
Journal of Engineering Technology and Applied Sciences, 2021 e-ISSN: 2548-0391
Received 10 August 2020, Accepted 28 March 2021 Vol. 6, No. 1, 45-68
Published online 30 April 2021, Research Article doi: 10.30931/jetas.778792

Citation: Naim, M., Ali-Pacha, H., Ali-Pacha, A., Hadj-Said, N., "Lengthening the Period of a Linear Feedback
Shift Register". Journal of Engineering Technology and Applied Sciences 6 (1) 2021 : 45-68.

LENGTHENING THE PERIOD OF A LINEAR FEEDBACK
SHIFT REGISTER

Mohammed Naim , Hana Ali-Pacha , Adda Ali-Pacha* , Naima Hadj-Said

Laboratory of Coding and Security of Information
University of Sciences and Technology of Oran Mohamed Boudiaf, Algeria USTO,

PoBox 1505 El M’Naouer Oran 31000 Algeria
mkn_1993@hotmail.com, hana.alipacha@univ-usto.dz,

a.alipacha@gmail.com (*corresponding author), naima.hadjsaid@univ-usto.dz

Abstract

A linear feedback shift register (LFSR) is the basic element of the pseudo-random generators used to
generate a sequence of pseudo-random values for a stream cipher. It consists of several cells; each cell
is a flip-flop and a feedback function. The feedback function is a linear polynomial function; this
function has a degree equal to the number of cells in the register. The basic elements of the register are
connected to each other in two different ways, either in Fibonacci mode or in Galois mode.

In the best case, the length of an LFSR is equal to two to the power of the number of cells of this
register minus one, which is very low for cryptographic applications. To increase this length, one must
look for primitive polynomials of great degree or to use adequate methods to lengthen LFSR with a
reduced number of cells and, this is the objective of this work. Our method of lengthening of period of
a LFSR is based on the logistics map.

Keywords: LFSR, cryptography, stream cipher, pseudo-random generation, Fibonacci mode, Galois

mode, logistic map

1. Introduction

The stream cipher is becoming increasingly important in our daily lives [1] [2]. Some of these
systems use Linear Feedback Shift Register (LFSR) to produce a random sequence, which
must be XORed with plaintext massages to give encrypted messages. LFSR is an electronic
device (flip-flops connected in series) [3] that can be seen as software that produces a
sequence of bits that can be seen as a recurring sequence on the Galois filed F₂ of 2 elements
(0 and 1).

https://orcid.org/0000-0003-0369-3562
https://orcid.org/0000-0002-7247-5967
https://orcid.org/0000-0003-1828-9562
https://orcid.org/0000-0003-2561-0481

An LFSR is characterized by its feedback function, which connects its cells to each other in
two different modes: Fibonacci and Galois. The most natural mode is the so-called Fibonacci
mode. This is called because the Fibonacci sequence is represented in this model. It updates
the first cell of the register, which is on the left then operates by shift for the other cells. In
2002, Goresky and Klapper introduced a completely different mode called the Galois mode
[4]. The basic idea of the Galois mode is that the contents of the output cell are re-injected
into the input cell and added to the contents of the other cells of the register, and then all the
cells are shifted to the output.

The critical difference between the two modes is how the feedback polynomial is interpreted.
For a given feedback polynomial, the two modes produce different output sequences. Another
difference is their implementation, if you implement an LFSR in a CPU or an FPGA [5], the
Galois structure that is more computerized and its cells are updated simultaneously is
probably faster and has less latency than Fibonacci mode.

In the best case, the length of an LFSR is equal to two to the power of the number of cells of
this register minus one, which is very low for cryptographic applications. To increase this
length, one must look for primitive polynomials of great degree or to use adequate methods to
lengthen LFSR with a reduced number of cells and, this is the objective of this work.

Our method of lengthening the period of an LFSR is essentially based on the initiation of the
flip-flops of the LFSR register when the cycle of a counter is reached. In parallel with the
LFSR generator activity, a non-linear discrete dynamic system is activated. When the value of
the counter is reached, the value of the discrete non-linear dynamic system which corresponds
to it, it is used to initialize the flip-flops of the LFSR register.

We know, by definition, that the output of such a non-linear dynamic system can seem almost
random and, this is what lengthens the period of our LFSR, and that we can use this assembly
in cryptographic applications.

In this paper and for the reason of simplicity, we have chosen the logistics map as a non-linear
dynamic system because the system is chaotic for a simple deterministic equation but, with a
parameter chosen judiciously.

2. Linear feedback shift register

A linear feedback shift register is an electronic device that produces a sequence of random bits [6]. It
consists of several cells each cell presented by a flip-flop, the particularity of the connection between
cells called feedback function, looks like a linear function, so we can apply a mathematical structure.
The LFSRs (Figure 1) have the following characteristics:

 The output is the contents of the last cell on the right.
 The period is the sequence length produced before it begins to repeat itself.
 The feedback function is the sum of "exclusive" operations of some of the bits of the register,
the list of these bits is called "the derivation sequence". It is obtained from a chosen polynomial.
 They are easy to make in hardware [7].

46

2.1 How an LFSR works

LFSRs are used as pseudo-random number generators [3] [6]. When properly configured, they
reach periods of maximum length; each state will be reached only once until all states are
reached. Once each state has been reached, the period will be repeated [7].

In general, LFSRs are built with D flip-flops and, XOR operations. The initial value of the
shift register and the feedback function determines the order of output [6].

An LFSR of length L is composed of a shift register containing a sequence of L bits (Si...
Si+L−1) and a linear feedback function, as well as a clock controlling the movement data [6].
At each clock tick, the content of the rightmost cell is the output of the register and, the
contents of the other cells are shifted to the right, a new bit is calculated by the feedback
function and will be placed in the leftmost cell of the register:

𝑆𝑆𝑡𝑡+𝐿𝐿 = 𝐶𝐶1𝑆𝑆𝑡𝑡+𝐿𝐿−1 + 𝐶𝐶2𝑆𝑆𝑡𝑡+𝐿𝐿−2 + ⋯+ 𝐶𝐶𝐿𝐿−1𝑆𝑆𝑡𝑡+1 + 𝐶𝐶𝐿𝐿𝑆𝑆𝑡𝑡 (1)

The coefficients 𝐶𝐶𝑖𝑖 are binary.

Figure 1. LFSR of length L.

Definition 2.1 ([4]) An LFSR whose feedback function is given by the relation:

𝑆𝑆𝑡𝑡+𝐿𝐿 = 𝐶𝐶1𝑆𝑆𝑡𝑡+𝐿𝐿−1 + 𝐶𝐶2𝑆𝑆𝑡𝑡+𝐿𝐿−2 + ⋯+ 𝐶𝐶𝐿𝐿−1𝑆𝑆𝑡𝑡+1 + 𝐶𝐶𝐿𝐿𝑆𝑆𝑡𝑡 (2)

Its feedback polynomial f is the following F2[X] polynomial:

𝑓𝑓(𝑥𝑥) =1+𝐶𝐶1𝑥𝑥 + 𝐶𝐶2𝑥𝑥2 + ⋯+ 𝐶𝐶𝐿𝐿−1𝑥𝑥𝐿𝐿−1 + 𝐶𝐶𝐿𝐿𝑥𝑥𝐿𝐿 (3)

According to [4]: “The sequence (𝑆𝑆𝑛𝑛)𝑛𝑛≥𝑛𝑛0 is produced by an LFSR whose feedback
polynomial is f (x) If and only if it’s formal serial development:

𝑆𝑆(𝑥𝑥) = ∑ 𝑆𝑆𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛≥0 (4)

Is written:

𝑆𝑆(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)

𝑓𝑓(𝑥𝑥)
 (5)

Where g is a polynomial of 𝐹𝐹2[X] such that deg (g) < deg (f), and gcd (𝑔𝑔0,𝑓𝑓0) =1. In addition,
the polynomial g is determined by the initial state of the register:

𝑔𝑔(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖 ∑ 𝐶𝐶𝑖𝑖−𝑗𝑗𝑆𝑆𝑗𝑗𝑖𝑖

𝑗𝑗=0
𝐿𝐿−1
𝑖𝑖=0 (6)

47

It may be noted that such a sequence is ultimately periodic, that is to say, that there exists a
pre-period 𝑛𝑛0 such that the sequence ((𝑆𝑆𝑛𝑛)𝑛𝑛≥𝑛𝑛0is periodic of period T ≤ 2𝐿𝐿 − 1 (there exists
an integer 𝑖𝑖0 such that 𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖+T for all i ≥ i0)”.

The LFSRs have been studied since 1930 in their purely theoretical aspect and are mostly
built on a finite field. From 1948 to 1969, LFSRs are used as generators of pseudo-random
sequences in cryptosystems since they can generate binary sequences of the maximum period.
These sequences are called the m-sequences (maximum length sequences). The search for
sequences for a very long period becomes a crucial problem in the 1950s.

To ensure better security, we must respect three characteristics, in addition to having a
maximum period, the m-sequences must verify all the random postulates that give them good
random quality. A pseudo-random generator used by cryptography must be able to [1]:

- Generate sequences of bits that must satisfy the statistical characteristics of truly random
sequences.
- To guarantee that if an attacker knows all, or part of the sequence encrypting 𝑆𝑆0, 𝑆𝑆1, … , 𝑆𝑆𝑖𝑖 it
is difficult (from a computational point of view) to find the seed.

2.2 Presentation of LFSR modes: Fibonacci & Galois

2.2.1 Fibonacci mode

Figure 2. LFSR Fibonacci mode

The Fibonacci model LFSR or just Fibonacci LFSR, named after the 12th-century Italian
mathematician Leonardo Fibonacci, is the most common model of LFSR [5] [6] used in
systems that require to be generated. It is these qualities along with its lightweight hardware
implementation that make it so popular in cryptographic systems. A Fibonacci LFSR consists
of several memory cells that shift their values with each clock interval and a feedback
function that feeds new values into the first cell, see Figure 2. The memory cells whose values
are evaluated by the feedback function are known as the taps or tapped positions.
The output sequence S of the LFSR of Figure 2 satisfies the linear recurrence:

𝑆𝑆𝑡𝑡+𝑛𝑛 = 𝐶𝐶𝑛𝑛−1𝑆𝑆𝑡𝑡+𝑛𝑛−1 + 𝐶𝐶𝑛𝑛−2𝑆𝑆𝑡𝑡+𝑛𝑛−2 + +𝐶𝐶1𝑆𝑆𝑡𝑡+1 + 𝐶𝐶0𝑆𝑆𝑡𝑡 (7)

The feedback polynomial of the LFSR is equivalent to the inverse of the characteristic
polynomial of the linear recurrence sequence above:

𝑓𝑓(𝑥𝑥) =1+𝐶𝐶𝑛𝑛−1𝑥𝑥 + ⋯+ 𝐶𝐶1𝑥𝑥𝑛𝑛−1 + 𝐶𝐶0𝑥𝑥𝑛𝑛 (8)

A Fibonacci LFSR of length n [6], with a feedback polynomial f (x) that updates at each clock
interval of t in equation (9).

48

 𝑄𝑄𝑡𝑡+1(𝑖𝑖)

= � 𝐶𝐶𝑛𝑛−1𝑄𝑄𝑡𝑡
(𝑛𝑛−1) + +𝐶𝐶1𝑄𝑄𝑡𝑡

(1) + 𝐶𝐶0𝑄𝑄𝑡𝑡
(0) … 𝑖𝑖𝑓𝑓 𝑖𝑖 = 𝑛𝑛 − 1

𝑄𝑄𝑡𝑡(𝑖𝑖−1) 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 (9)

An example of a Fibonacci mode LFSR with a feedback polynomial [8] 𝑓𝑓(𝑥𝑥) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟔𝟔 +
𝑿𝑿𝟓𝟓 + 𝑿𝑿𝟑𝟑 + 𝟏𝟏, is shown in Figure 2.1.

Figure 2.1. LFSR Fibonacci 𝑋𝑋8 + 𝑋𝑋6 + 𝑋𝑋5 + 𝑋𝑋3 + 1

LFSR Fibonacci is the most common model of LFSR used in systems that require the
generation of a pseudo-random sequence. It is these qualities with its simple hardware
implementation that make it very popular in cryptographic systems.

2.2.2 Galois mode

The Galois model, named after the 19th-century French mathematician Evariste Galois [4] [6].
The particularity of an LFSR in Galois mode resides in how the feedback polynomial is
interpreted as well as, it uses the XOR operator between the cells of the register (modular
internal XORs): the output bit is XORed with the contains of a cell and the result is stored in
the next cell.

Figure 3. LSFR Galois Mode

In the Galois configuration when the output bit is zero (the input bit becomes zero) and all the
bits in the register shift to the right unchanged. When the output bit is one (the input bit
becomes 1), we reverse the contents of a cell (if they are 0, they become 1, and if they are 1,
they become 0) before storing it in the next cell.

The feedback polynomial of the LFSR Galois is defined:

𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛 + 𝐶𝐶𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝐶𝐶1𝑥𝑥 + 𝐶𝐶0, (10)

A Galois LFSR of length n [4], with feedback polynomial f(x) that updates at each clock
interval of t in equation 11.

𝑅𝑅𝑡𝑡+1(𝑖𝑖) = �𝐶𝐶𝑛𝑛−1𝑅𝑅𝑡𝑡
(0), 𝑖𝑖𝑓𝑓 𝑖𝑖 = 𝑛𝑛 − 1

𝑅𝑅𝑡𝑡(𝑖𝑖+1) + 𝐶𝐶𝑖𝑖𝑅𝑅𝑡𝑡(0) 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 (11)

49

An example of a Galois mode LFSR with a feedback polynomial [8] 𝑓𝑓(𝑥𝑥) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟔𝟔 + 𝑿𝑿𝟓𝟓 +
𝑿𝑿𝟑𝟑 + 𝟏𝟏, is shown in Figure 3.1.

Figure 3.1. LFSR Galois 𝑋𝑋8 + 𝑋𝑋6 + 𝑋𝑋5 + 𝑋𝑋3 + 1

3. Logistic map

Logistics map [9] [10] is a well-known dynamic in non-linear systems theory, defined by
equation (12):

𝑦𝑦𝑘𝑘 + 1 = µ 𝑥𝑥𝑘𝑘 (1 − 𝑥𝑥𝑘𝑘) (12)

It gives a perfect explanation of dynamic system behavior. This system was developed by
Prof. Pierre François Verhulst (1845) to measure the evolution of a population in a limited
environment, later used in 1976 by the biologist Robert May to study the evolution of insect
population:

• 𝑦𝑦𝑘𝑘 + 1: Generation in the future that is proportional to xk.
• 𝑥𝑥𝑘𝑘: Previous generation.
• µ: Positive constant incorporates all factors related to reproductive, successful

overwintering eggs for example, etc.

To study this dynamic system and some asymptotic individuals’ models, the first thing to do is
to draw the parabolic graph y= µ.x (1-x), and the diagonal y=x.

Figure 4a. Evolution of 𝑦𝑦𝑘𝑘 in the function of 𝑥𝑥𝑘𝑘

The operation that we will follow to draw the iterative form 𝑦𝑦𝑘𝑘 + 1 according to xk is simply
summarized as follows:

- Starting from an initial value 𝑥𝑥0 of the x-axis, we reach the function with a vertical; the

function takes the value 𝑦𝑦1 = µ. 𝑥𝑥0 (1 − 𝑥𝑥0),
- From horizontal 𝑦𝑦1 = 𝑟𝑟. 𝑥𝑥0 (1 − 𝑥𝑥0) of the previous point, we join the line 𝑦𝑦 = 𝑥𝑥;
- We represent the abscissa of the intersection with the vertical line 𝑥𝑥 = 𝑥𝑥0; we have 𝑦𝑦1 =

 𝑥𝑥1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(k)

y(k
)

50

- From the x1 value of the x-axis, we reach the function with a vertical; the function takes
the value 𝑦𝑦2 = µ. 𝑥𝑥1 (1 − 𝑥𝑥1); and so on.

We take µ = 3.9 and, 𝑥𝑥0 = 0.01 for the logistics map, the previous operations for 100
iterations are represented in Figure 4.
Figure 4 shows two signals 𝑦𝑦𝑘𝑘 generated from the logistic map in chaotic mode (µ =
 3.9), one with an initial condition 𝑥𝑥0 = 0.1 and the other with 𝑥𝑥0 = 0.100000000000001
very close to 0.1.

Figure 4b. The chaotic regime in the function of k

Figure 4c. Sensitivity to initial conditions

We note that a very small error on the knowledge of the initial state x0 in the phase space will
be rapidly amplified and gives us two widely different signals. Quantitatively, the growth of
error is locally exponential for highly chaotic systems (sensitivity to initial conditions).
It should be noted that the initial condition error in this case is 10−15 and this is the smallest
value because Matlab works with only 52 bits but the system can be sensitive to smaller
values than 10−15 depending on the work environment.

4. Proposed system: Lengthening of the period

In the best case, the length of an LFSR is equal to two to the power of the number of cells of
this register minus one (L= 2N-1, N number of cells of an LFSR). To increase this length, one
proposes to use the logistics map for our designing schemas figures 5a and 5b.

We will take the following values as initial conditions of the logistic map (eq.12), and this is
valid throughout the paper:

1. 𝑋𝑋0 = 0.1, µ = 3.9999,𝐹𝐹 = 107.

10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

y(k
)

51

We multiply the result of the logistic sequence with F and take the integer part (by the
function floor) and we do the modulo 2 which will give a result equal to either 1 or 0.

𝑇𝑇𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑀𝑀 (𝐹𝐹 ∗ 𝜇𝜇𝑋𝑋𝑛𝑛−1(1 − 𝑋𝑋𝑛𝑛−1), 2)
(13)

In addition, we will take the following assumptions:

2. The feedback function [8]: is : 𝒇𝒇(𝒙𝒙) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟔𝟔 + 𝑿𝑿𝟓𝟓 + 𝑿𝑿𝟑𝟑 + 𝟏𝟏
3. The seed of the cells of the register is 10101010.
4. Our data to be encrypted are images of dimension (256x256 = 65,536) pixels, we take the

image "cameraman" for the validation of our system.

Our designing schemes are following:

Figure 5a. LFSR Fibonacci 𝑋𝑋8 + 𝑋𝑋6 + 𝑋𝑋5 + 𝑋𝑋3 + 1

Figure 5b. LFSR Galois 𝑋𝑋8 + 𝑋𝑋6 + 𝑋𝑋5 + 𝑋𝑋3 + 1

After initial conditions (logistic and seed of LFSR) judiciously chosen, there is a
discretization in modulo 256 of the real values of the logistic map. This discretization is an 8-
bit binary value, where each bit is linked to an LFSR cell. We will allow that the internal state
of the LFSR will take the discrete value of the logistic map each time there is an initialization
of a counter that counts to a chosen value r.

5. Results and interpretations

Determining whether a generator is random or not is a tricky problem. Indeed there is no
universal test that can say with certainty that a generator is random. The principle is to show

52

that this generator is not biased by studying the properties of the numbers it generates. In
practice, a random generator produces a sequence of numbers with properties of
unpredictability and independence, and follows a certain distribution (uniform in
cryptography, Gaussian in telecommunications, etc.). The evaluation of the random quality
of a generator thus passes through the control of the properties of the sequence that it
generates. This is achieved through statistical tests that compare the performance of the
generator studied compared to theoretical ones.

We will present some tests used to evaluate the performance of our generator such as entropy
test, average test or spectral test.

A. Characteristics of the Working Computer

The application was created from a PC HP pavilion 15 Notebook:
 Memory : 4096MB RAM
 Processor : Intel® Core™ i3-3120M CPU @ 2.50GHZ
 Operating System : Windows 7 Ultimate 32-bit Edition
 Graphics Card: Intel® HD Graphics 4000
 Total memory ≈ 2734 MB

For the implementation of our application, we used the C/C++ programming language.

B. Tests of Different Generator with Different Modes

B.1. Mean, Variance and autocorrelation factor Tests

We must test the distribution of the numbers produced in the sequence in its interval of
operation, we have calculated the three operators of statistic test: the mean, the variance and
the autocorrelation function of these numbers. In the ideal case [11], and for a random
variable u which follows a uniform distribution over an interval [0; 1], the following three
values must be found:

• Mean of the numbers
𝑢𝑢� = 1

𝑛𝑛
∑ 𝑢𝑢𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 1

2
= 0.5

(14a)
• The variance of the numbers
𝑣𝑣 = 1

𝑛𝑛
∑ 𝑢𝑢𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − 𝑢𝑢�2 = 1

12
= 0.0833

(14b)
• Autocorrelation Factor
𝐸𝐸(𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖+1) = 1

𝑛𝑛
∑ 𝑢𝑢𝑖𝑖𝑛𝑛=1
𝑖𝑖=1 𝑢𝑢𝑖𝑖+1 = 1

4
= 0.25

(14c)
In our case, one pose: 𝒖𝒖𝒊𝒊 = 𝒙𝒙𝒊𝒊

𝒎𝒎
 , ∀ i = 1... n

m: The largest value or the value of the modulo.

B.2 Frequency Test: Repetition of Number

The most natural test is that of the frequencies of occurrence of each digit, for a real random
sequence, a particular number has no reason to be more or less represented than another. In
other words, the frequencies of each digit must eventually come close to 10%.

53

B.3 Entropy Test

Shannon entropy is a mathematical function that intuitively corresponds to the amount of
information contained or delivered by a source of information. For a source, which is a
discrete random variable X comprising n symbols, each symbol xi having a probability Pi to
appear, the entropy H of the source X is defined as:

𝐻𝐻(𝑥𝑥) = −∑ 𝑃𝑃𝑖𝑖 . 𝐸𝐸𝑀𝑀𝑔𝑔2𝑛𝑛

𝑖𝑖=1 (𝑃𝑃𝑖𝑖)
(15)

We pose 𝑃𝑃𝑖𝑖 = 𝑘𝑘𝑖𝑖

𝑛𝑛

(16)

With i varying from 0 to 255, and n and the number of values generated in our case (n = 256 *
256 = 65536), 𝑘𝑘𝑖𝑖 corresponds to the occurrence frequency of each number i. A logarithm
based on 2 is usually used because the entropy then has the bit/symbol units. On the other
hand, consider a source that has an alphabet of 256 characters. If all these characters are
equiprobable, the entropy associated with each character is log2(256)= log2(28)=8 bits, which
means that it takes 8 bits to transmit a character thus, its entropy is equal to 8 bits.

B.4. Spectral analysis

Knuth describes [11] the spectral test as the most discriminating of all. Indeed, no proven bad
generator could succeed. Very simple, the method consists of studying the distribution of the
values generated in a dimension k (2D or 3D) to check the quality. All generators suffer from
a Marsaglia effect (this is because we do not generate all the real numbers, but only fractions
are generated). In general, the spectral test makes it possible to determine the deviation d
between two lines. At the most, this gap is small at most the generator is of good quality.

Dimension 2 (2D): Two consecutive values will be the coordinates of a point on the plane.
One looks if the points are uniformly distributed in a square.

Dimension 3 (3D): Three consecutive values will be the coordinates of a point in space. One
looks if; the points are distributed evenly in a cube. By turning the cube, one sees the
undesirable effect: plans of Marsaglia.

5.1 Status of flip-flops of the register

For a seed =10101010, the LFSR with the polynomial 𝒇𝒇(𝒙𝒙) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟔𝟔 + 𝑿𝑿𝟓𝟓 + 𝑿𝑿𝟑𝟑 + 𝟏𝟏
which is a primitive polynomial of degree 8 [8], has a maximum period equal to 255 (= 𝟐𝟐𝟖𝟖 −
𝟏𝟏) in both modes: Fibonacci and Galois. To read the states of the LFSR flip-flops, read the
values line by line. We start with the first line and, from left to right, then and the second line
always from left to right, and so on until the end of the last value in the last line of the matrix,
we return to the first value of the first line.

54

Table 1a. Status of flip-flops register in Fibonacci mode

Table 1b. Status of flip-flops register in Galois mode

5.2 𝐓𝐓𝐧𝐧 vector of the logistic map

Figure 6a: Representation of Tn values

55

Figure 6b. statistics test of Tn values

FIG. 6 represents the first 70000 values of the logistic sequence 𝑇𝑇𝑛𝑛 resulting from equation
13. The length of the period of 𝑇𝑇𝑛𝑛 values are greater than 70000, and we have found an
entropy equal to 7.996930 (it is a 99.96% of entropy of random sequence). The statistics test
of 𝑇𝑇𝑛𝑛 values are near a statistic test of random sequence values.

5.3 Lengthening of the period of LFSR in different modes

Table 2 shows the different lengths of the period of LFSR following different R-values of the
counter for both modes.

Table 2. Period of the lengthening of the period of LFSR for different R-values of the counter

Counter Length of the period in a
mode of

R Fibonacci Galois
3 >70000 >70000
5 >70000 10800
8 >70000 >70000
10 1111 2250
100 321 118
150 261 270
200 525 343
250 641 335
400 26363 12855
500 29513 22302
1000 >70000 >70000
2000 >70000 >70000
2500 >70000 >70000
20000 46649 1041

5.3.1 Lengthening of the period of LFSR in Fibonacci mode

We will present the results of the data generated by the generators of Figure 2.1 and Figure
5a, to see the contribution of the lengthening of the period of a register operating in Fibonacci
mode, on the data generated.

56

Figure 7a. Spectral analyses in 3D of figure 2.1

Figure 7b. Spectral analyses in 3D of figure 5

FIG 7 and FIG 8. The spectral test of the 2D and 3D of the generator schematized by figure
2.1, shows that the distribution of the values are on, the spaced lines, and are not distributed in
all the surface of the plane 2D (of the sphere 3D). On the other hand, the generator was
schematized by FIG. 5a shows a very good distribution of the values of the surface of the
plane (of the sphere).

FIG 9. The statistics test (mean, variance, and autocorrelation) of generators schematized by
figure 2.1 and by figure 5a are near a statistic test of random sequence values.

Figure 8a. Spectral analyses in 2D of figure 2.1

57

Figure 8b. Spectral analyses in 2D of figure 5a

Figure 9a. Statistic test of figure 2.1

Figure 9b. Statistic test of figure 5a

Figure 10a. Frequency test of figure 2.1

58

Figure 10b. Frequency test of figure 5a

The generator frequency test shown in Figure 5a shows that all the values from 0 to 255 are
distributed with a normal distribution (same probability of occurrence), but those of the
generator shown in Figure 2.1, follow an almost normal distribution.

Table.3 Entropy and period of LFSR in Fibonacci mode

Test

Generator based on the schema of
figure 2.1 figure 5a

Entropy

7.994351 7.995870
99.93% 99.95%

% in ideal entropy test of random sequence
Period 255 >70000

Table 3 shows the positive contribution of the generator schematically in Figure 5a to
generate random data with a very large repetition period of its data. It is appropriate to use it
in encryption applications.

Figure 11a. Spectral analyses in 3D of figure 3.1

59

Figure 11b. Spectral analyses in 3D of figure 5b

5.3.2 Lengthening of the period of LFSR in Galois mode

We will present the results of the data generated by the generators of Figure 3.1 and Figure
5b, to see the contribution of the lengthening of the period of a register operating in Galois
mode, on the data generated.

Figure12. Spectral analyses in 2D of figure 3.1

Figure 12b. Spectral analyses in 2D of figure 5b

60

Figure 13a. Statistic test of figure 3.1

FIG 11 and FIG 12. The spectral test of the 2D and 3D of the generator schematized by figure
3.1, shows that the distribution of the values are on, the spaced lines, and are not distributed in
all the surface of the plane 2D (of the sphere 3D). On the other hand, the generator was
schematized by FIG. 5b, shows a very good distribution of the values of the surface of the
plane (of the sphere).

Figure 13b. Statistic test of figure 5b

FIG 13. The statistics test (mean, variance, and autocorrelation) of generators schematized by
figure 3.1 and by figure 5b are near a statistic test of random sequence values.

Figure 14a. Frequency test of figure 31

61

Figure 14b. Frequency test of figure 5b

The generator frequency test shown in Figure 5b, shows that all the values from 0 to 255 are
distributed with a normal distribution (same probability of occurrence), but those of the
generator shown in Figure 3.1, follow an almost normal distribution.

Table 4. Entropy and period of LFSR in Galois mode

Test

Generator based on the schema of
figure 3.1 figure 5b

Entropy

7.994351 7.997286
99.93% 99.97%

% in ideal entropy test of random
sequence

Period 255 >70000

Table 4 shows the positive contribution of the generator schematically in Figure 5b to
generate random data with a very large repetition period of its data. It is appropriate to use it
in encryption applications.

6. Stream cipher with LFSR in lengthening the period

We propose to use the stream cipher [12] which consists to produce a keystream sequence,
generated an LFSR in the lengthening period (generator schematized by FIG. 5a or FIG. 5b),
which will be XORed to the plaintext. Therefore, the ciphertext will be obtained.

Figure 15. Stream Cipher

Mi Ci
Plaintext

Pseudo Random
Generator

𝐾𝐾𝑖𝑖

Pseudo Random
Generator

𝐾𝐾𝑖𝑖

Mi Ci
Plaintext

Chiper text

62

𝒎𝒎𝒊𝒊 : Plaintext, 𝒄𝒄𝒊𝒊 : ciphertext, 𝒌𝒌𝒊𝒊 : keystream generated by LFSR in lengthening period
(generator schematized by FIG. 5a or FIG. 5b). This type of generator generates key streams
𝑘𝑘1,𝑘𝑘2,𝑘𝑘3, . . . , 𝑘𝑘𝑖𝑖. these key streams are XORed to the plaintext m1, m2, m3... mi modulo 256,
to produce the ciphertext [12].

𝑐𝑐𝑖𝑖 = 𝑚𝑚𝑖𝑖 + 𝑘𝑘𝑖𝑖 𝑚𝑚𝑀𝑀𝑀𝑀 (256) (17a)

For receptor, the ciphertext is XORed with an identical keystream, to retrieve the plaintext:

𝑚𝑚𝑖𝑖 = 𝑐𝑐𝑖𝑖 − 𝑘𝑘𝑖𝑖 𝑚𝑚𝑀𝑀𝑀𝑀 (256) (17b)

Any continuous synchronous encryption algorithm uses keys (secrets) and generates the same
keystream [12] used for encryption and decryption, this flow is generated independently of the
flow of the message.

To circumvent the effect of finite precision on chaotic dynamics like the one used in [14, 15],
we propose a new technique that allows not only to have a very long cycle of length but also
to impose a length minimum cycle, directly dependent on the disturbing signal.

6.1. Implementation

We propose to use LFSR in the lengthening period (generator schematized by FIG. 5a or FIG.
5b) for stream cipher, to generate a data stream that will be XORed with an image. We take
the following assumptions:

1. The feedback function is : 𝒇𝒇(𝒙𝒙) = 𝑿𝑿𝟖𝟖 + 𝑿𝑿𝟔𝟔 + 𝑿𝑿𝟓𝟓 + 𝑿𝑿𝟑𝟑 + 𝟏𝟏
2. Initial conditions of the logistic sequence: the seed of the cells of the register is

10101010.
3. 𝑋𝑋(0) = 0.1, µ = 3.9999,𝐹𝐹 = 107.
4. The image is "Cameraman" of 256 * 256 pixels.
5. Counter r=500.
6. Generator schematized by FIG. 5b.

Figure 16. Plaintext and Encrypted Images

Histogram of the Images [13]: “For a monochrome image, tha63.t is to say with a single
component, the histogram is defined as a discrete function that maps to each value intensity,
the number of pixels of this value.

63

Figure 17. Histogram of plaintext and encrypted images

The determination of the histogram is carried out by counting the pixel intensity for each of
the images. The histogram can then be seen as a probability density. The histograms are
resistant to several transformations on the image. They are invariant to rotations and
translations, and a lesser extent to changes of point of view, and changes of scale. Referring to
the results obtained, we can see that the plaintext image differs substantially from the
corresponding ciphered one. Moreover, the histogram of the ciphered image is uniform which
makes it difficult to extract the pixels statistical nature of the plaintext image”.

The histograms of the plaintext and the cipher images of the "cameraman" show that the
proposed cryptosystem works correctly.

Entropy: From figures of the histogram of the encrypted image and table 5, one-note have a
uniform histogram, which means that the gray levels have the same number of occurrences,
and hence the entropy is the maximum.
Therefore, a grayscale image, where each pixel is represented by 8 bits, must have entropy for
the encrypted image, the closest possible 8 bits/pixel.

Table 5. The entropy of the ciphered images

Camera
man

Image

Entropy in bits/symbols
plaintext Fibonacc

i
Galois

Entrop
y

7.00971
6

7.997233 7.99690
5

The obtained value is very close to the theoretical one (99.97%). Referring to the results, we
can see that the plaintext images differ significantly from her corresponding encrypted.
Moreover, the histogram of the encrypted images is quite uniform which makes it difficult for
the statistical extraction of pixels of the plaintext image.

The computation of the entropy of the images encrypted by the LFSR in the lengthening
period (generator schematized by FIG. 5a or FIG. 5b) reveals that, the proposed crypto-
system functions in a correct way.

Correlation of the Adjacent Pixels [13]: “In probability and in statistics, to study the
correlation between two random variables or numerical statistics is to study the strength of the
bond that can exist between these variables. The searched link is an affine relationship, it is
the linear regression. For example, we calculate the correlation coefficient between two sets

64

of the same length (typical case: a regression). Assume we have the following table of values:
𝑋𝑋(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 𝑎𝑎𝑛𝑛𝑀𝑀 𝑌𝑌(𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) of each of the two series.

A measure of this correlation is obtained by calculating the linear correlation coefficient of
Bravais-Pearson [13].

For the correlation coefficient linking these two sets, we apply the following formula:

𝐶𝐶𝑀𝑀𝐸𝐸𝑓𝑓(𝑋𝑋,𝑌𝑌) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)

�𝐷𝐷(𝑋𝑋).√𝐷𝐷𝑌𝑌
 (18a)

Covariance between x and y is given as follows:

𝑐𝑐𝑀𝑀𝑣𝑣(𝑋𝑋,𝑌𝑌) = 1

𝑁𝑁
∑ �(𝑋𝑋𝑖𝑖 − 𝐸𝐸(𝑋𝑋)�. (𝑌𝑌𝑖𝑖 − 𝐸𝐸(𝑌𝑌)))𝑁𝑁
𝑖𝑖=1 (18b)

The average of X is: 𝐸𝐸(𝑋𝑋) = 1

𝑁𝑁
∑ 𝑋𝑋𝑖𝑖𝑁𝑁
𝑖𝑖=1 (18c)

The average of Y is: 𝐸𝐸(𝑌𝑌) = 1

𝑁𝑁
∑ 𝑌𝑌𝑖𝑖𝑁𝑁
𝑖𝑖=1 (18e)

The standard deviation of X is:

𝐷𝐷(𝑋𝑋) = 1

𝑁𝑁
∑ (𝑋𝑋𝑖𝑖 − 𝐸𝐸(𝑋𝑋))2𝑁𝑁
𝑖𝑖=1 (18f)

The standard deviation of Y is:

𝐷𝐷(𝑌𝑌) = 1

𝑁𝑁
∑ (𝑌𝑌𝑖𝑖 − 𝐸𝐸(𝑌𝑌))2𝑁𝑁
𝑖𝑖=1 (18g)

The correlation coefficient is between -1 and 1. Intermediate values provide information on
the degree of linear dependence between two variables. The closer the coefficient is close to
extreme values -1 and 1, the closer the correlation between variables is strong we simply use
the term "highly correlated" to describe the two variables. A correlation equal to 0 means that
the variables are not correlated. To test the correlation coefficient, we selected randomly 1500
pairs of two adjacent pixels in both encrypted and clear picture”.

Value of the pixel at the position (x, y)

Fig.18. Correlation between the horizontally adjacent pixels of respectively the plaintext
image and the encrypted images

65

Figure 18 and Table 6 show the correlation between two horizontally adjacent pixels of the
plaintext image and encrypted (for both generators schematized by FIG. 5a or FIG. 5b) image.

Table 6. Autocorrelation coefficient factor

Cameraman

Image

autocorrelation
coefficient factor

Fibonacci Galois
plaintext 0.95215 0.95122

Encrypted -0.0229 -0.0208

We see that the neighboring pixels in the plaintext image have a factor correlation close to
one; while the encrypted will have one little correlation close to zero. This low correlation
between two neighboring pixels in the encrypted image makes the attack of our cryptosystem
difficult.

In addition, it is clear that in the image clear, several lines can be adjusted to scatter but
among all these lines can be retained which has a remarkable property giving rise to the right
of the form 𝑌𝑌 = 𝑎𝑎𝑋𝑋 + 𝑏𝑏 representing a linear correlation.

6.2. Secret key field

In the proposed algorithm, the secret key field is set as follows:

ST = {x0, µ, F, K, D, T, r}.

The initial state of the logistics map x0=0.1, µ=3.9999, F=107, the encryption key can be
represented by the following fields:

 x0,
 µ,
 F: scalar
 K: starting point or the starting moment k, where we begin to do the encryption.
 D: Initial state of the register (8 flip-flops = 8 bits)
 T Mode (Fibonacci / Galois), Fibonacci mode T=0 or T=1 (1bit)
 r, counter

Where 𝑥𝑥0,µ, are double-precision numbers. r and K are integer constants. If the precision of
calculating𝑥𝑥0,µ, 𝑖𝑖𝐸𝐸 10 − 16, and K, r ∈ [1, 1000].

Therefore, the keyspace is larger than 28x 21x 1016 x 1016 x 107 x 103 x 103=1045 (with
103≈210) in this case we will have a key field of the order of 2159.

We have 159 bits larger of a key.

7. Conclusion

We managed to create a generator that generates very long random sequences based on
ordinary generators which we lengthen their period.

66

We have tested this generator with (Frequency Test, Entropy Test, Average Test, Variance
Test, Spectral Test ...) The results are satisfactory. We also encrypted an image with this
generator and tested this encryption. The results of the encryption tests are satisfactory.

The use of the logistics map in this paper is essentially related to its recurrent formula, which
is very simple to implement. Nevertheless, we recommend you to work with the Piecewise
Linear Chaotic Map (PWLCM).

These new generators are tested and are suitable for use in cryptographic applications.

In addition, we have 159 bits larger of key, this number is huge. Therefore, the encryption
algorithm has a very large keyspace to withstand all kinds of brute force attacks.

References

[1] Schneier, B., “Applied Cryptography-Protocols, Algorithms and Source Code in C”,

John Wiley & Sounds, Inc, New York, Second Edition, (1996).
[2] Menezes, A.J., Oorschot, P.C.V., Vanstone, S. A., “ Handbook of applied

cryptography” by CRC Press LLC (1997).
[3] George, M., Alfke, P., “Linear feedback shift registers in virtex devices (application

note)”_http://www.xilinx.com/bvdocs/appnotes/xapp210.pdf.
[4] Goresky, M., Klapper, A., “Fibonacci and galois representations of feedback withcarry

shift registers”, IEEE Transactions on Information Theory 48(11) (2002 : 2826-2836.
[5] Stackoverflow. “Galois VS Fibonacci LFSR, more computer-friendly but what else?”,

novembre 2011, .[https://stackoverflow.com/questions/ 5781458/galois-vs-fibonacci].
[6] S. W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA, 1982

(consulté le 21 mars 2018).
[7] Nyathi, J., Delgado-Frias, J.G., Lowe, J., “A high-performance, hybrid wave--pipelined

linear feedback shift register with skew tolerant clocks” 46th IEEE Midwest Symposium
on Circuits and Systems, Cairo, Egypt, In Press, Dec. (2003).

[8] Mioc, M.A., Stratulat, M., “Study of software implementation for linear feedback shift
register based on 8th degree irreducible polynomials”, International Journal Of
Computers 8 (2014) : 46-55.

[9] Devaney, L, “A First course in chaotic dynamical systems”, Westview Press Studies in
Nonlinearity (1992).

[10] Gleick, J., “Chaos: Making a new science”, Albin Michel edition (1987).
[11] Knuth, D.E., “The Art of Computer Programming", Addison-Wesley (1998).
[12] Berbain, C., “Analysis and design of stream algorithm - in French language - » PhD

thesis, University Paris 7. Diderot, (2007).
[13] Chen, G., Mao, Y., Chui, C. K., (2004), “A symmetric image encryption scheme based

on 3D chaotic cat maps”, Chaos, Solitons and Fractals 21 (2004) : 749-761.
[14] Noura, H., “Conception et simulation des générateurs, crypto-systèmes et fonctions de

hachage basés chaos performants”, Thèse de Docteur de l’Université de Nantes, (2012).

67

http://web.archive.org/web/20111130124832/http:/stackoverflow.com/questions/5781458/galois-vs-fibonacci-lfsr-more-computer-friendly-but-what-else

[15] Li, S., Mou, X., Cai, Y., Ji, Z., Zhang, J., “On the security of a chaotic encryption
scheme: problems with computerized chaos in finite computing precision”, Computer
Physics Communications 153 (1) (2003) : 52-58.

68

	Mohammed Naim, Hana Ali-Pacha, Adda Ali-Pacha*, Naima Hadj-Said
	2. Linear feedback shift register
	2.2.1 Fibonacci mode
	2.2.2 Galois mode
	3. Logistic map

	5. Results and interpretations
	A. Characteristics of the Working Computer
	B. Tests of Different Generator with Different Modes

	Table 2 shows the different lengths of the period of LFSR following different R-values of the counter for both modes.
	6. Stream cipher with LFSR in lengthening the period
	7. Conclusion
	References

