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Abstract
The induction of one or more parameter(s) in parent distributions opened new doors
for flexible modeling in modern distribution theory. Among well-established general-
ized (G) classes for flexible modeling, the exponentiated-G, Marshall-Olkin-G and odd
log-logistic-G families offer induction of one additional parameter while the beta-G and
Kumaraswamy-G classes offer two extra shape parameters. The Marshall-Olkin-odd-log-
logistic-G (MOOLL-G) family serves as an alternative to the beta-G and Kumaraswamy-G
classes. A new motivation for the MOOLL-G family for competing risk scenarios, some
useful properties, and parameter estimation are addressed. The new log-MOOLL-Weibull
regression is useful for analysis of real life data. The accuracy of the estimates and the
residuals is addressed via Monte Carlo simulations. The presented models outperform
some other well-known models.
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1. Introduction
The induction of one or more parameter(s) to parent distributions encourage new con-

cepts for flexible modeling in distribution theory. Among well-established generalized (G)
classes, the exponentiated-G, Marshall-Olkin-G and odd log-logistic-G families offer in-
duction of one extra parameter while the beta-G and Kumaraswamy-G classes offer two
additional shape parameters. In the same direction, Nadarajah et al. [17] reviewed the
exponentiated Weibull distribution and Tahir and Nadarajah [24] presented a survey on
several extended classes.
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Marshall and Olkin [15] pioneered a G-class by which flexibility is introduced through
adding a positive shape parameter b. The cumulative distribution function (cdf) of the
Marshall-Olkin-G (MO-G) class is

FMOG(x) = HG(x)
1 − (1 − b)[1 − HG(x)]

, x ∈ R, (1.1)

where HG(x) represents the cdf of the baseline G.
Let G(x) = G(x; ξ) be a baseline cdf with associated vector of parameters ξ. The cdf of

the generalized log-logistic family, which is actually the odd log-logistic-G (OLL-G) class,
can be expressed as [10] (for x ∈ R)

HOLLG(x) = G(x)a

G(x)a + G(x)a
, (1.2)

where G(x) = 1 − G(x) and a > 0. If W is the logistic random variable (rv) with shape
parameter a > 0, then the rv V = G−1(eW/[1 + eW]) has the OLL-G cdf (1.2). This is a
very simple interpretation of the OLL-G class.

The extended generalized log-logistic family with two additional parameters is reported
by [2] and [11] as the odd-log-logistic Marshall-Olkin-G (OLLMO-G) class. In fact, the
OLLMO-G class is the Marshall-Olkin-odd-log-logistic-G (MOOLL-G) family, which fol-
lows by inserting (1.2) in Equation (1.1), having cdf (for x ∈ R)

FMOOLLG(x) = FMOOLLG(x; a, b, ξ) = G(x)a

G(x)a + b G(x)a
. (1.3)

The probability density function (pdf) corresponding to (1.3) has the form

fMOOLLG(x) = a b g(x) G(x)a−1 G(x)a−1

{G(x)a + b G(x)a}2 . (1.4)

Henceforth, X denotes a rv with density (1.4). The quantile function (qf) of X, say
x = QMOOLLG(u), for a given baseline G, follows by inverting Equation (1.3) as

x = G−1
{

(b u)1/a

(b u)1/a + (1 − u)1/a

}
, u ∈ (0, 1). (1.5)

Remark 1.1. It is clear that the MOOLL-G and MO-G classes are the same when a = 1
and that the MOOLL-G and OLL-G classes are identical when b = 1. We emphasize that
for b = 1, it follows the model proposed by [11], discussed and generalized by [4]. Further,
fMOOLLG(x) reduces to g(x) when a = b = 1, and then fMOOLLG(x) can be much more
flexible than g(x) for different values of a and b.

Remark 1.2. Alizadeh et al. [2] investigated some properties of the OLLMO-Lindley and
OLLMO-power Lindley models (in fact the MOOLL-Lindley and MOOLL-power Lindley
models). Recently, Lima et al. [14] studied a variant of the MOOLL-G class, called the
OLL-Geometric-G (OLL-Geo-G) family, for a system of components arranged in a series
structure, whose cdf takes the form (for x ∈ R)

FOLLGeoG(x) = G(x)a

G(x)a + (1 − p) G(x)a
, a > 0, p ∈ (0, 1). (1.6)

Lima et al. [14] obtained some mathematical properties for (1.6) such as a linear density
expansion, qf, moments and generating function, and discussed parameter estimation.
They provided a simulation study and proposed the OLL-Geometric-Weibull regression.
Further, Prataviera et al. [20] introduced the OLL-Geometric-normal distribution and
explored the OLL-Geometric-normal regression for some useful diagnostic measures.
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In this work, it is defined the extended generalized log-logistic family with two additional
parameters. One of the advantages of the family is the flexibility to accommodate different
forms of failure rate and, also, to discriminate models, since it has as special cases, the
classes introduced by [8] and [11]. It is constructed a new regression for the analysis of
survival and reliability data.

This article presents some new properties of the MOOLL-G family, defines the log-
MOOLL-Weibull regression and proves its usefulness. In Section 2, the MOOLL-G family
is motivated and the estimation of the parameters is discussed. In Section 3, the Weibull is
taken for baseline to verify the performance of the maximum likelihood estimates (MLEs).
The log-MOOLL-Weibull (LMOLLW) regression is introduced and the accuracy of the
MLEs and quantile residuals is investigated in Section 4. Three real lifetime applications
illustrate the usefulness of the MOOLL-G family and the new regression in Section 5. The
paper is concluded in Section 6.

2. Motivation
An interpretation of the new family cdf (1.3) can be encountered by combining the

log-logistic distribution with the discrete geometric distribution of N independent risk
components generated by the baseline odds ratio. For describing a stochastic system, let
T be a rv with cdf G(t; ξ) and Z be a rv with a log-logistic density with parameter a > 0
representing the odds ratio G(z; ξ)/G(z; ξ) that this system will be not working at time z.
So, the cdf of Z is

P(Z ≤ z) =
∫ G(z;ξ)

G(z;ξ)

0

a ta−1

(1 + ta)2 dt = H(z; a, ξ).

Consider independent and identically distributed (iid) odds ratios Z1, . . . , ZN with
common risk H(z; a, ξ), where N is a geometric rv (with support in {1, 2, . . .} and prob-
ability parameter b) independent of the Zi’s and probability generating function (pgf)
E(sN ) = τ(s; b) = b s [1 − (1 − b)s]−1. For 0 < b < 1, the cdf of X = min{Z1, . . . , ZN } is
just Equation (1.3) defined by

FMOOLLG(x) = 1 − τ (1 − H(x; a, ξ); b) .

For the case b > 1, Equation (1.3) can also be defined by considering the geometric rv
with probability 1/b, i.e.,

FMOOLLG(x) = 1 − τ
(
1 − H(x; a, ξ); b−1

)
.

For both cases, FMOOLLG(x) is the cdf of X = min{Z1, . . . , ZN } assuming that Z has
cdf H(z; a, ξ), where N follows the geometric pgf τ(s; b) with probability parameter b or
b−1.

Based on the previous construction, the MOOLL-G family can be widely used in on-
cology treatments, where N represents the amount of cancerous cells with potential to
metastasis and the rvs Z ′

is denote the risks for these cells to metastasize. So, this family
can model the recurrence time of the cancer. It also provides a strong physical motivation
for explaining the failure time of a series system formed by N unknown iid components,
each one having a common odds ratio to failure. Then, the MOOLL-G family explains
the failure time of the whole system.
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2.1. Estimation
The log-likelihood function ℓ(θ) for the vector of parameters θ = (a, b, ξ⊤)⊤ from n

observations x1, . . . , xn can be expressed as

ℓ = ℓ(θ) = n log(ab) +
n∑

i=1
log g(xi; ξ) + (a − 1)

n∑
i=1

log G(xi; ξ)

+(a − 1)
n∑

i=1
log {1 − G(xi; ξ)}

−2
n∑

i=1
log [b {1 − G(xi; ξ)}a + G(xi; ξ)a] . (2.1)

Equation (2.1) can be maximized using the AdequacyModel program of the R software
to find the MLE θ̂ of θ or via other routines available for numerical maximization. The
estimate θ̂ enjoys desirable properties that can be used when constructing confidence
intervals for the parameters. The multivariate normal approximation for θ̂ can be easily
handled numerically from the results of this program for constructing confidence intervals
for the parameters.

3. The MOOLL-Weibull distribution
Consider the Weibull cdf G(x) = 1 − exp[−(α x)β] with scale α > 0 and shape β > 0.

The MOOLLW density follows from (1.4)

f(x) =
a b αβ β xβ−1 exp[−a(α x)β]

{
1 − exp[−(α x)β]

}a−1

{
[1 − exp{−(α x)β}]a + b exp[−a (α x)β]

}2 . (3.1)

From now on, X denotes a rv with density (3.1). The hazard rate function (hrf) of X
has the form

h(x) =
a αβ β xβ−1

{
1 − exp[−(α x)β]

}a−1

{1 − exp[−(α x)β]}a + b exp[−a (α x)β]
.

Figures 1 and 2 display plots of the pdf and hrf of X for selected parameters, respectively.
The MOOLLW density can take several forms and the MOOLLW hrf can have unimodal
and bathtub shapes.

Figure 1. Plots of the MOOLLW density



A new extended log-Weibull regression 859

Figure 2. Plots of the MOOLLW hazard rate

Structural properties of the MOOLLW distribution can be determined from the linear
representation (A.7) (derived in the Appendix) and those corresponding properties of the
exponentiated Weibull with power parameter k ≥ 0

πk+1(x) = (k + 1) αβ β xβ−1 exp[−(α x)β] {1 − exp[−(α x)β]}k,

which are fully investigated in the literature; see, for example, [17] and references therein.

3.1. Simulation study
A simulation study (repeated N = 1, 000 times in each case) is carried out to assess

the accuracy of the estimates in the MOOLLW distribution for sample sizes n = 100, 200,
350, 500, 1000 under three scenarios: I: a = 0.5, b = 0.8, α = 0.3 and β = 1.5; II: a = 0.5,
b = 1.6, α = 0.05 and β = 0.5 and III: a = 0.5, b = 1.1, α = 0.3 and β = 1.5. For each
parameter, the average estimate (AE), the average bias (Bias) and mean squared error
(MSE) are calculated from

Bias(θ̂) =
N∑

i=1

θ̂i

N
− θ and MSE(θ̂) =

N∑
i=1

(θ̂i − θ)2

N
.

The coverage probability (CP) is also determined via simulation by calculating for each
simulation the classical confidence interval (CI) and then score one for the specific sim-
ulation when the estimated CI includes the true parameter value or zero when the true
parameter value falls outside the estimated CI.

Plots of the biases and MSEs are reported in Figures 3 and 4, respectively. They show
that the MLEs are consistent since these averages decrease when n increases.

4. The LMOOLLW regression
If X has the density function (3.1), the density function of Y = log(X) parameterized in

terms of the location µ ∈ R and the dispersion σ > 0 (using the transformations β = σ−1

and α = e−µ) can be expressed as (for y ∈ R)

f(y; a, b, σ, µ) =
a b exp

[(
y−µ

σ

)
− a exp

(
y−µ

σ

)] {
1 − exp

[
− exp

(
y−µ

σ

)]}a−1

σ
{{

1 − exp
[
− exp

(
y−µ

σ

)]}a
+ b exp

[
−a exp

(
y−µ

σ

)]}2 . (4.1)

Equation (4.1) represents the (new) LMOOLLW density, i.e.

if X ∼ MOOLLW(a, b, α, β) then Y = log(X) ∼ LMOOLLW(a, b, µ, σ).

Plots of (4.1) in Figure 5 show the bimodality and great flexibility of the density of Y .
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Figure 3. Biases for some parameters

The survival function (sf) of Y is

S(y) =
b exp

[
−a exp

(
y−µ

σ

)]
{

1 − exp
[
− exp

(
y−µ

σ

)]}a
+ b exp

[
−a exp

(
y−µ

σ

)] . (4.2)

Recently, some extended regressions can be found in [19, 21–23]. In a similar manner,
we propose the LMOOLLW regression as an alternative for modeling four types of failure
rate functions. First, the density function of Z = (Y − µ)/σ is (for z ∈ R)

π(z; a, b) = a b exp[z − a exp(z)]{1 − exp[− exp(z)]}a−1

{{1 − exp[− exp(z)]}a + b exp[−a exp(z)]}2 . (4.3)

The standard extreme-value distribution follows when a = b = 1.
The LMOOLLW regression is defined by

yi = v⊤
i γ + σzi, i = 1, . . . , n, (4.4)

where the random error zi has density (4.3), v⊤
i = (vi1, . . . , vip) is the explanatory variable

vector, γ = (γ1, . . . , γp)⊤, and σ, a and b are other unknown parameters. The location
parameter vector µ = (µ1, . . . , µn)⊤ is µ = V γ, where V = (v1, . . . , vn)⊤ is a known
model matrix.

Equation (4.4) can be useful in several applications to real data since it includes as
special cases the following well-known regressions:

• Log odd log-logistic Weibull (LOLLW) regression for b = 1, which coincides with
the LOLLW regression [8] corresponding to the location-scale regression based on
the odd log-logistic Weibull for modelling censored data.
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• Log Marshall-Olkmin Weibull (LMOW) regression for a = 1, which is identical to
the LMOW regression.

• Log-Weibull (LW) or extreme value regression for a = b = 1, which coincides with
the log-Weibull regression [13].
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Figure 4. MSEs for some parameters
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Figure 5. Plots of the LMOOLLW density (a) Varying σ with µ = 1, a = 0.4
and b = 0.3 (b) Varying a with µ = 1, σ = 0.5 and b = 0.2 (c) Varying b with
µ = 1, σ = 0.5 and a = 0.2

The log-likelihood function for the vector θ = (a, b, σ, γ⊤)⊤ from regression (4.4) given
a sample (y1, x1), . . . , (yn, xn) is given by

l(θ) = n log
(

a b

σ

)
+

n∑
i=1

zi − a
n∑

i=1
exp(zi) + (a − 1)

n∑
i=1

log{1 − exp[− exp(zi)]}

−
n∑

i=1
log {{1 − exp[− exp(zi)]}a + b exp[−a exp(zi)]} , (4.5)

where zi = (yi − v⊤
i γ)/σ.
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The MLE θ̂ can be calculated by maximizing the log-likelihood (4.5) using the R soft-
ware. Comparing special models with the LMOOLLW regression can be based on likeli-
hood ratio (LR) statistics.

The quantile residuals (qr’s) can be expressed as

q̂ri = Φ−1


{

1 − exp
[
− exp

(
yi−µi

σ

)]}a{
1 − exp

[
− exp

(
yi−µi

σ

)]}a
+ b exp

[
−a exp

(
yi−µi

σ

)]
 , (4.6)

where Φ−1(·) is the inverse cumulative standard normal distribution.

4.1. Simulation study for the estimates
A Monte Carlo study with 1, 000 replications is conducted to examine the accuracy of

the MLEs in the LMOOLLW(µi, σ, a, b) distribution using the statistical software R. The
systematic structure is µi = γ0 + γ1vi1 + γ2vi2, where a = 0.8, b = 0.7, γ0 = 2, γ1 = 0.4,
γ2 = 0.6 and σ = 0.3. The response variable yi and the covariates vi1 and vi2 are generated
as follows: yi ∼ LMOOLLW(µi, σ, a, b), vi1 ∼Bernoulli(0.5) and vi2 ∼Uniform(0, 1).

The AEs, biases and MSEs for n = 100, 250, 500 and 1, 000 are reported in Table 1.
For all cases, the biases and MSEs of the estimates of γ0, γ1, γ2, σ, a and b decay toward
zero when n increases.

Table 1. Simulation results from the LMOOLLW regression

n = 100 n = 250
Parameter AE Bias MSE AE Bias MSE

γ0 2.045 0.045 0.034 2.028 0.028 0.012
γ1 0.399 -0.001 0.007 0.400 0.000 0.002
γ2 0.595 -0.005 0.021 0.594 -0.006 0.007
σ 0.238 -0.062 0.018 0.272 -0.028 0.006
a 0.640 -0.160 0.101 0.743 -0.057 0.030
b 0.721 0.021 0.583 0.675 -0.025 0.132

n = 500 n = 1, 000
Parameter AE Bias MSE AE Bias MSE

γ0 2.031 0.031 0.007 2.030 0.030 0.004
γ1 0.401 0.001 0.001 0.399 -0.001 0.001
γ2 0.594 -0.006 0.003 0.596 -0.004 0.002
σ 0.278 -0.022 0.003 0.283 -0.017 0.002
a 0.763 -0.037 0.015 0.779 -0.021 0.008
b 0.639 -0.061 0.056 0.633 -0.067 0.034

4.2. Simulation study for the residuals
The accuracy of the normal approximation for the empirical distribution of the residuals

qr’s is addressed by generating 1, 000 observations from the fitted LMOOLLW regression
following the same procedure described in Section 4.1. So, the systematic component is
µi = γ0 + γ1vi1 + γ2vi2 for the same parameters in this section. The plots in Figure 6
indicate that the standard normal distribution is closer to the empirical distribution of
these residuals for n = 100, 250, 500 and 1,000 corresponding to the scenarios (a), (b), (c)
and (d), respectively (for moderate and large n).
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(a) (b) (c) (d)

Figure 6. Normal probability plots for qr′
is in the LMOOLLW regression (a = 0.8

and b = 0.7)

5. Applications
5.1. Two applications of the MOOLLW distribution

We compare the MOOLLW distribution with some well-established Weibull extensions:
the Kumaraswamy-Weibull (KwW) [6], beta-Weibull (BW) [7], McDonald-Weibull (McW)
[5], exponentiated-generalized Weibull (EGW) [18], exponentiated-Weibull (EW) [16] and
Weibull (W) distributions. The potentiality of the proposed distribution is shown for two
real data sets representing different events:
Data set 1. (Geyser data). The first data set comes from R built-in data (datasets::faithful)
which describes the old Faithful Geyser data, in particular the 272 durations of the erup-
tions (in mins).
Data set 2. (Aarset data). The second data set from Aarset [1] describes the failure times
of 50 industrial devices.
All computations are performed using the AdequacyModel program in R-language. The
unknown parameters of the models are estimated by maximum likelihood. The well-
known AIC (Akaike information criterion), BIC (Bayesian information criterion), HQIC
(Hannan-Quinn information criterion), A∗ (Anderson-Darling), W ∗ (Cramér–von Mises)
and K-S (Kolmogrov-Smirnov) statistics are adopted for model comparisons.

Tables 2 and 4 give the MLEs and their standard errors (SEs) from seven distributions
fitted to these data sets. The numbers in Tables 3 and 5 indicate that the MOOLLW
distribution provides the best fit compared to the other fitted models. The plots in Figures
7 and 8 confirm this fact.
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Figure 7. Estimated functions of the MOLLLW model for data set 1 (a) Density
(b) Survival function (c) Hazard rate (d) Box-plot
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Table 2. Estimated quantities for data set 1

Distribution a b α β ν

MOOLLW 0.2203 1.0899 0.2586 12.0277 -
(0.0175) (0.1486) (0.0029) (0.2425) -

KwW 0.0823 0.6255 0.2138 24.3823 -
(0.0091) (0.0932) (0.0026) (0.5347) -

BW 0.0854 0.3241 0.2176 27.7661 -
(0.0063) (0.1281) (0.0046) (0.0607) -

EGW 0.1662 0.0940 4.5513 26.5748 -
(0.0442) (0.0060) (0.0482) (0.0578) -

McW 0.0676 2.0811 0.1998 23.8858 1.9476
(0.0268) (1.0048) (0.0050) (0.2938) (0.9584)

EW 0.0878 - 0.2050 28.3951 -
(0.0055) - (0.0014) (0.0206) -

W - - 0.2571 3.6733 -
- - (0.0044) (0.1920) -

Table 3. Adequacy measures for data set 1

K-S
Distribution ℓ̂ AIC BIC HQIC A∗ W ∗ K-S p-value
MOOLLW 346.4653 700.9307 715.3539 706.7211 4.9448 0.6701 0.1255 0.000379
KwW 363.4927 734.9854 749.4086 740.7759 6.4396 0.9351 0.1587 2.25E-06
BW 365.9784 739.9568 754.3800 745.7472 7.3288 1.1349 0.1558 3.67E-06
EGW 367.5039 743.0077 757.4310 748.7982 8.1949 1.2871 0.1606 1.61E-06
McW 367.5248 745.0497 763.0787 752.2877 7.8523 1.2287 0.1608 1.548E-06
EW 367.1236 740.2473 751.0647 744.5901 8.1046 1.2718 0.1608 1.55E-06
W 413.3641 830.7281 837.9397 833.6233 16.5785 2.8221 0.1773 7.45E-08

Table 4. Estimated quantities for data set 2

Distribution a b α β ν

MOOLLW 0.1135 1.2459 0.0210 5.2856 -
(0.0200) (0.3550) (0.0010) (0.0165) -

KwW 0.0667 0.2680 0.0167 5.0653 -
(0.0231) (0.0890) (0.0015) (0.2159) -

BW 0.1057 0.0958 0.0216 4.7139 -
(0.0231) (0.0469) (0.0026) (0.1274) -

EGW 0.0429 0.5724 5.8136 1.2963 -
(0.0094) (0.0957) (0.0075) (0.0104) -

McW 0.2377 0.1796 0.0190 4.5870 0.3328
(0.0863) (0.0930) (0.0026) (0.1489) (0.1291)

EW 0.1424 - 0.0109 4.8222 -
(0.0213) - (0.0009) (0.0148) -

W - - 0.0223 0.9499 -
- - (0.0034) (0.1196) -
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Table 5. Adequacy measures for data set 2

K-S
Distribution ℓ̂ AIC BIC HQIC A∗ W ∗ K-S p-value
MOOLLW 216.9131 441.8262 449.4743 444.7387 0.7958 0.0882 0.1177 0.4927
KwW 221.4887 450.9774 458.6254 453.8898 1.1598 0.1513 0.1310 0.3577
BW 220.0350 448.0700 455.7181 450.9824 0.9775 0.1177 0.1323 0.3453
EGW 237.8521 483.7042 491.3523 486.6167 2.7199 0.4424 0.1978 0.0400
McW 221.3386 452.6772 462.2373 456.3177 1.0747 0.1368 0.1368 0.3064
EW 228.9559 463.9117 469.6478 466.0961 1.7943 0.2710 0.2035 0.0319
W 241.0018 486.0037 489.8277 487.4599 3.0071 0.4962 0.1927 0.0488
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Figure 8. Estimated functions of the MOLLLW model for data set 2 (a) Density
(b) Survival function (c) Hazard rate (d) Box-plot

5.2. An application of the LMOOLLW regression
The set of 432 observations referring to a common native plant of the Peruvian Andes

called yacon was obtained from the agricolae package [9] available in the R software with
the source: CIP, Experimental eld, 2003.

The main variables involved are (for i = 1, . . . , 432): yi: logarithm of the weight in
grams of fresh yacon roots; vi1: harvest index; vi2: a factor with 8 levels: AKW5075,
AMM5136, AMM5150, AMM5163, ARB5125, CLLUNC118, P1385 and SAL136; and vi3:
number of stalks (or stems)

For constructing the covariables, we require seven dummy variables:
AKW5075 AMM5136 AMM5150 AMM5163 ARB5125 CLLUNC118 P1385 SAL136︸ ︷︷ ︸

Processing
⇒ v21 v22 v23 v24 v25 v26 v27︸ ︷︷ ︸

7 dummy variables
.

First, a univariate analysis is performed considering only the response variable. Table
6 lists the MLEs and the AIC, BIC and GD (Global Deviance). In fact, the LMOOLLW
distribution could be chosen as the best distribution for these data.

Some LR statistics for comparing fitted distributions to the current data are reported
in Table 7. It is quite clear that the LMOLLLW distribution is suitable for modeling these
data comparing to the null models.

Plots of the best three fitted densities to the histogram are displayed in Figure 9(a).
The plots of the estimated cdfs and the empirical distribution are given in Figure 9(b).
They reveal that the new distribution provides the best fit to these data compared to the
other fitted models. Note that this data set has bimodality which is captured by the new
distribution.
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Table 6. Estimated quantities for weight of fresh yacon roots data

Model µ log(σ) a b AIC BIC GD
LMOOLLW 10.646 -1.273 0.349 0.209 1340.598 1356.872 1332.598

(0.068) (0.139) (0.046) (0.037)
LMOW 10.442 -0.169 1 0.346 1375.490 1387.700 1369.490

(0.054) (0.041) (-) (0.028)
LOLLW 9.882 0.018 0.977 1 1385.240 1397.440 1379.240

(0.051) (0.049) (0.047) (-)
LW 9.885 0.033 (1) (1) 1383.340 1391.480 1379.340

(0.051) (0.050) (-) (-)

Table 7. LR tests for weight of fresh yacon roots data

Models Hypotheses Statistic w p-value
LMOOLLW vs LMOW (a = 1) H0 : a = 1 vs H1 : H0 is false 36.892 <0.001
LMOOLLW vs LOLLW (b = 1) H0 : b = 1 vs H1 : H0 is false 46.639 <0.001

LMOOLLW vs LW H0 : a = 1 and b = 1 vs H1 : H0 is false 46.745 <0.001
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Figure 9. Weight of fresh yacon roots data (a) Estimated densities of some fitted
models (b) Estimated cumulative functions of some fitted models and the empirical
cdf

Second, consider the LMOOLLW regression with systematic component (i = 1, . . . , 432)
µi = γ0 + γ1vi1 + γ21vi21 + γ22vi22 + γ23vi23 + γ24vi24 + γ25vi25 + γ26vi26 + γ27vi27 + γ3vi3.

The findings from the fitted LMOOLLW regression are reported in Table 8. The covari-
able x1 is significant, which means that the fresh weight of yacon root decreases when the
harvest index increases. Similarly, the covariable x3 is also significant. In other words, the
fresh weight of yacon root increases when the number of rods increases. Further, there is
significant difference between levels (AKW5075 vs AMM5136), (AKW5075 vs ARB5125)
and (AKW5075 vs CLLUNC118) in relation to fresh weight of yacon roots data.

The LMOOLLW regression gives the best fit to the current data based on the statistics
in Table 9.

The numbers in Table 10 indicate that the LMOOLLW regression could be chosen to
explain the current data.

Figure 10(a) gives the plot of the modified martingale-type residuals (qri) against the
index of the observations. There is no pattern and the residuals are in the interval [−3, 3].
The normal probability plot with generated envelope displayed in Figure 10(b) show that
all observations are well-fitted. Figure 10(b) indicates that the LMOOLLW regression is
adequate because all observations are within the envelope.
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Table 8. Estimated quantities from the LMOOLLW regression fitted to yacon
roots data

Parameter Estimate SE p-value
γ0 13.780 0.223 <0.001
γ1 -12.086 0.878 <0.001
γ21 -0.517 0.154 <0.001
γ22 -0.043 0.201 0.831
γ23 0.122 0.182 0.504
γ24 -0.473 0.129 <0.001
γ25 -0.358 0.144 0.013
γ26 -0.210 0.204 0.304
γ27 0.087 0.165 0.600
γ3 0.102 0.030 <0.001

log(σ) -1.808 0.024
a 0.283 0.007
b 0.062 0.005

Table 9. Goodness-of-fit measures for yacon roots data

Model AIC BIC GD
LMOOLLW 1219.548 1272.437 1193.55

LMOW 1228.197 1277.018 1204.200
LOLLW 1234.689 1283.510 1210.690

LW 1252.922 1297.674 1230.920

Table 10. LR tests for yacon roots data

Models Hypotheses Statistic w p-value
LMOOLLW vs LMOW H0 : a = 1 vs H1 : H0 is false 10.649 0.001
LMOOLLW vs LOLLW H0 : b = 1 vs H1 : H0 is false 17.141 <0.001

LMOOLLW vs LW H0 : a = 1 and b = 1 vs H1 : H0 is false 37.374 <0.001
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Figure 10. (a) Plot of the residuals (qr′
is) versus fitted values (b) Normal prob-

ability plot with envelope for the qr′
is from the LMOOLLW regression fitted to

fresh root weight of yacon data

6. Conclusions
The Marshall-Olkin odd log-logistic-G (MOOLL-G) family follows by compounding of

two well-known families of distributions. A motivation for the family is provided and some
useful properties are presented. A special model of the MOOLL-G family is introduced
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based on the Weibull and it is proposed the log-MOOLL-Weibull regression. Estimation of
parameters is via maximum likelihood and some simulation studies are conducted. Three
applications of the proposed models show their usefulness over well-established models.
In the near future, the following works may be addressed: construct a regression for
bivariate data using copulas; develop a library in R software with the proposed models;
build a cured fraction model considering the distributions addressed in this work as a
random effect; consider other estimation methods such as, for example, using a Bayesian
approach.
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Appendix
Following [3], we can write the linear representation for Equation (1.3)

FMOOLLG(x) =
∞∑

i=0
wi HOLLG(x)i+1, (A.1)

where the coefficients are (for i = 0, 1, . . .)

wi = wi(b) =


(−1)i b

(i + 1)
∞∑

j=i

(
j

i

)
(j + 1)(1 − b)j , b ∈ (0, 1),

b−1(1 − 1/b)i, b > 1.

Equation (A.1) can be rewritten as a sum of exponentiated-G (exp-G) cdfs with non-
negative integer powers. For doing this, four convergent power series are required. First,
the generalized binomial expansion

(1 − z)a =
∞∑

j=0
(−1)j

(
a

j

)
zj ,

is convergent for |z| ≤ 1.
Second, a power series for za = [1 − (1 − z)]a follows using the last expansion twice (for
|z| ≤ 1)

za =
∞∑

k=0
pk(a) zk, (A.2)

where

pk(a) =
∞∑

j=k

(−1)k+j

(
a

j

)(
a

k

)
.

Third, an expansion for za + (1 − z)a follows from the last two power series (for any real
a > 0 and |z| ≤ 1)

za + (1 − z)a =
∞∑

k=0
qk(a) zk, (A.3)
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where qk(a) = pk(a) + (−1)k
(a

k

)
.

Combining (A.2) and (A.3) and from [12] Section 0.313

za

za + (1 − z)a
=
∑∞

k=0 pk(a) uk∑∞
k=0 qk(a) zk

=
∞∑

k=0
sk(a) zk, (A.4)

where s0(a) = p0(a)/q0(a) and the quantities sk(a)′s (for k ≥ 1) are obtained as

sk(a) = 1
p0(a)

[
pk(a) − 1

q0(a)

k∑
r=1

pr(a) qk−r(a)
]

.

Fourth, based on (A.4), we can rewrite H(x)i+1 in Equation (A.1) (for x ∈ R) as

HOLLG(x)i+1 =
{

G(x)a

G(x)a + [1 − G(x)]a
}i+1

=
{ ∞∑

k=0
sk(a) G(x)k

}i+1

.

Next, the following expansion holds ([12], Section 0.314)

HOLLG(x)i+1 =
( ∞∑

k=0
sk(a) G(x)k

)i+1

=
∞∑

k=0
ti+1,k(a) G(x)k, (A.5)

where, for i = 0 and k ≥ 0, ti+1,k(a) = sk(a) and, for i ≥ 1, ti+1,0(a) = s0(a)i+1 and, for
k ≥ 1,

ti+1,k(a) = 1
k s0(a)

k∑
r=1

[r(i + 2) − k] sr(a) ti+1,k−r(a).

By inserting (A.5) in Equation (A.1) yields

FMOOLLG(x) =
∞∑

k=0
vk G(x)k, (A.6)

where vk = vk(a, b) =
∑∞

i=0 wi(b) ti+1,k(a) for k ≥ 0.
By differentiating (A.6), the pdf of X admits the linear representation

fMOOLLG(x) =
∞∑

k=0
vk+1 πk+1(x), (A.7)

where πk+1(x) = (k+1) G(x)k g(x) denotes the exp-G density with power parameter k+1.
Thus, the MOOLL-G family density is a linear combination of exp-G densities which can
be adopted to find its structural properties.

Let Yk+1 be a rv having exp-G density πk+1(x). The nth ordinary moment of X can
be obtained from (A.7) as

µ′
n = E(Xn) =

∞∑
k=0

vk+1 E(Y n
k+1) =

∞∑
k=0

(k + 1) vk+1 τn,k, (A.8)

where τn,k =
∫∞

−∞ xn G(x)k g(x)dx =
∫ 1

0 QG(u)n ukdu. Several papers dealing with exp-G
moments are given by [24]. The nth incomplete moment of X can be expressed as

mn(y) =
∫ y

−∞
xn fMOOLLG(x) dx =

∞∑
k=0

(k + 1) vk+1

∫ G(y)

0
QG(u)n ukdu. (A.9)

Equation (A.9) (with n = 1) allows to find conditional moments, mean deviations and
Bonferroni and Lorentz curves of X.
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The moment generating function (mgf) of X follows from (A.7) as

M(t) =
∞∑

k=0
vk+1 Mk+1(t) =

∞∑
i=0

(k + 1) vk+1 ρk(t),

where Mk+1(t) is the mgf of Yk+1 and ρk(t) =
∫∞

−∞ et x G(x)k g(x)dx =
∫ 1

0 exp[t QG(u)] ukdu.
Several mgfs for MOOLL-G distributions can be directly obtained from this equation and
the mgfs in the papers listed in Table 1 of [24].


