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Abstract 
 
A polynomial with all roots lying in the open left half plane of the complex plane is called Hurwitz 
stable. The convex hull of a finite number of polynomials of the same order is called a polynomial 
polytope. By the Edge theorem, a polynomial polytope with the invariant degree is Hurwitz stable if 
and only if all edges are Hurwitz stable. Due to the Edge Theorem, the segment stability criterions are 
of great importance. In this paper, we consider a construction of stable polytopes by using the Segment 
Lemma. It is constructed stable polytopes with nonzero volumes. The obtained results can be used, for 
example, in the stabilization problems of unstable transfer functions by lower-order controllers. 
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1. Introduction 
 
Let the following 𝑛𝑛-order polynomial 
 
𝑝𝑝(𝑠𝑠) = 𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑠𝑠 + 𝑎𝑎0       (𝑎𝑎𝑛𝑛 > 0)                                                              (1) 
 
be given. The polynomial (1) has 𝑛𝑛 roots 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 and if Re(𝑠𝑠𝑖𝑖) < 0 for all 𝑖𝑖 = 1,2, … ,𝑛𝑛 
then it is called Hurwitz stable. From now we will use the term “stable” instead of “Hurwitz 
stable”. 
 
A necessary condition for stability of (1) is the positivity of all coefficients 𝑎𝑎𝑖𝑖 (𝑖𝑖 = 0,1, … ,𝑛𝑛). 
This necessary condition is not sufficient, unless 𝑛𝑛 ≤ 2. 
 
It is well-known that the set of all 𝑛𝑛-order stable polynomials is open and nonconvex. 
Nonconvexity means that given two stable 𝑛𝑛-order polynomials 𝑎𝑎1(𝑠𝑠) and 𝑎𝑎2(𝑠𝑠) their convex 
combination set {(1 − 𝜆𝜆)𝑎𝑎1(𝑠𝑠) + 𝜆𝜆𝑎𝑎2(𝑠𝑠):  𝜆𝜆 ∈ [0,1]} may contain an unstable polynomial. 
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The above convex combination set is called the polynomial segment connecting 𝑎𝑎1(𝑠𝑠) and 
𝑎𝑎2(𝑠𝑠) and is denoted by [𝑎𝑎1(𝑠𝑠), 𝑎𝑎2(𝑠𝑠)]. 
 
Let 𝑛𝑛-order polynomials 𝑎𝑎1(𝑠𝑠), … ,𝑎𝑎𝑘𝑘(𝑠𝑠) be given. Then the set 
 
conv {𝑎𝑎1(𝑠𝑠), … ,𝑎𝑎𝑘𝑘(𝑠𝑠)}                                                                                                                             (2) 
 
is called a polynomial polytope, where “conv” stands for the convex hull. Given the polytope 
(2) the polynomials 𝑎𝑎𝑖𝑖(𝑠𝑠) are called the generators, and the segments �𝑎𝑎𝑖𝑖(𝑠𝑠), 𝑎𝑎𝑗𝑗(𝑠𝑠)� are called 
the edges of the polytope (2) (𝑖𝑖 < 𝑗𝑗, 𝑖𝑖, 𝑗𝑗 = 1,2, … ,𝑘𝑘). The polytope (2) is called stable if all 
polynomials from (2) are stable. 
 
By the Edge Theorem [1] given 𝑛𝑛-order polynomial polytope (2) with invariant degree and at 
least one stable member is stable if and only if all its edges are stable. 
 
Due to the Edge Theorem the segment stability criterions are of great importance. This 
problem has been considered in the works [2-8]. 
 
The following Segment Lemma is one of well-known criterion for segment stability. 
 
For the polynomial (1) write 𝑎𝑎(𝑠𝑠) = 𝑎𝑎𝑒𝑒(𝑠𝑠) + 𝑠𝑠𝑎𝑎𝑜𝑜(𝑠𝑠), where 𝑎𝑎𝑒𝑒(𝑠𝑠) and 𝑎𝑎𝑜𝑜(𝑠𝑠) contain only 
even degrees and set 𝛿𝛿𝑒𝑒(𝜔𝜔) = 𝑎𝑎𝑒𝑒(𝑗𝑗𝜔𝜔), 𝛿𝛿𝑜𝑜(𝜔𝜔) = 𝑎𝑎𝑜𝑜(𝑗𝑗𝜔𝜔) (𝑗𝑗2 = −1, 𝜔𝜔 > 0). 
 
Lemma 1.1 (Segment Lemma, [2, page 80]) Let 𝑎𝑎1(𝑠𝑠) and 𝑎𝑎2(𝑠𝑠) be 𝑛𝑛-order stable 
polynomials with positive coefficients. Then the segment [𝑎𝑎1(𝑠𝑠),𝑎𝑎2(𝑠𝑠)] is stable ⇔ There is 
no 𝜔𝜔 > 0 satisfying the relations 
 
𝛿𝛿1𝑒𝑒(𝜔𝜔)𝛿𝛿2𝑜𝑜(𝜔𝜔) − 𝛿𝛿2𝑒𝑒(𝜔𝜔)𝛿𝛿1𝑜𝑜(𝜔𝜔) = 0,                                                                                                     (3) 
𝛿𝛿1𝑒𝑒(𝜔𝜔)𝛿𝛿2𝑒𝑒(𝜔𝜔) ≤ 0,                                                                                                                                   (4) 
𝛿𝛿1𝑜𝑜(𝜔𝜔)𝛿𝛿2𝑜𝑜(𝜔𝜔) ≤ 0.                                                                                                                                   (5) 
 
The following lemma is a consequence of Lemma 1.1. 
 
Lemma 1.2  Let  𝑎𝑎1(𝑠𝑠) and 𝑎𝑎2(𝑠𝑠) be 𝑛𝑛-order stable polynomials with positive coefficients  
and the open segment  (𝑎𝑎1(𝑠𝑠),𝑎𝑎2(𝑠𝑠))  contains at least one stable member. Then the open  
segment (𝑎𝑎1(𝑠𝑠), 𝑎𝑎2(𝑠𝑠))  is stable ⇔ There is no 𝜔𝜔 > 0 satisfying (3), (4) and (5). 
  
The geometrical and topological properties of stable polynomials have been studied in many 
works (see [9-13]). This paper continues these studies. Here we construct stable polynomial 
polytopes by using the Edge Theorem and Lemmas 1.1 and 1.2. As a starting point we use a 
factorized stable polynomial and specially defined 𝑛𝑛 boundary polynomials. The convex hull 
of these 𝑛𝑛 + 1 points becomes stable polytope. 
   
The following criterions are well-known [3]: 
A fourth order polynomial 𝑎𝑎4𝑠𝑠4 + 𝑎𝑎3𝑠𝑠3 + 𝑎𝑎2𝑠𝑠2 + 𝑎𝑎1𝑠𝑠 + 𝑎𝑎0 with positive coefficients is 
stable if and only if 
 

𝑎𝑎1𝑎𝑎2𝑎𝑎3 − 𝑎𝑎12𝑎𝑎4 − 𝑎𝑎0𝑎𝑎32 > 0. 
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A third order polynomial   𝑎𝑎3𝑠𝑠3 + 𝑎𝑎2𝑠𝑠2 + 𝑎𝑎1𝑠𝑠 + 𝑎𝑎0 with positive coefficints is stable if and 
only if  𝑎𝑎1𝑎𝑎2 − 𝑎𝑎0𝑎𝑎3 > 0. 
 

2. Construction of stable polytopes 
 
In this section we construct stable polytopes with nonzero volumes. To do this we choose any 
factorized stable polynomial and consider polynomial segments starting from this polynomial 
and ending on the stability boundary. 
 
Consider stable polynomials 
 

𝑝𝑝(𝑠𝑠) = (𝑠𝑠2 + 𝑏𝑏𝑚𝑚𝑠𝑠 + 𝑐𝑐𝑚𝑚).⋯ . (𝑠𝑠2 + 𝑏𝑏1𝑠𝑠 + 𝑐𝑐1) 
 
if 𝑛𝑛 = 2𝑚𝑚 and 
 

𝑝𝑝(𝑠𝑠) = (𝑠𝑠2 + 𝑏𝑏𝑚𝑚−1𝑠𝑠 + 𝑐𝑐𝑚𝑚−1).⋯ . (𝑠𝑠2 + 𝑏𝑏1𝑠𝑠 + 𝑐𝑐1). (𝑠𝑠 + 𝑏𝑏𝑚𝑚) 
 
if 𝑛𝑛 = 2𝑚𝑚− 1. Here 𝑏𝑏𝑖𝑖 > 0, 𝑐𝑐𝑖𝑖 > 0 (𝑖𝑖 = 1,2, … ,𝑚𝑚). Consider 𝑛𝑛 polynomials 
 

𝑝𝑝1(𝑠𝑠) = (𝑠𝑠2 + 𝑐𝑐𝑚𝑚). (𝑠𝑠2 + 𝑏𝑏𝑚𝑚−1𝑠𝑠 + 𝑐𝑐𝑚𝑚−1).⋯ . (𝑠𝑠2 + 𝑏𝑏1𝑠𝑠 + 𝑐𝑐1)
𝑝𝑝2(𝑠𝑠) = (𝑠𝑠2 + 𝑏𝑏𝑚𝑚𝑠𝑠). (𝑠𝑠2 + 𝑏𝑏𝑚𝑚−1𝑠𝑠 + 𝑐𝑐𝑚𝑚−1).⋯ . (𝑠𝑠2 + 𝑏𝑏1𝑠𝑠 + 𝑐𝑐1)

⋮
𝑝𝑝𝑛𝑛(𝑠𝑠) = (𝑠𝑠2 + 𝑏𝑏𝑚𝑚−1𝑠𝑠 + 𝑐𝑐𝑚𝑚−1). (𝑠𝑠2 + 𝑏𝑏𝑚𝑚−1𝑠𝑠 + 𝑐𝑐𝑚𝑚−1).⋯ . (𝑠𝑠2 + 𝑏𝑏1𝑠𝑠)

 

 
if 𝑛𝑛 = 2𝑚𝑚 and 
 

𝑝𝑝1(𝑠𝑠) = (𝑠𝑠2 + 𝑐𝑐𝑚𝑚−1).⋯ . (𝑠𝑠2 + 𝑏𝑏1𝑠𝑠 + 𝑐𝑐1). (𝑠𝑠 + 𝑏𝑏𝑚𝑚)
𝑝𝑝2(𝑠𝑠) = (𝑠𝑠2 + 𝑏𝑏𝑚𝑚−1𝑠𝑠).⋯ . (𝑠𝑠2 + 𝑏𝑏1𝑠𝑠 + 𝑐𝑐1). (𝑠𝑠 + 𝑏𝑏𝑚𝑚)

⋮
𝑝𝑝𝑛𝑛(𝑠𝑠) = (𝑠𝑠2 + 𝑏𝑏𝑚𝑚𝑠𝑠 + 𝑐𝑐𝑚𝑚).⋯ . (𝑠𝑠2 + 𝑏𝑏1𝑠𝑠 + 𝑐𝑐1). 𝑠𝑠

 

 
if 𝑛𝑛 = 2𝑚𝑚− 1. The polynomials 𝑝𝑝1(𝑠𝑠), … ,𝑝𝑝𝑛𝑛(𝑠𝑠) belong to the stability boundary. Consider 
the polytope 
 
𝒫𝒫 = conv {𝑝𝑝(𝑠𝑠), 𝑝𝑝1(𝑠𝑠), … ,𝑝𝑝𝑛𝑛(𝑠𝑠)}.                                                                                                      (6) 
 
The polytope (6) has totally 1 + 2 + 3 + ⋯𝑛𝑛 = 𝑛𝑛(𝑛𝑛+1)

2
  edges and if all edges are stable then 

by the Edge Theorem the polytope (6) is stable. Some edges such as [𝑝𝑝(𝑠𝑠),𝑝𝑝𝑖𝑖(𝑠𝑠)) (𝑖𝑖 =
1,2, … ,𝑛𝑛) are stable by the construction. 
 
Due to the factorization, the following lemmas can be used for proving the stability of the 
polytope (6). 
 
Lemma 2.1 Consider the following polynomials 
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𝑞𝑞(𝑠𝑠) = (𝑠𝑠2 + 𝛼𝛼1𝑠𝑠 + 𝛼𝛼2). (𝑠𝑠2 + 𝛼𝛼3𝑠𝑠 + 𝛼𝛼4),
𝑞𝑞1(𝑠𝑠) = (𝑠𝑠2 + 𝛼𝛼2). (𝑠𝑠2 + 𝛼𝛼3𝑠𝑠 + 𝛼𝛼4),
𝑞𝑞2(𝑠𝑠) = (𝑠𝑠2 + 𝛼𝛼1𝑠𝑠). (𝑠𝑠2 + 𝛼𝛼3𝑠𝑠 + 𝛼𝛼4),
𝑞𝑞3(𝑠𝑠) = (𝑠𝑠2 + 𝛼𝛼1𝑠𝑠 + 𝛼𝛼2). (𝑠𝑠2 + 𝛼𝛼4),
𝑞𝑞4(𝑠𝑠) = (𝑠𝑠2 + 𝛼𝛼1𝑠𝑠 + 𝛼𝛼2). (𝑠𝑠2 + 𝛼𝛼3𝑠𝑠)

 

 
with 𝛼𝛼𝑖𝑖 > 0 (𝑖𝑖 = 1, 2, 3, 4). Then 

1) The segments �𝑞𝑞(𝑠𝑠), 𝑞𝑞𝑖𝑖(𝑠𝑠)�, �𝑞𝑞1(𝑠𝑠), 𝑞𝑞2(𝑠𝑠)�, �𝑞𝑞3(𝑠𝑠), 𝑞𝑞4(𝑠𝑠)� are stable, 
2) The segment �𝑞𝑞1(𝑠𝑠), 𝑞𝑞3(𝑠𝑠)� is stable in the case 𝛼𝛼2 ≠ 𝛼𝛼4 and belongs to the stability 

boundary in the case 𝛼𝛼2 = 𝛼𝛼4, 
3) The segment [𝑞𝑞2(𝑠𝑠), 𝑞𝑞4(𝑠𝑠)] belongs to the stability boundary. 

 
Proof.  

1) Stability of the segments �𝑞𝑞(𝑠𝑠), 𝑞𝑞𝑖𝑖(𝑠𝑠)�, �𝑞𝑞1(𝑠𝑠), 𝑞𝑞2(𝑠𝑠)�, �𝑞𝑞3(𝑠𝑠), 𝑞𝑞4(𝑠𝑠)� are obvious 
(𝑖𝑖 = 1,2,3,4). 

 
2) Consider the segment �𝑞𝑞1(𝑠𝑠), 𝑞𝑞3(𝑠𝑠)�. For any 𝜆𝜆 ∈ (0,1) we have 

 
(1 − 𝜆𝜆)𝑞𝑞1(𝑠𝑠) + 𝜆𝜆𝑞𝑞3(𝑠𝑠) = 𝑠𝑠4 + (𝜆𝜆𝛼𝛼1 − 𝜆𝜆𝛼𝛼3 + 𝛼𝛼3)𝑠𝑠3 + (𝛼𝛼2 + 𝛼𝛼4)𝑠𝑠2 +

  (𝜆𝜆𝛼𝛼1𝛼𝛼4 − 𝜆𝜆𝛼𝛼2𝛼𝛼3 + 𝛼𝛼2𝛼𝛼3)𝑠𝑠 + 𝛼𝛼2𝛼𝛼4
 

and (see Introduction) 
𝑎𝑎1𝑎𝑎2𝑎𝑎3 − 𝑎𝑎12𝑎𝑎4 − 𝑎𝑎0𝑎𝑎32 = 𝜆𝜆𝛼𝛼1𝛼𝛼3(𝛼𝛼2 − 𝛼𝛼4)(1 − 𝜆𝜆) ≥ 0. 

 
Therefore the segment (𝑞𝑞2(𝑠𝑠), 𝑞𝑞3(𝑠𝑠)) either is stable or belongs to the stability boundary. 
 

3) Consider the segment (𝑞𝑞2(𝑠𝑠), 𝑞𝑞4(𝑠𝑠)). For any 𝜆𝜆 ∈ (0,1) we have 
 

(1 − 𝜆𝜆)𝑞𝑞2(𝑠𝑠) + 𝜆𝜆𝑞𝑞4(𝑠𝑠) = 𝑠𝑠. (𝑠𝑠3 + (𝛼𝛼1 + 𝛼𝛼3)𝑠𝑠2 + (𝜆𝜆𝛼𝛼2 − 𝜆𝜆𝛼𝛼4 + 𝛼𝛼1𝛼𝛼3 + 𝛼𝛼4)𝑠𝑠 −
  𝜆𝜆𝛼𝛼1𝛼𝛼4 + 𝜆𝜆𝛼𝛼2𝛼𝛼3 + 𝛼𝛼1𝛼𝛼4) 

 
and for the third order polynomial in the bracket we have (see Introduction) 
 

𝑎𝑎1𝑎𝑎2 − 𝑎𝑎0𝑎𝑎3 = 𝜆𝜆𝛼𝛼1𝛼𝛼2 + 𝛼𝛼12𝛼𝛼3 + 𝛼𝛼1𝛼𝛼32 + 𝛼𝛼3𝛼𝛼4(1 − 𝜆𝜆) > 0. 
 
It follows that the polynomial (1 − 𝜆𝜆)𝑞𝑞2(𝑠𝑠) + 𝜆𝜆𝑞𝑞4(𝑠𝑠) has the root 𝑠𝑠 = 0 and three stable 
roots. Therefore the segment [𝑞𝑞2(𝑠𝑠), 𝑞𝑞4(𝑠𝑠)] lies on the stability boundary. 

∎ 
 
Remark 2.2 As follows from the proof of Lemma 2.1 the stability of the two segments 
(𝑞𝑞1(𝑠𝑠), 𝑞𝑞4(𝑠𝑠)) and (𝑞𝑞2(𝑠𝑠), 𝑞𝑞3(𝑠𝑠)) are not guaranteed. 
 
Lemma 2.3 Consider the following polynomials 
 

𝑙𝑙(𝑠𝑠) = (𝑠𝑠2 + 𝑐𝑐1𝑠𝑠 + 𝑑𝑑). (𝑠𝑠 + 𝑐𝑐2),
𝑙𝑙1(𝑠𝑠) = (𝑠𝑠2 + 𝑐𝑐1𝑠𝑠 + 𝑑𝑑). 𝑠𝑠,
𝑙𝑙2(𝑠𝑠) = (𝑠𝑠2 + 𝑑𝑑). (𝑠𝑠 + 𝑐𝑐2),
𝑙𝑙3(𝑠𝑠) = (𝑠𝑠2 + 𝑐𝑐1𝑠𝑠). (𝑠𝑠 + 𝑐𝑐2),
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where 𝑐𝑐1 > 0, 𝑐𝑐2 > 0, 𝑑𝑑 > 0. Then 
1) The segments �𝑙𝑙(𝑠𝑠), 𝑙𝑙𝑖𝑖(𝑠𝑠)�, �𝑙𝑙1(𝑠𝑠), 𝑙𝑙2(𝑠𝑠)� and �𝑙𝑙2(𝑠𝑠), 𝑙𝑙3(𝑠𝑠)� are stable (𝑖𝑖 = 1,2,3), 
2) The segment [𝑙𝑙1(𝑠𝑠), 𝑙𝑙3(𝑠𝑠)] belongs to the stability boundary. 

 
Proof. We prove only stability of �𝑙𝑙1(𝑠𝑠), 𝑙𝑙2(𝑠𝑠)�: For any 𝜆𝜆 ∈ (0,1) we have 
 

(1 − 𝜆𝜆)𝑙𝑙1(𝑠𝑠) + 𝜆𝜆𝑙𝑙2(𝑠𝑠) = 𝑠𝑠3 + [(1 − 𝜆𝜆)𝑐𝑐1 + 𝜆𝜆𝑐𝑐2]𝑠𝑠2 + 𝑑𝑑𝑠𝑠 + 𝜆𝜆𝑐𝑐2𝑑𝑑, 
 

𝑎𝑎1𝑎𝑎2 − 𝑎𝑎0𝑎𝑎3 = 𝑑𝑑[(1 − 𝜆𝜆)𝑐𝑐1 + 𝜆𝜆𝑐𝑐2] − 𝜆𝜆𝑐𝑐2𝑑𝑑 = 𝑑𝑑(1 − 𝜆𝜆)𝑐𝑐1 > 0. 
 
The remaining statements can be proven easily. 

∎ 
 
The polytope 𝒫𝒫 (see (6)) has totally  𝑛𝑛(𝑛𝑛+1)

2
 edges. By Lemmas 2.1 and 2.3 among these edges 

the stability of 
 

𝑛𝑛(𝑛𝑛 − 2)
4

edges (if 𝑛𝑛 is even), or

(𝑛𝑛 − 1)(𝑛𝑛 − 3)
4

edges (if 𝑛𝑛 is odd)
 

 
are not guaranteed. The remaining 
 

𝑛𝑛(𝑛𝑛 + 1)
2

−
𝑛𝑛(𝑛𝑛 − 2)

4
=
𝑛𝑛(𝑛𝑛 + 4)

4
(if 𝑛𝑛 is even), or

𝑛𝑛(𝑛𝑛 + 1)
2

−
(𝑛𝑛 − 1)(𝑛𝑛 − 3)

4
=
𝑛𝑛2 + 6𝑛𝑛 − 3

4
(if 𝑛𝑛 is odd)

 

 
edges are either stable or belong to the stability boundary. 
 
By using Lemmas 2.1 and 2.3 we arrive at the following mean results (Theorem 2.4 and 
Algorithm 2.5). 
 
Theorem 2.4 Consider the polytope 𝒫𝒫 (see (6)) whose 𝑛𝑛(𝑛𝑛+4)

4
 edges (if 𝑛𝑛 is even) or 𝑛𝑛

2+6𝑛𝑛−3
4

 
(if 𝑛𝑛 is odd) are either stable or belongs to the stability boundary. If the remaining  
 

𝑛𝑛(𝑛𝑛 − 2)
4

edges, if 𝑛𝑛 is even, or

(𝑛𝑛 − 1)(𝑛𝑛 − 3)
4

edges, if 𝑛𝑛 is odd
 

 
are stable or belong to the stability boundary then the inner points of this polytope are stable. 
 
As follows from Lemmas 2.1 and 2.3, the edges, whose stability should be tested are 
�𝑝𝑝1(𝑠𝑠), 𝑝𝑝4(𝑠𝑠)� , �𝑝𝑝1(𝑠𝑠), 𝑝𝑝6(𝑠𝑠)�, �𝑝𝑝3(𝑠𝑠), 𝑝𝑝6(𝑠𝑠)�, …, �𝑝𝑝2(𝑠𝑠),𝑝𝑝3(𝑠𝑠)�, �𝑝𝑝2(𝑠𝑠),𝑝𝑝5(𝑠𝑠)�, 
�𝑝𝑝4(𝑠𝑠), 𝑝𝑝5(𝑠𝑠)�, … . 
 
The following algorithm can be suggested for the construction of a stable polytope type (6). 
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Algorithm 2.5 
1) Take a factorized stable monic polynomial 𝑝𝑝(𝑠𝑠) with positive coefficients and 

consider 𝑛𝑛 boundary polynomials 𝑝𝑝1(𝑠𝑠), 𝑝𝑝2(𝑠𝑠), …, 𝑝𝑝𝑛𝑛(𝑠𝑠). Construct the polytope (6). 
𝑛𝑛(𝑛𝑛+4)

4
 or 𝑛𝑛

2+6𝑛𝑛−3
4

 edges of this polytope are either stable or belong to the stability 
boundary. 

2) Check the remaining 𝑛𝑛(𝑛𝑛−2)
4

 or (𝑛𝑛−1)(𝑛𝑛−3)
4

 edges for stability by using the Segment 
Lemma. 

3) If some segment �𝑝𝑝𝑖𝑖(𝑠𝑠),𝑝𝑝𝑗𝑗(𝑠𝑠)� is not stable then for 𝑡𝑡 ∈ [0,1] consider the parallel 
segment 

�(1 − 𝑡𝑡)𝑝𝑝(𝑠𝑠) + 𝑡𝑡𝑝𝑝𝑖𝑖(𝑠𝑠), (1 − 𝑡𝑡)𝑝𝑝(𝑠𝑠) + 𝑡𝑡𝑝𝑝𝑗𝑗(𝑠𝑠)� . 
Use the bisection of the interval [0,1] and consider the stability of the above segment 
for the values 𝑡𝑡 = 1

2
, 𝑡𝑡 = 3

4
, 𝑡𝑡 = 7

8
, … by using the Segment Lemma. 

4) If a parallel segment is stable for 𝑡𝑡 = 𝑡𝑡𝑘𝑘 and unstable for 𝑡𝑡 = 𝑡𝑡𝑘𝑘+1 then choose 𝑡𝑡 =
𝑡𝑡𝑘𝑘+𝑡𝑡𝑘𝑘+1

2
 and continue. If additionally 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘 < 𝜀𝜀, where 𝜀𝜀 is sufficiently small then 

stop; Take the parallel segment �(1 − 𝑡𝑡𝑘𝑘)𝑝𝑝(𝑠𝑠) + 𝑡𝑡𝑘𝑘𝑝𝑝𝑖𝑖(𝑠𝑠), (1 − 𝑡𝑡𝑘𝑘)𝑝𝑝(𝑠𝑠) + 𝑡𝑡𝑘𝑘𝑝𝑝𝑗𝑗(𝑠𝑠)� as a 
new stable edge of new stable polytope 𝒫𝒫� ⊂ 𝒫𝒫 (see (6)). 

5) Repeat the above procedure for each unstable segment �𝑝𝑝𝑖𝑖(𝑠𝑠),𝑝𝑝𝑗𝑗(𝑠𝑠)� and construct a 
new polytope 𝒫𝒫�  of the type (6) by using the end points of all stable segments. The 
inner points of the obtained polytope 𝒫𝒫�  are stable. 

 
Remark 2.6 Note that the polytopes 𝒫𝒫 and 𝒫𝒫�  have nonzero volumes, since the vectors 𝑝𝑝1 −
𝑝𝑝, 𝑝𝑝2 − 𝑝𝑝, …, 𝑝𝑝𝑛𝑛 − 𝑝𝑝 are linearly independent.  
 
Remark 2.7 It is well known that many stabilization problems can be reduced to the 
following: Given an affine polynomial family, does this family contain a stable member? 
Having stable polytopes the intersection problem of an affine family and a polytope is a 
standart linear programming problem (see [11,12] for details). 
 
Example 2.8 Let us construct a stable polytope starting from the following stable polynomial 
 

𝑝𝑝(𝑠𝑠) = (𝑠𝑠2 + 10𝑠𝑠 + 9). (𝑠𝑠2 + 𝑠𝑠 + 8). 
 
We have 
 

𝑝𝑝1(𝑠𝑠) = (𝑠𝑠2 + 9). (𝑠𝑠2 + 𝑠𝑠 + 8)
𝑝𝑝2(𝑠𝑠) = (𝑠𝑠2 + 10𝑠𝑠). (𝑠𝑠2 + 𝑠𝑠 + 8)
𝑝𝑝3(𝑠𝑠) = (𝑠𝑠2 + 10𝑠𝑠 + 9). (𝑠𝑠2 + 8)
𝑝𝑝4(𝑠𝑠) = (𝑠𝑠2 + 10𝑠𝑠 + 9). (𝑠𝑠2 + 𝑠𝑠)

 

 
By Lemma 2.1, only the stability of the two segments �𝑝𝑝1(𝑠𝑠),𝑝𝑝4(𝑠𝑠)� and �𝑝𝑝2(𝑠𝑠),𝑝𝑝3(𝑠𝑠)� 
should be checked.  
 
For the segment �𝑝𝑝2(𝑠𝑠),𝑝𝑝3(𝑠𝑠)�, the equation (3) has the form 
 

(𝜔𝜔4 − 18𝜔𝜔2)(80 − 10𝜔𝜔2) − (80 − 11𝜔𝜔2)(𝜔𝜔4 − 17𝜔𝜔2 + 72) = 0 
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and has one positive root 𝜔𝜔 = 2.828427125. The inequality (5) is not satisfied for this root. 
 
For the segment �𝑝𝑝1(𝑠𝑠),𝑝𝑝4(𝑠𝑠)�, the equation (3) is 
 

(𝜔𝜔4 − 17𝜔𝜔2 + 72)(9 − 11𝜔𝜔2) − (9 − 𝜔𝜔2)(𝜔𝜔4 − 19𝜔𝜔2) = 0 
 
and has three positive roots: 𝜔𝜔1 = 1.034314101, 𝜔𝜔2 = 2.59426181    𝜔𝜔3 = 3. The 
inequalities (4) and (5) are satisfied for these three roots. By the Lemma 1.2 the segment 
�𝑝𝑝2(𝑠𝑠),𝑝𝑝3(𝑠𝑠)� is stable, whereas �𝑝𝑝1(𝑠𝑠), 𝑝𝑝4(𝑠𝑠)� is unstable. 
 
Apply 3) and 4) of Algorithm 2.5 to the segment �𝑝𝑝1(𝑠𝑠),𝑝𝑝4(𝑠𝑠)�. Calculations give: 
 

Step 𝑡𝑡 Real root(s) of eqn (3) Inequality (4) 
𝛿𝛿1𝑒𝑒(𝜔𝜔)𝛿𝛿2𝑒𝑒(𝜔𝜔) 

Inequality (5) 
𝛿𝛿1𝑜𝑜(𝜔𝜔)𝛿𝛿2𝑜𝑜(𝜔𝜔) 

1 1 
1.034314101 -1054.190<0 -21.949<0 
2.594261810 -238.007<0 -147.610<0 

3 0 0 
2 1/2 3.931663786 2347.134>0 5295.146>0 
3 3/4 3.606562002 1070.466>0 1885.233>0 
4 7/8 3.389877796 503.039>0 736.293>0 

5 15/16 
1.417206062 -1244.689<0 -86.890<0 
2.184020903 -702.470<0 -240.389<0 
3.243698456 246.438>0 315.1387>0 

6 29/32 3.322137183 372.194>0 512.2813>0 
⋮ ⋮ ⋮ ⋮ ⋮ 

11 0.909179 
1.765821584 -1171.1426<0 -186.029<0 
1.848544327 -1105.952<0 -207.790<0 
3.315316048 360.188>0 492.644>0 

12 0.908691 3.316459419 362.186>0 495.901>0 
 
After 12 steps for the value 𝑡𝑡12 = 0.908691 we arrive at the stable segment �𝑝𝑝�1(𝑠𝑠),𝑝𝑝�4(𝑠𝑠)�, 
where 
 

𝑝𝑝�1(𝑠𝑠) = (1 − 𝑡𝑡12)𝑝𝑝(𝑠𝑠) + 𝑡𝑡12𝑝𝑝1(𝑠𝑠),
𝑝𝑝�4(𝑠𝑠) = (1 − 𝑡𝑡12)𝑝𝑝(𝑠𝑠) + 𝑡𝑡12𝑝𝑝4(𝑠𝑠). 

 
Therefore the polytope 𝒫𝒫� = conv{𝑝𝑝(𝑠𝑠),𝑝𝑝�1(𝑠𝑠), 𝑝𝑝2(𝑠𝑠),𝑝𝑝3(𝑠𝑠),𝑝𝑝�4(𝑠𝑠)} is stable.  
 
Example 2.9 Consider the following monic polynomial 
 

𝑝𝑝(𝑠𝑠) = (𝑠𝑠2 + 4𝑠𝑠 + 3). (𝑠𝑠2 + 𝑠𝑠 + 5). (𝑠𝑠 + 1). 
 
The boundary polynomials are: 
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𝑝𝑝1(𝑠𝑠) = (𝑠𝑠2 + 3). (𝑠𝑠2 + 𝑠𝑠 + 5). (𝑠𝑠 + 1),
𝑝𝑝2(𝑠𝑠) = (𝑠𝑠2 + 4𝑠𝑠). (𝑠𝑠2 + 𝑠𝑠 + 5). (𝑠𝑠 + 1),
𝑝𝑝3(𝑠𝑠) = (𝑠𝑠2 + 4𝑠𝑠 + 3). (𝑠𝑠2 + 5). (𝑠𝑠 + 1),
𝑝𝑝4(𝑠𝑠) = (𝑠𝑠2 + 4𝑠𝑠 + 3). (𝑠𝑠2 + 𝑠𝑠). (𝑠𝑠 + 1),
𝑝𝑝5(𝑠𝑠) = (𝑠𝑠2 + 4𝑠𝑠 + 3). (𝑠𝑠2 + 𝑠𝑠 + 5). 𝑠𝑠.

 

 
By the Lemma 1.2 the segment �𝑝𝑝2(𝑠𝑠), 𝑝𝑝4(𝑠𝑠)� is stable, but �𝑝𝑝1(𝑠𝑠),𝑝𝑝4(𝑠𝑠)� is unstable. 
Algorithm 2.5 gives 𝑡𝑡11 = 0.946289 and the stable segment �𝑝𝑝�1(𝑠𝑠), 𝑝𝑝�4(𝑠𝑠)� after 11 steps. 
Hence the polytope 
 

𝒫𝒫� = conv{𝑝𝑝(𝑠𝑠),𝑝𝑝�1(𝑠𝑠),𝑝𝑝2(𝑠𝑠),𝑝𝑝3(𝑠𝑠), 𝑝𝑝�4(𝑠𝑠), 𝑝𝑝5(𝑠𝑠)} 
 
is stable. 
 
 
References 
 
[1] Bartlett, A. C., Hollot, C. V., Lin, H., “Root locations of an entire polytope of 

polynomials: It suffices to check the edges”, Mathematics of Control, Signals, and 
Systems, 1(1) (1988) : 61-71. 

[2] Bhattacharyya S. P., Chapellat H. ve Keel L. H., “Robust control: The parametric 
approach”, New Jersey: Prentice-Hall, (1995). 

[3] Barmish B. R., “New Tools for robustness of linear systems”, New York: Macmillan 
Publishing Company, (1994). 

[4] Bialas, S., “A necessary and sufficient condition for the stability of convex 
combinations of stable polynomials or matrices”, Bulletin of The Polish Academy of 
Sciences Technical Sciences, 33(9-10) (1985) : 473-480. 

[5] Aguirre, B. and Suárez, R., “Algebraic test for the Hurwitz stability of a given segment 
of polynomials”, Boletin De La Sociedad Matematica Mexicana, 12 (2006) : 261-275.  

[6] Aguirre-Hernández, B., García-Sosa, F. R., Loredo-Villalobos, C. A., Villafuerte-
Segura, R., Campos-Cantón, E., “Open problems related to the Hurwitz stability of 
polynomials segments”, Mathematical Problems in Engineering, Volume 2018, Article 
ID2075903 (2018) : 8 pages. 

[7] Kalinina, E. A., Smol’kin Y. A., Uteshev, A. Yu., “Stability and distance to instability 
for polynomial matrix families. Complex perturbations”, Linear and Multilinear 
Algebra, (2020) DOI: 10.1080/03081087.2020.1759500. 

[8] Gayvoronskiy, S. A., Ezangina, T., Puskarev, M., Khozhaev, I., “IE control theory & 
applications, 14(18) (2020) : 2825-2835. 

[9] Hinrichsen, D., Pritchard, A. J., “Text in applied mathematics: vol. 48, Mathematical 
systems theory I. Modelling, state space analysis, stability and robustness”, Berlin, 
Springer-Verlag, (2005). 

[10] Aguirre-Hernández, B., Frías-Armenta, M. E., Verduzco, F., “Smooth trivial vector 
bundle structure of the space of Hurwitz polynomials”, Automatica, 45 (2009) : 2864-
2868. 

118 

https://doi.org/10.1080/03081087.2020.1759500


[11] Dzhafarov, V., Esen, Ö., Büyükköroğlu, T., “Infinite polytopes in Hurwitz stability 
region”, Automatica, 106 (2019) : 301-305. 

[12] Dzhafarov, V., Esen, Ö., Büyükköroğlu, T., “On polytopes in Hurwitz region”, Systems 
& Control Letters, 141 (2020) : 1-5. 

[13] Aguirre-Hernández, B.; Frías-Armenta, M.E. and Verduzco, F., “On differential 
structures of polynomial spaces in Control Theory”, Journal of Systems Science and 
Systems Engineering, 21(3) (2012) : 372-382. 

119 


