leq M$.

Proof: See [10, 17.3].

Lemma 2. Let M be an R-module. The following assertions are hold.

(1) If $K \leq L \leq M$, then $L \ll M$ if and only if $K \ll M$ and $L/K \ll M/K$.

(2) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. If $K \ll M$, then $f(K) \ll N$. The converse is true if f is an epimorphism and $Kef \ll M$.

Conference Proceeding Science and Technology, 3(1), 2020, 77-81

Conference Proceeding of 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA-2020).

Cofinitely eg-Supplemented Modules

Celil Nebiyev¹ Hasan Hüseyin Ökten^{2,*}

¹ Department of Mathematics, Ondokuz Mayıs University, 55270, Kurupelit, Atakum, Samsun, Turkey, ORCID:0000-0002-7992-7225

² Technical Sciences Vocational School, Amasya University, Amasya, Turkey, ORCID:0000-0002-7886-0815

Keywords: Cofinite Submodules, Essential Submodules, g-Small Submodules, g-Supplemented Modules.

INTRODUCTION 1

Throughout this paper all rings are associative with identity and all modules are unital left modules.

Let R be a ring and M be an R-module. We denote a submodule N of M by $N \leq M$. Let M be an R-module and $N \leq M$. If there exists a submodule L of M such that M = N + L and $N \cap L = 0$, then N is called a *direct summand* of M and denoted by $M = N \oplus L$. A submodule U of an R-module M is called a *cofinite submodule* of M if M/U is finitely generated. Let M be an R-module and $N \leq M$. If L = M for every submodule L of M such that M = N + L, then N is called a *small* (or *superfluous*) submodule of M and denoted by $N \ll M$. A module M is said to be *hollow* if every proper submodule of M is small in M. M is said to be *local* if M has a proper submodule which contains all proper submodules. A submodule N of an R-module M is called an *essential* submodule, denoted by $N \trianglelefteq M$, in case $K \cap N \neq 0$ for every submodule $K \neq 0$, or equivalently, $N \cap L = 0$ for $L \leq M$ implies that L = 0. Let M be an R-module and K be a submodule of M. K is called a *generalized small* (briefly, *g-small*) submodule of M if for every essential submodule T of M with the property M = K + T implies that T = M, we denote this by $K \ll_g M$. A module M is said to be generalized hollow (briefly, g-hollow) if every proper submodule of M is g-small in M. Let M be an R-module and $U, V \leq M$. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement of U in M. M is said to be supplemented if every submodule of M has a supplement in M. M is said to be *cofinitely supplemented* if every cofinite submodule of M has a supplement in M. M is said to be *essential supplemented* (briefly, *e-supplemented*) if every essential submodule of M has a supplement in M. M is said to be cofinitely essential supplemented (briefly, cofinitely e-supplemented) if every cofinite essential submodule of M has a supplement in M. Let *M* be an *R*-module and $U, V \leq M$. If M = U + V and M = U + T with $T \leq V$ implies that T = V, or equivalently, M = U + V and $U \cap V \ll_g V$, then V is called a *g*-supplement of U in M. M is said to be *g*-supplemented if every submodule of M has a g-supplement in M. M is said to be essential g-supplemented if every essential submodule of M has a g-supplement in M. M is said to be cofinitely g-supplemented if every cofinite submodule of M has a g-supplement in M. The intersection of maximal submodules of an R-module Mis called the *radical* of M and denoted by RadM. If M have no maximal submodules, then we denote RadM = M. The intersection of essential maximal submodules of an R-module M is called a generalized radical (briefly, g-radical) of M and denoted by Rad_qM . If M have no essential maximal submodules, then we denote $Rad_q M = M$.

* Corresponding Author E-mail: hokten@gmail.com

Abstract: Let M be an R-module. If every cofinite essential submodule of M has a g-supplement in M, then M is called a

cofinitely essential g-supplemented (or briefly cofinitely eg-supplemented) module. In this work, some properties of these modules are investigated.

© CPOST 2020

ISSN: 2651-544X http://dergipark.gov.tr/cpost

 $\begin{array}{l} (3) \textit{ If } K \ll M, \textit{ then } \frac{K+L}{L} \ll \frac{M}{L}\textit{ for every } L \leq M. \\ (4) \textit{ If } L \leq M\textit{ and } K \ll L,\textit{ then } K \ll M. \end{array}$ (5) If $K_1, K_2, ..., K_n \ll M$, then $K_1 + K_2 + ... + K_n \ll M$. (6) Let $K_1, K_2, ..., K_n, L_1, L_2, ..., L_n \leq M$. If $K_i \ll L_i$ for every i = 1, 2, ..., n, then $K_1 + K_2 + ... + K_n \ll L_1 + L_2 + ... + L_n$.

Proof: See [2, 2.2] and [10, 19.3].

Lemma 3. Let M be an R-module. The following assertions are hold. (1) Every small submodule in M is g-small in M. (2) If $K \leq L \leq M$ and $L \ll_g M$, then $K \ll_g M$ and $L/K \ll_g M/K$. (3) Let N be an R-module and $f: M \to N$ be an R-module homomorphism. If $K \ll_g M$, then $f(K) \ll_g N$. (4) If $K \ll_g M$, then $\frac{K+L}{L} \ll_g \frac{M}{L}$ for every $L \leq M$. (5) If $L \leq M$ and $K \ll_g L$, then $K \ll_g M$. (6) If $K_1, K_2, ..., K_n \ll_g M$, then $K_1 + K_2 + ... + K_n \ll_g M$. (7) Let $K_1, K_2, ..., K_n, \tilde{L}_1, L_2, ..., L_n \leq M$. If $K_i \ll_g L_i$ for every i = 1, 2, ..., n, then $K_1 + K_2 + ... + K_n \ll_g L_1 + L_2 + ... + L_n$.

Proof: See [5]-[6]-[8].

Lemma 4. Let M be an R-module. The following assertions are hold.

(1) $RadM \le Rad_g M.$ (2) $Rad_g M = \sum_{L \ll_g M} L.$

(3) Let N be an R-module and $f: M \longrightarrow N$ be an R-module homomorphism. Then $f(Rad_q M) \leq Rad_q N$.

(4) For $K, L \leq M$, $\frac{Rad_gK+L}{L} \leq Rad_g\frac{K+L}{L}$. If $L \leq Rad_gK$, then $Rad_gK/L \leq Rad(K/L)$. (5) If $L \leq M$, then $Rad_gL \leq Rad_gM$.

(6) For $K, L \leq M$, $Rad_g K + Rad_g L \leq Rad_g (K + L)$.

(7) $Rx \ll_g M$ for every $x \in Rad_g M$.

Proof: See [5]-[6]-[8].

2 COFINITELY eg-SUPPLEMENTED MODULES

Lemma 5. Let V be a supplement of U in M. Then

- (1) If W + V = M for some $W \le U$, then V is a supplement of W in M.
- (2) If M is finitely generated, then V is also finitely generated.

(3) If U is a maximal submodule of M, then V is cyclic and $U \cap V = RadV$ is the unique maximal submodule of V.

(4) If $K \ll M$, then V is a supplement of U + K in M.

(5) For $K \ll M$, $K \cap V \ll V$ and hence $RadV = V \cap RadM$.

(6) Let $K \leq V$. Then $K \ll V$ if and only if $K \ll M$.

(7) For $L \leq U$, $\frac{V+L}{L}$ is a supplement of U/L in M/L.

Proof: See [10, 41.1].

Lemma 6. Let V be a g-supplement of U in M. Then

- (1) If W + V = M for some W < U, then V is a g-supplement of W in M.
- (2) If every nonzero submodule of M is essential in M, then V is a supplement of U in M.

(3) If U is an essential maximal submodule of M, then $U \cap V = RadV$ is the unique essential maximal submodule of V.

- (4) If $K \ll_g M$ and $U \leq M$, then V is a g-supplement of U + K in M. (5) Let $U \leq M$ and $K \ll_g M$. Then $K \cap V \ll_g V$ and hence $\operatorname{Rad}_g V = V \cap \operatorname{Rad}_g M$. (6) Let $U \leq M$ and $K \leq V$. Then $K \ll_g V$ if and only if $K \ll_g M$. (7) For $L \leq U$, $\frac{V+L}{L}$ is a g-supplement of U/L in M/L.

Proof: See [5]-[6]-[8].

Lemma 7. Let M be an R-module.

- (1) If $M = U \oplus V$ then V is a supplement of U in M. Also U is a supplement of V in M.
- (2) For $M_1, U \leq M$, if $M_1 + U$ has a supplement in M and M_1 is supplemented, then U also has a supplement in M.
- (3) Let $M = M_1 + M_2$. If M_1 and M_2 are supplemented, then M is also supplemented.
- (4) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also supplemented.
- (5) If M is supplemented, then M/L is supplemented for every $L \leq M$.
- (6) If M is supplemented, then every homomorphic image of M is also supplemented.
- (7) If M is supplemented, then M/RadM is semisimple.
- (8) Hollow and local modules are supplemented.
- (9) If M is supplemented, then every finitely M-generated module is supplemented.
- (10) $_{R}R$ is supplemented if and only if every finitely generated R-module is supplemented.

Proof: See [10, 41.2].

78

Lemma 8. Let M be an R-module.

(1) If M is supplemented, then M is essential supplemented.

- (2) For $M_1 \leq M$ and $U \leq M$, if $M_1 + U$ has a supplement in M and M_1 is essential supplemented, then U also has a supplement in M.
- (3) Let $M = M_1 + M_2$. If M_1 and M_2 are essential supplemented, then M is also essential supplemented.
- (4) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is essential supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also essential

supplemented.

- (5) If M is essential supplemented, then M/L is essential supplemented for every $L \leq M$.
- (6) If M is essential supplemented, then every homomorphic image of M is also essential supplemented.

(7) If M is essential supplemented, then M/RadM have no proper essential submodules.

(8) Hollow and local modules are essential supplemented.

(9) If M is essential supplemented, then every finitely M-generated module is essential supplemented.

(10) $_{R}R$ is essential supplemented if and only if every finitely generated R-module is essential supplemented.

Proof: See [9].

Lemma 9. Let M be an R-module.

(1) If M is supplemented, then M is cofinitely supplemented.

(2) If M is finitely generated and cofinitely supplemented, then M is supplemented.

(3) For $M_1 \leq M$ and U cofinite submodule of M, if $M_1 + U$ has a supplement in M and M_1 is cofinitely supplemented, then U also has a supplement in M.

(4) Let $M = \sum_{i \in I} M_i$. If M_i is cofinitely supplemented for every $i \in I$, then M is also cofinitely supplemented. (5) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is cofinitely supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also cofinitely supplemented.

- (6) If M is cofinitely supplemented, then M/L is cofinitely supplemented for every $L \leq M$.
- (7) If M is cofinitely supplemented, then every homomorphic image of M is also cofinitely supplemented.
- (8) If M is cofinitely supplemented, then every cofinite submodule of M/RadM is a direct summand of M/RadM.
- (9) Hollow and local modules are cofinitely supplemented.

(10) If M is cofinitely supplemented, then every M-generated module is cofinitely supplemented.

(11) $_{R}R$ is supplemented if and only if every generated R-module is cofinitely supplemented.

Proof: See [1].

Lemma 10. Let M be an R-module.

(1) If M is essential supplemented, then M is cofinitely essential supplemented.

(2) If M is supplemented, then M is cofinitely essential supplemented.

(3) If M is finitely generated and cofinitely essential supplemented, then M is essential supplemented.

(4) For $M_1 \leq M$ and U cofinite essential submodule of M, if $M_1 + U$ has a supplement in M and M_1 is cofinitely essential supplemented, then U also has a supplement in M.

(5) Let $M = \sum M_i$. If M_i is cofinitely essential supplemented for every $i \in I$, then M is also cofinitely essential supplemented.

(6) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is cofinitely essential supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also cofinitely essential supplemented.

(7) If M is cofinitely essential supplemented, then M/L is cofinitely essential supplemented for every $L \leq M$.

- (8) If M is cofinitely essential supplemented, then every homomorphic image of M is also cofinitely essential supplemented.
- (9) If M is cofinitely essential supplemented, then M/RadM have no proper essential submodules.
- (10) Hollow and local modules are cofinitely essential supplemented.
- (11) If M is cofinitely essential supplemented, then every M-generated module is cofinitely essential supplemented.

(12) $_{R}R$ is essential supplemented if and only if every generated R-module is cofinitely essential supplemented.

Proof: See [4].

Lemma 11. Let M be an R-module.

- (1) If V is a supplement of U in M, then V is a g-suppement of U in M.
- (2) If $M = U \oplus V$ then V is a g-supplement of U in M. Also U is a g-supplement of V in M.

(3) For $M_1, U \leq M$, if $M_1 + U$ has a g-supplement in M and M_1 is g-supplemented, then U also has a g-supplement in M.

(4) Let $M = M_1 + M_2$. If M_1 and M_2 are g-supplemented, then M is also g-supplemented.

(5) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is g-supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also g-supplemented.

- (6) If M is g-supplemented, then M/L is g-supplemented for every $L \leq M$.
- (7) If M is g-supplemented, then every homomorphic image of M is also g-supplemented.

(8) If M is g-supplemented, then $M/Rad_g M$ is semisimple.

(9) Hollow, local and g-hollow modules are g-supplemented.

(10) If M is g-supplemented, then every finitely M-generated module is g-supplemented.

(11) $_{R}R$ is g-supplemented if and only if every finitely generated R-module is g-supplemented.

(12) If M is g-supplemented and every nonzero submodule of M is essential in M, then M is supplemented.

Proof: See [5]-[6].

Lemma 12. Let M be an R-module.

- (1) If M is g-supplemented, then M is cofinitely g-supplemented.
- (2) If M is supplemented, then M is cofinitely g-supplemented.

80

(3) If M is cofinitely supplemented, then M is cofinitely g-supplemented.

- (4) If M is cofinitely g-supplemented and every nonzero submodule of M is essential in M, then M is cofinitely supplemented.
- (5) If M is finitely generated and cofinitely g-supplemented, then M is g-supplemented.
- (6) For $M_1 \leq M$ and U cofinite submodule of M, if $M_1 + U$ has a g-supplement in M and M_1 is cofinitely g-supplemented, then U also has a g-supplement in M.

(7) Let $M = \sum_{i \in I} M_i$. If M_i is cofinitely g-supplemented for every $i \in I$, then M is also cofinitely g-supplemented.

(8) Let $M_i \leq M$ for i = 1, 2, ..., n. If M_i is cofinitely g-supplemented for every i = 1, 2, ..., n, then $M_1 + M_2 + ... + M_n$ is also cofinitely g-supplemented.

(9) If M is cofinitely g-supplemented, then M/L is cofinitely g-supplemented for every $L \leq M$.

- (10) If M is cofinitely g-supplemented, then every homomorphic image of M is also cofinitely g-supplemented.
- (11) If M is cofinitely g-supplemented, then every cofinite submodule of M/Rad_gM is a direct summand of M/Rad_gM .
- (12) Hollow, g-hollow and local modules are cofinitely g-supplemented.
- (13) If M is cofinitely g-supplemented, then every M-generated module is cofinitely g-supplemented.
- (14) $_{R}R$ is g-supplemented if and only if every R-module is cofinitely g-supplemented.

Proof: See [3].

Definition 1. Let M be an R-module. If every cofinite essential submodule of M has a g-supplement in M, then M is called a cofinitely essential g-supplemented (or briefly cofinitely eg-supplemented) module.

Proposition 1. Every cofinitely essential supplemented module is cofinitely eg-supplemented.

Proof: Let M be a cofinitely essential supplemented module and U be a cofinite essential submodule of M. Then U has a supplement V in M. Here M = U + V and $U \cap V \ll V$. Since $U \cap V \ll V$, $U \cap V \ll_g V$. Hence V is a g-supplement of U in M. Therefore, M is cofinitely eg-supplemented.

Lemma 13. Every essential g-supplemented module is cofinitely eg-supplemented.

Proof: Let M be an essential g-supplemented module and U be a cofinite essential submodule of M. Since M is essential g-supplemented and $U \trianglelefteq M$, U has a g-supplement in M. Hence every cofinite essential submodule of M has a g-supplement in M and M is cofinitely eg-supplemented.

Corollary 1. Every g-supplemented module is cofinitely eg-supplemented.

Proof: Since every g-supplemented module is essential g-supplemented, by Lemma 13, every g-supplemented module is cofinitely eg-supplemented. \Box

Lemma 14. Every cofinitely g-supplemented module is cofinitely eg-supplemented.

Proof: Let M be a cofinitely g-supplemented module and U be a cofinite essential submodule of M. Since M is cofinitely g-supplemented and U is a cofinite submodule of M, U has a g-supplement in M. Hence every cofinite essential submodule of M has a g-supplement in M and M is cofinitely g-supplemented.

Corollary 2. Let $M = \sum_{i \in I} M_i$. If M_i is cofinitely g-supplemented for every $i \in I$, then M is cofinitely eg-supplemented.

Proof: Since M_i is cofinitely g-supplemented for every $i \in I$, by [3, Lemma 2.6], $M = \sum_{i \in I} M_i$ cofinitely g-supplemented. Then by Lemma 14, M is cofinitely g-supplemented.

Corollary 3. Let *M* be a cofinitely g-supplemented module. Then every *M*-generated module is cofinitely eg-supplemented.

Proof: Clear from Corollary 2.

Corollary 4. Let R be a ring. If $_RR$ is g-supplemented, then every R-module is cofinitely eg-supplemented.

Proof: Since $_RR$ is g-supplemented, $_RR$ is cofinitely g-supplemented. Then by Corollary 3, every R-module is cofinitely eg-supplemented.

Proposition 2. Let M be an cofinitely eg-supplemented module. If every nonzero submodule of M is essential in M, then M is cofinitely g-supplemented.

Proof: Let U be a cofinite submodule of M. If U = 0, then M is a g-supplement of U in M. Let $U \neq 0$. Then $U \leq M$ and since M is cofinitely eg-supplemented, U has a g-supplement in M. Hence M is cofinitely g-supplemented.

3 References

- 1
- R. Alizade, G. Bilhan, P. F. Smith, Modules whose Maximal Submodules have Supplements, Comm. in Algebra 29(6) (2001), 2389-2405. J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006. 2
- B. Koşar, C. Nebiyev, Cofinitely Essential Supplemented Modules, Turkish St. Inf. Tech. and Appl. Sci., 13(29) (2018), 83-88.
 B. Koşar, C. Nebiyev, N. Sökmez, g-Supplemented Modules, Ukrainian Math. J., 67(6) (2015), 861-864.
 B. Koşar, C. Nebiyev, A. Pekin, A Generalization of g-Supplemented Modules, Miskolc Math. Notes, 20(1) (2019), 345-352. 3 4
- 5
- 6
- 7 C. Nebiyev, H. H. Ökten, Essential g-Supplemented Modules, Turkish St. Inf. Tech. and Appl. Sci., 14(1) (2019), 83-89.
- C. Nebiyev, On a Generalization of Supplement Submodules, Int. J. of Pure and Appl. Math. 113 (2) (2017), 283-289.
 C. Nebiyev, H. H. Ökten, A. Pekin, *Essential Supplemented Modules*, Int. J. of Pure and Appl. Math. 120(2) (2018), 253-257.
 R. Wisbauer, *Foundations of Module and Ring Theory*, Gordon and Breach, Philadelphia, 1991.