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Abstract: In this work, R will denote an associative ring with unity and all module are unital left R—modules. Let M be an
R—module. If every cofinite essential submodule of M has a weak supplement in M, then M is called a cofinitely weak e-
supplemented (or briefly cwe-supplemented) module. In this work, some properties of these modules are investigated.
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1 INTRODUCTION

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be aring and M be an R—module. We will denote a submodule N of M by N < M. Let M be an R—module and N < M. If there
exists a submodule L of M such that M = N 4+ Land N N L = 0, then N is called a direct summand of M and denoted by M = N & L. Let
M be an R—module and N < M. If L = M for every submodule L of M such that M = N + L, then N is called a small (or superfluous)
submodule of M and denoted by N < M. A module M is said to be hollow if every proper submodule of M is small in M. M is said
to be local if M has a proper submodule which contains all proper submodules. A submodule N of an R -module M is called an essential
submodule and denoted by N < M in case K N N # 0 for every submodule K # 0, or equvalently, N N L = 0 for L < M implies that
L = 0. A submodule K of M is called a cofinite submodule of M if M /K is finitely generated. Let M be an R—module and U, V' < M. If
M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and U NV <« V, then V is called a supplement of
U in M. M is called a supplemented module if every submodule of M has a supplement in M. M is called an essential supplemented module
if every essential submodule of M has a supplement in M. M is called an cofinitely supplemented module if every cofinite submodule of M
has a supplement in M. M is called a cofinitely essential supplemented module if every cofinite essential submodule of M has a supplement
in M. Let M be an R—module and U < M. If for every V' < M such that M = U 4 V, U has a supplement V' with V' <V, wesay U has
ample supplements in M. If every submodule of M has ample supplements in M, then M is called an amply supplemented module. If every
essential submodule of M has ample supplements in M, then M is called an amply essential supplemented module. If every cofinite submodule
of M has ample supplements in M, then M is called an amply cofinitely supplemented module. If every cofinite essential submodule of M
has ample supplements in M, then M is called an amply cofinitely essential supplemented module. Let M be an R—module and U,V < M.
IEM=U+VadUnNV <« M, then V is called a weak supplement of U in M. M is said to be weakly supplemented if every submodule
of M has a weak supplement in M. M is said to be cofinitely weak supplemented if every cofinite submodule of M has a weak supplement in
M. M is called a weakly essential supplemented module if every essential submodule of M has a weak supplement in M. The intersection of
all maximal submodules of an R-module M is called the radical of M and denoted by RadM . If M have no maximal submodules, then we
denote RadM = M.

More informations about (amply) supplemented modules are in [3]-[9]. The definitions of (amply) essential supplemented modules and
some properties of them are in [7]-[8]. The definitions of (amply) cofinitely supplemented modules and some properties of them are in [1].
The definitions of (amply) cofinitely essential supplemented modules and some details of them are in [4]-[5]. Some details about weakly
supplemented and cofinitely weak supplemented modules are in [2]-[3]. The definition of weakly essential supplemented modules and some
properties of these modules are in [6].

Lemma 1. Let M be an R—module.
WMIFK<L<M,then K<Mifandonlyif K I L < M.
(2) Let N be an R—module and f : M — N be an R—module homomorphism. If K < N, then f_l (K) 4 M.
(8)For N < K <M, if K/N < M/N, then K < M.
4 IfFK1 <Ly < Mand Ko Q Lo < M, then K1 N Ko < L1 N Lo.
(5) If K1 < M and Ko < M, then K1 N Ko < M.

Proof: See [9, 17.3]. O

Lemma 2. Let M be an R—module. The following assertions are hold.

()IfK <L<M,thenL < M ifandonly if K < M and L/K < M/K.

(2) Let N be an R—module and f : M — N be an R—module homomorphism. If K < M, then f (K) < N. The converse is true if f
is an epimorphism and Kef < M

3) If K < M, then K+L < 7 M o every L < M.
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(4)IfL < Mand K < L, then K < M.
(B)IfK1,Ka, ..., Kn < M, then K1 + Ko + ... + Kn < M.

(6) Let K1, K2, ...,Kn,L1,La, ..., Ly < M. If K; < L; foreveryi=1,2,...,n,then K1 + Ko + ... + Kn < L1 + Lo + ...

Proof: See [3, 2.2] and [9, 19.3].

Lemma 3. Let M be an R—module. The following assertions are hold.
(1) If L < M, then L < T for every maximal submodule T of M.
(2) RadM = > L.

LLKM
(3) Let N be an R—module and f : M — N be an R—module homomorphism. Then f (RadM) < RadN.
(4) For K, L < M, fledE*L < RaqKFL [f [, < RadK, then RadK/L < Rad (K/L).
(5) If L < M, then RadL < RadM.
(6) For K,L < M, RadK + RadL < Rad (K + L).
(7) Rz < M for every x € RadM.

Proof: See [9].

2 COFINITELY WEAK e-SUPPLEMENTED MODULES

Lemma 4. LetV be a supplement of U in M. Then
(1) IfW 4+ V = M for some W < U, then V is a supplement of W in M.
(2) If M is finitely generated, then V' is also finitely generated.
(3) If U is a maximal submodule of M, then V is cyclic and U N'V = RadV is the unique maximal submodule of V.
(4) If K < M, then'V is a supplement of U + K in M.
(5) For K < M, KNV <« V and hence RadV =V N RadM.
(6) Let K < V. Then K <V ifand only if K < M.
(7) For L < U, VJLFL is a supplement of U/ L in M/ L.

Proof: See [9, 41.1].

Lemma 5. Let V' be a weak supplement of U in M. Then
(1) IfW +V = M for some W < U, then V is a weak supplement of W in M.
(2) U is also a weak supplement of V' in M.
B)UNV < RadM.
(4) If K < M, then'V is a g-supplement of U + K in M.
(5) If K < M and V is a weak supplement of X + K in M, then V is a weak supplement of X in M.
(6) If K < M, then V + K is a g-supplement of U in M.
(7) For L < U, VJLFL is a weak supplement of U/L in M /L.

Proof: See [2]-[3].

Lemma 6. Let M be an R—module.
(W) IfM =U@® YV thenV is a supplement of U in M. Also U is a supplement of V in M.
2) For M1,U < M, if M1 + U has a supplement in M and M, is supplemented, then U also has a supplement in M.
Let M = M7 + Mo. If My and My are supplemented, then M is also supplemented.

+ Ln.

Let M; < M fori=1,2,...,n. If M; is supplemented for every i = 1,2, ...,n, then M1 + Mo + ... + My, is also supplemented.

(2)
(3)
(4)
(5) If M is supplemented, then M/ L is supplemented for every L < M.

(6) If M is supplemented, then every homomorphic image of M is also supplemented.

(7) If M is supplemented, then M | RadM is semisimple.

(8) Hollow and local modules are supplemented.

(9) If M is supplemented, then every finitely M — generated module is supplemented.

(10) RrR is supplemented if and only if every finitely generated R—module is supplemented.

Proof: See [9, 41.2].

Lemma 7. Let M be an R—module.
(1) If M is supplemented, then M is essential supplemented.

(2) For M1 < M and U < M, if M1 + U has a supplement in M and M is essential supplemented, then U also has a supplement in M.

(3) Let M = My + Mo. If M1 and My are essential supplemented, then M is also essential supplemented.

(4) Let M; < M fori=1,2,...,n. If M; is essential supplemented for every i = 1,2, ....n, then My + Ma + ... + My, is also essential

supplemented.
(5) If M is essential supplemented, then M /L is essential supplemented for every L < M.
(6) If M is essential supplemented, then every homomorphic image of M is also essential supplemented.
(7) If M is essential supplemented, then M/ RadM have no proper essential submodules.
(8) Hollow and local modules are essential supplemented.
(9) If M is essential supplemented, then every finitely M —generated module is essential supplemented.
(10) RR is essential supplemented if and only if every finitely generated R—module is essential supplemented.
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Proof: See [7]-[8]. O

Lemma 8. Let M be an R—module.

(1) If M is supplemented, then M is cofinitely supplemented.

(2) If M is finitely generated and cofinitely supplemented, then M is supplemented.

(3) For M1 < M and U cofinite submodule of M, if M1 + U has a supplement in M and M is cofinitely supplemented, then U also has
a supplement in M.

(4) Let M = Z M;. If M; is cofinitely supplemented for every ¢ € I, then M is also cofinitely supplemented.

(5) Let M; < Mfor i =1,2,...,n. If M; is cofinitely supplemented for every i = 1,2, ..., n, then My + Ma + ... + My, is also cofinitely
supplemented.

(6) If M is cofinitely supplemented, then ML is cofinitely supplemented for every L < M.

(7) If M is cofinitely supplemented, then every homomorphic image of M is also cofinitely supplemented.

(8) If M is cofinitely supplemented, then every cofinite submodule of M /RadM is a direct summand of M / RadM.

(9) Hollow and local modules are cofinitely supplemented.

(10) If M is cofinitely supplemented, then every M —generated module is cofinitely supplemented.

(11) grR is supplemented if and only if every generated R—module is cofinitely supplemented.

Proof: See [1]. O

Lemma 9. Let M be an R—module.

(1) If M is essential supplemented, then M is cofinitely essential supplemented.

(2) If M is supplemented, then M is cofinitely essential supplemented.

(3) If M is finitely generated and cofinitely essential supplemented, then M is essential supplemented.

(4) For M1 < M and U cofinite essential submodule of M, if M1 + U has a supplement in M and M is cofinitely essential supplemented,
then U also has a supplement in M.

(5) Let M = Z M;. If M; is cofinitely essential supplemented for every © € I, then M is also cofinitely essential supplemented.

(6) Let M; < Mfor i =1,2,...,n. If M; is cofinitely essential supplemented for every i = 1,2, ...,n, then My + Mo + ... + My, is also
cofinitely essential supplemented
) If M is cofinitely essential supplemented, then M/ L is cofinitely essential supplemented for every L < M.
) If M is cofinitely essential supplemented, then every homomorphic image of M is also cofinitely essential supplemented.
) If M is cofinitely essential supplemented, then M/ RadM have no proper essential submodules.
0) Hollow and local modules are cofinitely essential supplemented.
1) If M is cofinitely essential supplemented, then every M —generated module is cofinitely essential supplemented.
2) rR is essential supplemented if and only if every generated R—module is cofinitely essential supplemented.

(7

(8
9
(1
(1
(1

Proof: See [4]-[5]. O

Lemma 10. Let M be an R—module.

(1) If V is a supplement of U in M, then V is a weak suppement of U in M.

(2)IfM =U @V thenV is a weak supplement of U in M.

(3) For M1,U < M, if M1 + U has a weak supplement in M and M, is weakly supplemented, then U also has a weak supplement in M.

(4) Let M = My + Mo. If M1 and May are weakly supplemented, then M is also weakly supplemented.

(5) Let M; < M fori=1,2,...,n. If M; is weakly supplemented for every i = 1,2, ....n, then My + Ma + ... + My, is also weakly
supplemented.

(6) If M is weakly supplemented, then M /L is weakly supplemented for every L < M.

(7) If M is weakly supplemented, then every homomorphic image of M is also weakly supplemented.

(8) If M is weakly supplemented, then M/ RadM is semisimple.

(9) Hollow and local modules are weakly supplemented.

(10) If M is weakly supplemented, then every finitely M —generated module is weakly supplemented.

(11) RrR is weakly supplemented if and only if every finitely generated R—module is weakly supplemented.

Proof: See [2]-[3]. O

Lemma 11. Let M be an R—module.
(1) If M is weakly supplemented, then M is cofinitely weak supplemented.
(2) If M is supplemented, then M is cofinitely weak supplemented.
(3) If M is cofinitely supplemented, then M is cofinitely weak supplemented.
(4) If M is finitely generated and cofinitely weak supplemented, then M is weakly supplemented.
(5) For M1 < M and U cofinite submodule of M, if M1 + U has a weak supplement in M and M is cofinitely weak supplemented, then
U also has a weak supplement in M.
) Let M = > M;. If M; is cofinitely weak supplemented for every i € I, then M is also cofinitely weak supplemented.
)

( el
3
(7) Let M; < M for i =1,2,...,n. If M; is cofinitely weak supplemented for every i = 1,2,...,n, then My + Ma + ... + My, is also
cofinitely weak supplemented.

(8) If M is cofinitely weak supplemented, then M /L is cofinitely weak supplemented for every L < M.

(9) If M is cofinitely weak supplemented, then every homomorphic image of M is also cofinitely weak supplemented.

(10) If M is cofinitely weak supplemented, then every cofinite submodule of M/ RadM is a direct summand of M/ RadM.

(11) Hollow and local modules are cofinitely weak supplemented.

(12) If M is cofinitely weak supplemented, then every M —generated module is cofinitely weak supplemented.
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(13) rR is weakly supplemented if and only if every R—module is cofinitely weak supplemented.
Proof: See [2]-[3]. O
Lemma 12. Let M be an R—module.

(1) If M is weakly supplemented, then M is weakly essential supplemented.

(2) For M1 < M and U 4 M, if M1 + U has a weak supplement in M and M is weakly essential supplemented, then U also has a weak
supplement in M.

(3) Let M = My + Mo. If M1 and M are weakly essential supplemented, then M is also weakly essential supplemented.

(4) Let M; < M for i =1,2,...,n. If M; is weakly essential supplemented for every i = 1,2, ...,n, then My + M2 + ... + My, is also
weakly essential supplemented.

(5) If M is weakly essential supplemented, then M /L is weakly essential supplemented for every L < M.

(6) If M is weakly essential supplemented, then every homomorphic image of M is also weakly essential supplemented.

(7) If M is weakly essential supplemented, then M / RadM have no proper essential submodules.
(8) Hollow and local modules are weakly essential supplemented.
(9)
(10

If M is weakly essential supplemented, then every finitely M —generated module is weakly essential supplemented.
) rR is weakly essential supplemented if and only if every finitely generated R—module is weakly essential supplemented.

Proof: See [6]. O

Definition 1. Let M be an R—module. If every cofinite essential submodule of M has a weak supplement in M, then M is called a cofinitely
weak e-supplemented (or briefly cwe-supplemented) module.

Proposition 1. Every cofinitely essential supplemented module is cwe-supplemented.

Proof: Let M be a cofinitely essential supplemented module and U be a cofinite essential submodule of M. Then U has a supplement V'
in M. Here M =U+V and UNV KV.Since UNV KV, UNV <« M. Then V is a weak supplement of U in M. Hence M is
cwe-supplemented. (]

Proposition 2. Every essential supplemented module is cwe-supplemented.

Proof: Since every essential supplemented module cofinitely essential supplemented, by Proposition 1, every essential supplemented module
is cwe-supplemented. (]

Proposition 3. Every weakly essential supplemented module is cwe-supplemented.

Proof: Let M be a weakly essential supplemented module and U be a cofinite essential submodule of M. Since M is weakly essential
supplemented and U < M, U has a weak supplement in M. Hence M is cwe-supplemented. (]

Proposition 4. Every finitely generated cwe-supplemented module is weakly essential supplemented.

Proof: Let M be a finitely generated cwe-supplemented module and U < M. Since M is finitely generated, M /U is also finitely generated.
Then U is a cofinite essential submodule of M and since M is cwe-supplemented, U has a weak supplement in M. Hence M is weakly
essential supplemented. ]

Proposition 5. Every cofinitely weak supplemented module is cwe-supplemented.

Proof: Let M be a cofinitely weak supplemented module and U be a cofinite essential submodule of M. Since M is cofinitely weak
supplemented and U is a cofinite essential submodule of M, U has a weak supplement in M. Hence M is cwe-supplemented. ]

Proposition 6. Every weakly supplemented module is cwe-supplemented.

Proof: Since every weakly supplemented module is cofinitely weak supplemented, by Proposition 5, every weakly supplemented module is
cwe-supplemented. (]

Proposition 7. Every cofinitely supplemented module is cwe-supplemented.

Proof: Clear from Proposition 5, since every cofinitely supplemented module is cofinitely weak supplemented. O
Proposition 8. Every supplemented module is cwe-supplemented.

Proof: Clear from Proposition 7, since every supplemented module is cofinitely supplemented. (]

Proposition 9. Let M be a cwe-supplemented module. If every nonzero submodule of M is essential in M, then M is cofinitely weak
supplemented.
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Proof: Let U be a cofinite submodule of M. If U =0, M is a weak supplement of U in M. Let U # M. Then by hypothesis, U < M.
Since U is a cofinite essential submodule of M and M is cwe-supplemented, U has a weak supplement in M. Hence M is cofinitely weak
supplemented. ]

w
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