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Abstract
The aim of this study is to obtain numerical solutions of the modified Fornberg Whitham equation via
collocation finite element method combined with operator splitting method. The splitting method is
used to convert the original equation into two sub equations including linear and nonlinear part of the
equation as a slight modification of splitting idea. After splitting progress, collocation method is used
to reduce the sub equations into algebraic equation systems. For this purpose, quintic B-spline base
functions are used as a polynomial approximation for the solution. The effectiveness and efficiency of the
method and accuracy of the results are measured with the error norms L2 and L∞. The presentations of
the numerical results are shown by graphics as well.
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1. Introduction
In our world, dynamic examples are based on change such as motion, electricity, heat and light, acoustics, birth

and death rates, temperature, pressure and calculus is a mathematical theory concerned with this very change. All
of these can be modeled appropriately using the language of mathematics. Fractional and integer orders differential
equations are one of the most important and amazing parts of this language as far as science and engineering are
concerned. Today, differential equations are fundamental mathematical tools representing a relationship between a
continuously varying quantity and its rate of change and are used in most areas of science and technology. Thus,
it is practically important for researchers to solve equations so that the behavior of the systems can be accurately
studied.

After gaining their important place in our lives, ordinary and fractional differential equations have begun to
get attention of many scientists. In order to share their researches, numerous articles, studies, books, reviews were
published and numerous conferences, workshops, meetings were held by scientists. Meanwhile, for ordinary
differential equations, new articles, new approaches and new techniques have drawn attention.

Let us consider the Fornberg–Whitham equation given by [9]
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ut − uxxt + ux + uux = 3uxuxx + uuxxx, t > 0, x > 0, (1.1)

and first proposed by Whitham in 1967 for studying the qualitative behavior of wave breaking. In 1978, Fornberg
and Whitham [6] obtained a peaked solution consisting of an arbitrary constant. By modifying the nonlinear term
uux in Eq.(1.1) as u2ux, He et al.proposed in [9] the modified Fornberg-Whitham equation as follows

ut − uxxt + ux + u2ux = 3uxuxx + uuxxx , t > 0, x > 0. (1.2)

Here, u(x; t) is the fluid velocity, t is the time and x is the spatial variable.
Before starting the process, let us take a brief look at research works on the obtaining approximate and numerical

solutions of Fornberg-Whitham equation; as an analytical technique Abidi and Omrani [1] have applied homotopy
analysis method (HAM) and presented many comparisons with other methods. Zhou and Tian, [16] have obtained
kink-like wave solutions and antikink-like wave solutions of the equation by bifurcation method. Homotopy
perturbation method (HPM)[7] reduced differential transform method [10], and phase portrait analytical technology
[5] have been used to obtain exact and numerical solutions of Fornberg–Whitham equation. In [9], He et al
investigated modified Fornberg Whitham equation and obtained some peakons and solitary waves of the equation.
In [14], Ray and Gupta have solved the modified version of the equation using a new wavelet method based on
the Hermit wavelet expansion. Boutarfa et al. have applied reproducing Kernel Hilbert space method to classical,
modified and fractional types of the Fornberg Whitham equation. Also Lu [11] has applied He’s variational iteration
method and Biazar [3] has solved Fornberg-Whitham type equations via homotopy perturbation method (HPM).
Nuseir [4] has applied a unified approach for finding soliton solutions to the modified Fornberg-Whitham equation.

In this study, numerical solutions of modified Forberg Whitham equation are investigated in order to make a
contribution to the literature. In the way of our aim, two effective methods, namely finite element and splitting
methods whose roots are very old, are combined. The spline basis used in the finite element method are selected
as quintic B-spline bases considering the highest order derivative seen in the equation. Stability analysis which is
the most important part of numerical methods of the newly obtained numerical scheme, is discussed with Von
Neumann stability analysis that is widely known and used. In the last part numerical examples are given. In
addition to the newly obtained results, comparison tables with different studies in the literature are presented. In
addition, numerical results were expressed in graphs for visual comparisons.

2. Strang Splitting Method

The splitting technique which we are going to use for numerical computations is the second order symmetric
technique proposed by Strang [15] and sometimes known as Strang-Marchuk [12]. Strang splitting is generally used
to accelerate computations for problems containing operators on very different time scales, for instance, chemical
reactions in fluid dynamics, and to solve multidimensional partial differential equations. Strang splitting is the
second order method so that the method provides accurate and efficient results. Strang splitting algorithm is as
follows :

∂u∗(t)

∂t
= Au∗(t), tn ≤ t ≤ tn+ 1

2 , u∗(tn) = u0n,

∂u∗∗(t)

∂t
= Bu∗∗(t), tn ≤ t ≤ tn+1, u∗∗(tn) = u∗(tn+

1
2 ),

∂u∗∗∗(t)

∂t
= Au∗∗∗(t), tn+

1
2 ≤ t ≤ tn+1, u∗∗∗(t

n+
1

2 ) = u∗∗(tn),

(2.1)

where tn+
1
2 = tn + T

2 and u0n = u0, and the approximation for the next time step tn+1 is defined as u0n = u∗∗∗(tn+1).

3. Finite Element Quintic B-Spline Collocation Method

For the numerical calculations, the solution domain of the problem is restricted over the interval xleft ≤ x ≤
xright. The interval is partitioned into uniformly-sized finite elements of length h by the knots xm such that

xleft = x0 < x1 < · · · < xN = xright.

The set of quintic B-spline functions
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{ϕ−2(x), ϕ−1(x), ..., ϕN+1(x), ϕN+2(x)} , (3.1)

forms a basis over the problem domain [xleft, xright]. We seek the numerical solution unumeric(x, t) to the exact
solution uexact(x, t) in the form of

unumeric(x, t) =
∑N+2

m=−2δm (t)ϕm (x) , (3.2)

where δm (t) are time dependent parameters to be determined from the boundary and collocation conditions.
Quintic B-splines ϕm(x)for (m = −2 (1)N + 2) , at the knots xm are defined over the interval [a, b] in [13] as

follows

ϕm(x) =
1

h5



(x− xm−3)
5
, [xm−3, xm−2]

(x− xm−3)
5 − 6 (x− xm−2)

5
, [xm−2, xm−1]

(x− xm−3)
5 − 6 (x− xm−2)

5
+ 15 (x− xm−1)

5
, [xm−1, xm]

(x− xm−3)
5 − 6 (x− xm−2)

5
+ 15 (x− xm−1)

5

−20 (x− xm)
5
, [xm, xm+1]

(x− xm−3)
5 − 6 (x− xm−2)

5
+ 15 (x− xm−1)

5

−20 (x− xm)
5

+ 15 (x− xm+1)
5
, [xm+1, xm+2]

(x− xm−3)
5 − 6 (x− xm−2)

5
+ 15 (x− xm−1)

5

−20 (x− xm)
5

+ 15 (x− xm+1)
5 − 6 (x− xm+2)

5
, [xm+2, xm+3]

0, otherwise.

(3.3)

Each quintic B-spline covers six elements so that each element [xm, xm+1] is covered by six quintic B-splines.
Substituting trial function (3.2) into Eq. (3.3), the nodal values of unumeric, u

′
numeric, u

′′
numeric, u

′′′
numeric at the knots

xm are obtained in terms of the element parameters δm by

unumeric(xm) = (unumeric)m = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2,

u′numeric (xm) = (unumeric)
′
m =

5

h
(−δm−2 − 10δm−1 + 10δm+1 + δm+2) ,

u′′numeric(xm) = (unumeric)
′′
m =

20

h2
(δm−2 + 2δm−1 − 6δm + 2δm+1 + δm+2) ,

u′′′numeric(xm) = (unumeric)
′′′
m =

60

h3
(δm−2 − 2δm−1 + 2δm+1 − δm+2) ,

(3.4)

where the symbols ′,′′ and ′′′ represent the first, the second and the third order differentiation with respect to x,
respectively. The splines ϕm(x) and their four principle derivatives vanish outside the interval [xm−3, xm+3].

3.1 Time split discretization
The time splitting of modified Fornberg–Whitham equation is carried out as follows

ut − uxxt + ux = 0,

ut − uxxt + u2ux − 3uxuxx − uuxxx = 0,
(3.5)

and the values of unumeric, u
′

numeric, u
′′

numeric and u
′′′

numeric computed at collocation points xm are used in (3.5).
After some basic operations, we obtain the following system of the first order ordinary differential equations as
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follows

δ̇m−2 + 26δ̇m−1 + 66δ̇m + 26δ̇m+1 + δ̇m+2 −
20

h2

(
δ̇m−2 + 2δ̇m−1 − 6δ̇m + 2δ̇m+1 + δ̇m+2

)
+

5

h
(−δm−2 − 10δm−1 + 10δm+1 + δm+2) = 0,

δ̇m−2 + 26δ̇m−1 + 66δ̇m + 26δ̇m+1 + δ̇m+2 −
20

h2

(
δ̇m−2 + 2δ̇m−1 − 6δ̇m + 2δ̇m+1 + δ̇m+2

)
+z2m

5

h
(−δm−2 − 10δm−1 + 10δm+1 + δm+2)− 3gm

20

h2
(δm−2 + 2δm−1 − 6δm + 2δm+1 + δm+2)

−zm
60

h3
(δm−2 − 2δm−1 + 2δm+1 − δm+2) = 0.

Here zm and gm are linearized terms given as follows

zm = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2,

gm =
5

h
(−δm−2 − 10δm−1 + 10δm+1 + δm+2) .

In the equation given above, if we use the Crank-Nicolson formula instead of δm and the forward difference formula
instead of ˙δm

δm =
1

2

(
δn+1
m + δnm

)
,

˙δm =
δn+1
m − δnm

∆t
,

we obtain a recurrent relationship between the unknown time-level parameters δn+1
m and the known time-levels

operators δnm as follows:

a1δ
n+1
m−2 + a2δ

n+1
m−1 + a3δ

n+1
m + a4δ

n+1
m+1 + a5δ

n+1
m+2 = a5δ

n
m−2 + a4δ

n
m−1 + a3δ

n
m + a2δ

n
m+1 + a1δ

n
m+2, (3.6)

where

a1 =
1

∆t
− 20

∆th2
− 5

2h
,

a2 =
26

∆t
− 40

∆th2
− 25

h
,

a3 =
66

∆t
− 120

∆th2
,

a4 =
26

∆t
− 40

∆th2
+

25

h
,

a5 =
1

∆t
− 20

∆th2
+

5

2h
,

(3.7)

and

b1δ
n+1
m−2 + b2δ

n+1
m−1 + b3δ

n+1
m + b4δ

n+1
m+1 + b5δ

n+1
m+2 = b6δ

n
m−2 + b7δ

n
m−1 + b8δ

n
m + b9δ

n
m+1 + b10δ

n
m+2, (3.8)
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where

b1 =
1

4t
− 20

4th2
− 5z2m

2h
− 30gm

h2
+

30zm
h3

, b6 =
1

4t
− 20

4th2
+

5z2m
2h

+
30gm
h2
− 30zm

h3
,

b2 =
26

4t
− 40

4th2
− 25z2m

h
− 60gm

h2
+

60zm
h3

, b7 =
26

4t
− 40

4th2
+

25z2m
h

+
60gm
h2

+
60zm
h3

,

b3 =
66

4t
+

120

4th2
+

180gm
h2

, b8 =
66

4t
+

120

4th2
− 180gm

h2
,

b4 =
26

4t
− 40

4th2
+

25z2m
h
− 60gm

h2
+

60zm
h3

, b9 =
26

4t
− 40

4th2
− 25z2m

h
+

60gm
h2
− 60zm

h3
,

b5 =
1

4t
− 20

4th2
+

5z2m
2h
− 30gm

h2
− 30zm

h3
, b10 =

1

4t
− 20

4th2
− 5z2m

2h
+

30gm
h2

+
30zm
h3

,

In the equation system given by Eq. (3.2), the number of unknown variables is (N + 5), and number the of equations
is (N + 1); so, to obtain a solvable system, we should eliminate δ−2, δ−1, δN+1, and δN+2 from the systems using
the values of (unumeric)m and (unumeric)

′

m at the boundary points of the interval. In the end of this elimination
operation, we can obtain an equation system of the type (N + 1)× (N + 1), and then Strang method is applied to
obtain schemes. In order to solve these systems, we need the initial vector δ0m

3.2 Initial state
In the previous section, we have constructed an iterative equation system. To begin this iteration, we start

with the initial vector. In this section, we are going to obtain this vector. Let us call the initial vector (unumeric)0 =

(δ0, δ1, ...δN−1, δN )
T , which is derived from the initial conditions of the problem, and the approximate solution for

(unumeric)0, (unumeric)N as follows:

(unumeric)N (x, 0) = (uexact) (x, 0) =

N+2∑
m=−2

δm (0)ϕm (x) . (3.9)

Thus, if this system is rewritten clearly, a penta-diagonal matrices emerges of the following form:



54 60 6
25.25 67.50 26.25 1

1 26 66 26 1
1 26 66 26 1

. . .
1 26 66 26 1

1 26.25 67.50 25.25
6 60 54





δ0
δ1
δ2

...

δN−1
δN


=



U0

U1

U2

...

UN−1
UN


.

So, the required initial vector to solve Equation (3.2) has been derived.

4. Stability Analysis

This section of the presented work is concerned with stability analysis of numerical scheme given in Eq. (1.2).
For this purpose, we will use Von Neumann stability analysis, the importance of the analysis is that, it provides
a way to extract information about the eigenvalue without knowing exact eigenvalues themselves. Let us recall
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obtained numerical scheme in a more explicit expression using the following table;

The first system (A) δn+1
m−2

[
1

∆t
− 20

∆th2
− 5

2h

]
,

δn+1
m−2

[
1

∆t
− 20

∆th2
− 5

2h

]
, δnm−2

[
1

∆t
− 20

∆th2
+

5

2h

]
,

δn+1
m−1

[
26

∆t
− 40

∆th2
− 25

2h

]
, δnm−1

[
26

∆t
− 40

∆th2
+

25

2h

]
,

δn+1
m

[
66

∆t
− 120

∆th2

]
, δnm

[
66

∆t
− 120

∆th2

]
,

δn+1
m+1

[
26

∆t
− 40

∆th2
+

25

2h

]
, δnm+1

[
26

∆t
− 40

∆th2
− 25

2h

]
,

δn+1
m−2

[
1

∆t
− 20

∆th2
+

5

2h

]
, δnm−2

[
1

∆t
− 20

∆th2
− 5

2h

]
,

The second system (B) δn+1
m−2

[
1

∆t
− 20

∆th2
− 5

2h
z2m −

30

h2
gm +

30

h3
zm

]
,

δn+1
m−2

[
1

∆t
− 20

∆th2
− 5

2h
z2m −

30

h2
gm +

30

h3
zm

]
, δnm−2

[
1

∆t
− 20

∆th2
+

5

2h
z2m +

30

h2
gm −

30

h3
zm

]
,

δn+1
m−1

[
26

∆t
− 40

∆th2
− 25

2h
z2m −

60

h2
gm +

60

h3
zm

]
, δnm−1

[
26

∆t
− 40

∆th2
+

25

2h
z2m +

60

h2
gm +

60

h3
zm

]
,

δn+1
m

[
66

∆t
+

120

∆th2
+

180

h2
gm

]
, δnm

[
66

∆t
+

120

∆th2
− 180

h2
gm

]
,

δn+1
m+1

[
26

∆t
− 40

∆th2
+

25

2h
z2m −

60

h2
gm −

60

h3
zm

]
, δnm+1

[
26

∆t
− 40

∆th2
− 25

2h
z2m +

60

h2
gm −

60

h3
zm

]
,

δn+1
m−2

[
1

∆t
− 20

∆th2
+

5

2h
z2m −

30

h2
gm −

30

h3
zm

]
, δnm−2

[
1

∆t
− 20

∆th2
− 5

2h
z2m +

30

h2
gm +

30

h3
zm

]
.

It is shown that, the first equation is more symetric than the second one. According to Von Neumann stability
analysis, numerical scheme admits a solution of the form

δnm = ξneiwm, (4.1)

where w is the wave number and i =
√
−1 and ξ is an amplification factor. Before diving into the stability analysis,

let us remind some useful identities

cosx =
eix + e−ix

2
,

sinx =
eix − e−ix

2i
.
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Now, when we replace each solution term δnm with the equation given in (4.1) , we get,

The first system(A)

ξn+1
A eiwm

{(
1

∆t
− 20

∆th2
− 5

2h

)
e−2iw +

(
1

∆t
− 20

∆th2
+

5

2h

)
e2iw +

(
66

∆t
− 120

∆th2

)

+

(
26

∆t
− 40

∆th2
− 25

2h

)
e−iw +

(
26

∆t
− 40

∆th2
+

25

2h

)
eiw
}

= ξnAe
iwm

{(
1

∆t
− 20

∆th2
+

5

2h

)
e−2iw

+

(
1

∆t
− 20

∆th2
− 5

2h

)
e2iw +

(
66

∆t
− 120

∆th2

)
+

(
26

∆t
− 40

∆th2
+

25

2h

)
e−iw +

(
26

∆t
− 40

∆th2
− 25

2h

)
eiw
}
,

The second system(B)

ξn+1
B eiwm

{(
1

∆t
− 20

∆th2
− 5

2h
z2m −

30

h2
gm +

30

h3
zm

)
e−2iw +

(
1

∆t
− 20

∆th2
+

5

2h
z2m −

30

h2
gm −

30

h3
zm

)
e2iw

+

(
66

∆t
+

120

∆th2
+

180

h2
gm

)
+

(
26

∆t
− 40

∆th2
− 25

2h
z2m −

60

h2
gm +

60

h3
zm

)
e−iw

+

(
26

∆t
− 40

∆th2
+

25

2h
z2m −

60

h2
gm −

60

h3
zm

)
eiw
}

= ξnBe
iwm

{(
1

∆t
− 20

∆th2
+

5

2h
z2m +

30

h2
gm −

30

h3
zm

)
e−2iw

+

(
1

∆t
− 20

∆th2
− 5

2h
z2m +

30

h2
gm +

30

h3
zm

)
e2iw +

(
66

∆t
+

120

∆th2
− 180

h2
gm

)

+

(
26

∆t
− 40

∆th2
+

25

2h
z2m +

60

h2
gm +

60

h3
zm

)
e−iw +

(
26

∆t
− 40

∆th2
− 25

2h
z2m +

60

h2
gm −

60

h3
zm

)
eiw
}

and after some calculations, we get

The first system(A)

ξA

{
66

∆t
− 120

∆th2
+

(
1

∆t
− 20

∆th2

)
cos(2w) +

(
26

∆t
− 40

∆th2

)
cos(w)+

i

(
5

2h
sin (2w) +

25

2h
sin (w)

)}
=

66

∆t
− 120

∆th2
+

(
1

∆t
− 20

∆th2

)
cos(2w)

+

(
26

∆t
− 40

∆th2

)
cos(w)− i

(
5

2h
sin (2w) +

25

2h
sin (w)

)
,

The second system(B)

ξB

{
33

∆t
+

60

∆th2
+

90

h2
gm +

(
1

∆t
− 20

∆th2
− 30

h2
gm

)
cos(2w) +

(
26

∆t
− 40

∆th2
− 60

h2
gm

)
cos(w)

+i

((
5

2h
z2m −

30

h3
zm

)
sin (2w) +

(
25

2h
z2m −

60

h3
zm

)
sin (w)

)}
=

{
33

∆t
+

60

∆th2
− 90

h2
gm +

(
1

∆t
− 20

∆th2
+

30

h2
gm

)
cos(2w) +

(
26

∆t
− 40

∆th2
+

60

h2
gm

)
cos(w)

−i
((

5

2h
z2m −

30

h3
zm

)
sin (2w) +

(
25

2h
z2m +

60

h3
zm

)
sin (w)

)}
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where

p1 =
66

∆t
− 120

∆th2
+

(
1

∆t
− 20

∆th2

)
cos(2w) +

(
26

∆t
− 40

∆th2

)
cos(w)

p2 =

(
5

2h
sin (2w) +

25

2h
sin (w)

)
,

from the first equation it is obvious that

ξA =
p1 − ip2
p1 + ip2

,

and

|ξA| ≤ 1.

The second one;

q1 =
33

∆t
+

60

∆th2
+

90

h2
gm +

(
1

∆t
− 20

∆th2
− 30

h2
gm

)
cos(2w) +

(
26

∆t
− 40

∆th2
− 60

h2
gm

)
cos(w),

q2 =

(
5

2h
z2m −

30

h3
zm

)
sin (2w) +

(
25

2h
z2m −

60

h3
zm

)
sin (w) ,

q3 =
33

∆t
+

60

∆th2
− 90

h2
gm +

(
1

∆t
− 20

∆th2
+

30

h2
gm

)
cos(2w) +

(
26

∆t
− 40

∆th2
+

60

h2
gm

)
cos(w),

q4 =

(
5

2h
z2m −

30

h3
zm

)
sin (2w) +

(
25

2h
z2m +

60

h3
zm

)
sin (w) ,

and we can define it as

ξB =
q1 + iq2
q3 + iq4

,

After some simplifications, we obtain the same expressions for q21 + q22 and q23 + q24 in the following form;

(
4h2

(
−30∆tgm(2 cos(w) + cos(2w)− 6) +

(
26h2 − 40

)
cos(w) +

(
h2 − 20

)
cos(2w) + 66h2 + 120

)
2

+25∆t2z2m sin2(w)
(
h2zm(2 cos(w) + 5)− 24(cos(w) + 1)

)
2
)
/(

4h2
(
30∆tgm(2 cos(w) + cos(2w)− 6) +

(
26h2 − 40

)
cos(w) +

(
h2 − 20

)
cos(2w) + 66h2 + 120

)
2

+25∆t2z2m sin2(w)
(
h2zm(2 cos(w) + 5) + 24(cos(w) + 1)

)
2
)
.

It is obivious that

|ξB | ≤ 1.

Therefore,

|ξ| ≤
∣∣∣ξn+1/2

A

∣∣∣ |ξnB | ∣∣∣ξn+1/2
A

∣∣∣ ≤ 1,

numerical scheme of Modified Forberg Whitham equation is unconditionally stable.
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5. Numerical Experiments

In this section numerical experiments of modified Fornberg–Whitham equation are presented. Firstly, the
interval of the problem is chosen as [xleft, xright] = [−70, 70] and the final time of the processing is chosen as
tfinal = 1 considering the studies in the literature. Let us consider the modified Fornberg–Whitham equation

ut − uxxt + ux + u2ux = 3uxuxx + uuxxx , t > 0, x > 0,

with the initial and boundary conditions

u (x, 0) = f (x) =
3

4

(√
15− 5

)
sech2

(
1

20

√
10
(
5−
√

15
)
x

)
u (xleft, t) = g1 (t) , u (xright, t) = g2 (t)

.

The exact solution of Eq.(1.2) is given by [9]

u (x, t) =
3

4

(√
15− 5

)
sech2

[
1

20

√
10
(

5−
√

15
)(

x−
(

5−
√

15
)
t
)]

. (5.1)

In order to test our method we have used the error norms, widely used in the literature, namely L2 and L∞

L∞ = ‖uexact − unumeric‖∞ = max | (uexact)m − (unumeric)m |,

L2 = ‖uexact − unumeric‖2 =

√
Nh

N∑
m=0

(| (uexact)m − (unumeric)m |)
2
.

We first present our tables and calculate the error norms in Tables 1 and 2 by discretizing the spatial dimensions and
the time domain into several segments, this will give us an idea on numerical behaviour of solutions according to
the number of space and time steps and measure the accuracy. The numerical solution shows the characteristics of
the problem as illustrated in Figure 1. It can be seen from the tables that as contrary to expectations of the properties
collocation method, the errors have a slight increase by increasing the number of partition, increasing begins after
9th digits. When we direct our attention to time steps, we can say that increasing number of time partition has
positive effects on numerical results.

Table 1. The error norms L2 and L∞ for different values of h and at various times for ∆t = 0.01

t h=0.1 h=0.05

L2 × 108 L∞ × 108 L2 × 108 L∞ × 108

0.1 0.55596195 0.21513131 0.5611164946 0.2165036816
0.2 1.11177145 0.43023812 1.1221487463 0.4329973602
0.3 1.66754696 0.64512058 1.6831388218 0.6492883120
0.4 2.22323537 0.85955243 2.2440439308 0.8651545480
0.5 2.77880288 1.07344476 2.8048323184 1.0805117356
0.6 3.33421992 1.28687775 3.3654789299 1.2951254291
0.7 3.88945852 1.49929724 3.9259561214 1.5086576766
0.8 4.44449195 1.71041000 4.4862449398 1.7210618375
0.9 4.99929360 1.91990667 5.0463136992 1.9320877231
1 5.55384043 2.12747406 5.6061474738 2.1417522755
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Table 2. The error norms L2 and L∞ for different values of h and at various times for ∆t = 0.001

t h=0.1 h=0.05

L2 × 1010 L∞ × 1010 L2 × 1010 L∞ × 1010

0.1 1.08863387 2.18611128 0.88634683 2.18611128
0.2 1.43878123 2.27040776 1.34502978 2.27040776
0.3 1.88191516 2.35795472 1.87740591 2.35795472
0.4 2.36489451 2.44887749 2.43572593 2.44887749
0.5 2.86625819 2.54330625 3.00757330 2.54330625
0.6 3.37605384 2.64137618 3.58536542 2.64137618
0.7 3.88927927 2.74322768 4.16866020 2.74322768
0.8 4.40313619 2.84900659 4.75419250 2.84900659
0.9 4.91550802 2.95886432 5.34114795 2.95886432
1 5.42567395 3.07295818 5.93169442 3.07295818

We secondly present some comparison tables between newly obtained numerical results with different papers
in the literature. The comparisons also aim to reveal if the newly obtained numerical solutions create a difference
according to results in the papers written on modified Fornberg Whitham equation. Table 3 presents a comparison
of absolute errors between present method and Ref. [3]. For collocation method, we chose step size h = 0.01 and
∆t = 0.001. and we will compare absolute errors of the presented method and with those in Refs. [2, 11]. It can be
seen clearly from the Tables 4 and 5 that collocation method which is combined with splitting methods is better,
faster and more reliable than the other methods.

Table 3. A comparison of the absolute norms with Ref.[3] for h = 0.01 and ∆t = 0.001.

|unumerical − uexact| |unumerical − uexact| Numerical Exact

x t [3] Present Method

1 0.03 2.015219x10−4 4.61720661704×10−11 -0.82341419067 -0.82341419072
1 0.1 1.803436x10−4 1.554346651389×10−10 -0.82678632533 -0.82678632548
2 0.04 1.626634x10−4 6.13648021286×10−11 -0.76040231746 -0.76040231752
3 0.05 1.0812872x10−3 7.22619741822×10−11 -0.66836680691 -0.66836680698
5 0.02 1.949816x10−4 2.06346051357×10−11 -0.45047800491 -0.45047800493
5 0.08 1.01287753x10−2 8.50673975705×10−11 -0.45748975536 -0.45748975544
6 0.06 9.963555x10−4 4.87022089324×10−11 -0.35727422165 -0.35727422170

-1 0.03 2.163505x10−4 4.25101065460×10−11 -0.82031160315 -0.82031160319
-1 0.1 1.1661657x10−3 1.412389094568×10−10 -0.81644867016 -0.81644867030
-2 0.04 3.30110x10−5 4.94783103377×10−11 -0.75298986512 -0.75298986517
-3 0.05 4.186843x10−4 5.08697528545×10−11 -0.65671316425 -0.65671316430
-5 0.02 2.222605x10−4 1.38800082539×10−11 -0.44582923727 -0.44582923728
-5 0.08 3.8572370x10−3 5.42853539898×10−11 -0.43889625694 -0.43889625699
-6 0.06 1.2543867x10−3 3.46204731549×10−11 -0.34508506110 -0.34508506113
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Table 4. A comparison of the present values with those of Ref.[2] for h = 0.01 and ∆t = 0.001.

t=0.02 t=0.04

x [2] Present method exact [2] Present method exact

2.5 -0.7144249843 -0.71442495966 -0.71442495969 -0.7165464263 -0.71654637707 -0.71654637713
5 -0.4504779212 -0.61197020467 -0.61197020470 -0.4528101955 -0.45281018904 -0.45281018908

7.5 -0.2349678714 -0.23496785320 -0.23496785321 -0.2364825099 -0.23648258095 -0.23648258097
10 -0.1107643868 -0.11076431868 -0.11076431869 -0.1115481917 -0.11154818385 -0.11154818386

t=0.06 t=0.08

2.5 -0.7186566715 -0.71865665169 -0.71865665178 -0.7207556337 -0.72075559660 -0.72075559672
5 -0.4551474661 -0.45514746646 -0.45514746652 -0.4574897077 -0.45748975536 -0.45748975544

7.5 -0.2380051612 -0.23800516703 -0.23800516706 -0.2395356954 -0.23953562521 -0.23953562525
10 -0.1123371196 -0.11233717189 -0.11233717190 -0.1131312117 -0.11313131003 -0.11313131005

t=0.1
2.5 -0.7228430209 -0.72284302499 -0.72284302514
5 -0.4598370439 -0.45983697264 -0.45983697274

7.5 -0.2410739190 -0.24107396885 -0.24107396890
10 -0.1139306377 -0.11393062556 -0.11393062558

Table 5. A comparison of the absolute norms for h = 0.01 and ∆t = 0.001.

t x=2.5 x=5 x=7.5 x=10

[2] 2.45e - 8 8.36e - 8 1.86e - 8 6.82e - 8
0.02 [11] 1.180e - 4 2.124e - 5 2.805e - 5 5.528e - 6

Present 2.96266344790e-11 2.06346051357e-11 9.8586139252e-12 3.8842817851e-12

[2] 4.90E - 8 6.4e - 9 7.09e - 8 7.9e - 9
0.04 [11] 2.363e - 4 4.797e - 5 5.772e - 5 1.084e - 5

Present 5.96940274988e-11 4.18736711971e-11 2.00255367844e-11 7.9601325531e-12

[2] 1.96e - 8 4.e - 10 6.0e - 9 5.21e - 8
0.06 [11] 3.547e - 4 8.029e - 5 8.902e - 5 1.591e - 5

Present 9.00313157359e-11 6.33545993445e-11 3.01760283428e-11 1.20318338626e-11

[2] 3.70e - 8 4.76e - 8 7.06e - 8 9.83e - 8
0.08 [11] 4.731e - 4 1.183e - 4 1.220e - 4 2.071e - 5

Present 1.205959776485e-10 8.50673975705e-11 4.08358624693e-11 1.62783536650e-11

[2] 4.2e - 9 7.11e - 8 4.98e - 8 1.23e - 8
0.1 [11] 5.914e - 4 1.622e - 4 1.565e - 4 2.524e - 5

Present 1.511807345977e-10 1.072741895314e-10 5.14761289150e-11 2.05421096799e-11

Lastly, we present some simulations for numerical results. To do that, we begin our simulation with choosing
h = 0.1, ∆t = 0.01, tfinal = 10 and illustrate in Figure 2 for different times simultaneously. Also, we present a table
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including the position of pick point of the wave according to time for h = 0.1, ∆t = 0.01, tfinal = 10. in Table 6. It
can be seen from table and figures that the wave moves to the right side of axis slowly and keeps its shape.
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Figure 1. The graphics of numerical solutions of Modified Fornberg equation for times t = 10 and t = 50,
respectively.
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Figure 2. The graphics of absolute error for h = 0.05 and ∆t = 0.001 at tfinal = 10 .

From the obtained results, it is clearly seen that the presented method produces better results than those of
previous studies. The advantage of the present method is obviously seen when the error norms L2 and L∞ are
compared with those of other studies. The low computational cost and storage requirement of the method can be
stated as its most important advantages. The schemes of the present method can easily be applied by using modern
symbolic programming languages.



Modified Fornberg Whitham equation 93

Table 6. The peak points of the wave for h = 0.01 and ∆t = 0.001.

x Time Peak point of wave

0.0 0 -0.84526249034
1.10 1 -0.84524510909
2.30 2 -0.84521217373
3.40 3 -0.84525394060
4.50 4 -0.84526094228
5.60 5 -0.84523317811
6.80 6 -0.84522827511
7.90 7 -0.84525965995
9.0 8 -0.84525627990
10.10 9 -0.84521813561
11.3 10 -0.84524126975

6. Conclusion
In the present study, two reliable methods, namely finite element quintic B-spline collocation and Strang splitting

method are combined in order to find the numerical solutions of the modified Fornberg-Whitham Equation. Firstly,
the considered equation is transformed into its linear and nonlinear parts as subproblems, then the spatial domain
is divided into N equal elements to apply the collocation method. The application of the methods is carried
out successfully to obtain accurate numerical results. The stability of the numerical scheme is analyzed via Von
Neumann method. Additionally, graphical simulations of new numerical results and error norms are presented. A
comparison of the present results with those of some previously published ones shows that the presented method
has produced acceptable results. The calculated error norms L2 and L∞ also show the accuracy and efficiency of the
present study. The figures and tables show the newly obtained results at various times and show the consistency of
the newly results. All the results in this study found out that finite element collocation method with Strang splitting
technique has many advantages over other studies due to its effectiveness, applicability and accuracy. Thus, the
presented method can be applied to a wide range of problems arising in science.
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