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Abstract

Continual learning for scene analysis is a continuous process to incrementally learn distinct events, actions, and even noise models
from past experiences using different sensory modalities. In this paper, an Auditory Scene Analysis (ASA) approach based on a
continual learning system is developed to incrementally learn the acoustic events in a dynamically-changing domestic environment.
The events being salient sound sources are localized by a Sound Source Localization (SSL) method to robustly process the signals of
the localized sound source in the domestic scene where multiple sources can co-exist. For real-time ASA, audio patterns are
segmented from the acoustic signal stream of the localized source for extraction of the audio features, and construction of a feature set
for each pattern. The continual learning is employed via a time-series algorithm, Hidden Markov Model (HMM), on these feature sets
from acoustic signals stemming from the sources. The learning process is investigated by conducting a variety of experiments to
evaluate the performance of Unknown Event Detection (UED), Acoustic Event Recognition (AER), and continual learning using a
Hierarchical HMM algorithm. The Hierarchical HMM consists of two layers: 1) a lower layer in which AER is performed using an
HMM for each event and the event-wise likelihood thresholds; and 2) an upper layer in which UED is achieved by one HMM with a
suspicion threshold through the audio features with their proto symbols stemming from the lower layer HMMSs. We verified the
effectiveness of the proposed system capable of continual learning, AER and UED in terms of False-Positive Rates, True-Positive
Rates, recognition accuracy and computational time to meet the demands in a learning task of multiple events in real-time. The
effectiveness of the AER system has been verified with high accuracy, and a short retraining time in real-time ASA having nine
different sounds.
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Gerg¢ek Ortamlarda Artimh Ogrenme ile Gercek Zamanh Isitsel
Sahne Analizi

Oz

Artimli 6grenme ile sahne analizi, farkli duyusal modaliteler kullanarak ge¢mis deneyimlerden daha once bilgi sahibi olunmayan
olaylar1, eylemleri ve hatta giiriiltii modellerini asamali olarak 0grenmek i¢in durmaksizin gerceklesen bir siiregtir. Bu calismada,
dinamik olarak degisen gercek bir ev ortaminda akustik olaylar1 asamali olarak 6grenmek icin artimli bir 6grenme sistemine dayanan
Isitsel Sahne Analizi (ASA) yaklasimi sunulmustur. Ortamdaki en baskin ses kaynaklar1 olan olaylar, birden fazla kaynagin bulundugu
isitsel sahnede bu kaynaktan elde edilen sinyalleri verimli ve kesintisiz bir gekilde islemek i¢in bir Ses Kaynag1 Yerellestirme (SSL)
yontemi ile yer tespiti yapilmaktadir. Ger¢cek zamanl sahne analizinde, ses Oriintiileri, bu orlintiilerden ses 6zniteliklerin ¢ikarilmasi
ve Oznitelik setinin olugturulmasi i¢in bu kaynagin akustik sinyal akigindan segmente edilir. Artimli 6grenme, kaynaklardan elde
edilen akustik sinyallerden bu 06znitelik kiimelerinde zaman serisi algoritmasi tabanli olan Gizli Markov Modeli (HMM)
kullanilmistir. Ogrenme siireci, Bilinmeyen Olay Algilama (UED), Akustik Olay Tanmima (AER) ve Hiyerarsik HMM yontemi
kullanarak siirekli 6grenmenin performansini degerlendirmek igin cesitli deneyler yapilarak gelistirilmistir. Hiyerarsik HMM iki
katmandan olugur: 1) AER'nin her bir olay icin HMM ve olay bazl esik degerleri kullanilarak gerceklestirildigi bir alt katman; ve 2)
bir ses Onitelik seti icin ilgili alt katman HMM’inden ¢ikartilan proto sembolleri ile ses dzniteliklerinin birlestirilip bir HMM ile bir
stiphe esk degeri kullanilarak UED’nin gerceklstirildigi bir iist katman. Artimli1 6grenme, AER ve UED’e sahip bu sistemin, Yanlis-
Olumlu Oranlar, Dogru-Olumlu Oranlar, tanima dogrulugu ve hesaplama siiresi gozetilerek birden fazla olayin s6z konusu oldugu
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gergek zamanli 6grenme igin gereken gereksinimleri karsilayacak seviyede oldugunu dogruladik. AER sisteminin etkinligi, yiiksek
dogruluk ve dokuz farkli ses igeren ger¢ek zamanli ASA'da kisa bir yeniden egitim siiresi ile dogrulanmustir.

Anahtar Kelimeler: Siirekli 6grenme, isitsel sahne analizi, akustik olay tanima, bilinmeyen olay algilama, hiyerarsik HMM

1. Introduction

In the last decade, event recognition for a variety of problems has been carried out using acoustic signals. The recognition ability
is developed to detect and classify urban and natural events [1, 2], household events [3], interaction with objects [4], animal life
monitoring [5], surveillance [6, 7, 8], etc. However, learning is a continuous process, and also the information collected from the real,
dynamically-changing environments expands during the lifelong deployment of the system. To accomplish continual learning for
scene analysis, one has to deal with important challenges on perceiving the environments with a high level of background noise, and
collecting and processing a large amount of data. Needless to say that the ability requires advanced hardware- and software-based
solutions for practical uses in real-time.

Analyzing acoustic scenes in a real environment is one of the major applications of audio perception [9, 10], since various target
or irrelevant sources are included in the real environments, causing a mixture of sounds obtained from multiple events, background
noise, etc. Also, in the Auditory Scene Analysis (ASA) approach, recognition ability requires preprocessing techniques such as Sound
Source Localization (SSL) and Sound Source Separation (SSS) in complex environments with overlapping sounds to extract
important temporal and spatial information [11]. To analyze the scenes for understanding the relationships of entities such as events,
objects, and humans, and efficiently labeling them is known as the cocktail party problem [12].

Besides, in real environments, when a novel object is recently detected, a few knowledge exists about it. Thus, an object-wise
model is generated using this knowledge. Such learning with few examples, and novelty detection, mostly deep learning-based
approaches have been proposed that require too high computational time at the model generation for this object. For object
recognition and novelty detection, compared to humans, machine learning models not based on deep networks require large-scale
datasets for training. Furthermore, there are rare studies on the combination of few-shot learning and novelty detection. The learning
ability required for the cognitive aspects of scene analysis is recently considered as a continual learning ability [13]. In the learning
process, new knowledge of a known class is recognized, and a new object is detected, and the relative knowledge of these classes
inserted into the model; and so this process continues in a lifelong manner [14]. However, there is an important problem for the
incremental learning ability, which is the catastrophic forgetting in which the recently obtained knowledge dominates the learning,
and the previously learned knowledge is forgotten. In our real-time ASA study, we investigate the continual learning by retraining the
data to meet the demands of real-time processing.

In this work, the real-time ASA is composed of five main stages that are 1) feature extraction including Sound Source Localization
(SSL), audio pattern segmentation and audio feature extraction, 2) Acoustic Event Recognition (AER), 3) Unknown Event Detection
(UED), 4) model generation after the detection of an unknown event, and 5) continual learning by fast retraining to avoid the
catastrophic forgetting problem is presented to incrementally learn the acoustic knowledge from the sound sources, to distinguish and
then to also accumulate new knowledge of a known source, and to detect the unknown sources in the scenes. Thus, using the real-time
ASA framework, it is possible to analyze an auditory scene, and consequently to infer the source of a sound. We aim to build signal
processing stages in the framework of ASA using the real-time audio streams acquired as given in the order below:

o the most salient sound source in the scene is localized to separate signals of the other sources and noises,
o audio patterns are segmented from the signals of the source,
o audio features are extracted from the patterns, and a feature set is constructed for each patterm, and handled as time-series data,

e a time-series method based on Hierarchical HMM is exploited, in which the lower HMMs are used for AER to recognize the
feature sets of sound sources, and upper HMMs are used to detect unknown sources through the proto symbols of the lower
HMMs.

o the proposed method incrementally learns the feature set of known or unknown sources.

The continual learning module mainly covers AER to recognize a known event for retraining of new knowledge of this event, and
UED responsible of the detection of unknown events to generate a model using a few samples of the event. Therefore, the generation
or retraining of a model is designed and developed considering the requirements of real-time ASA. For this purpose, an HMM in the
lower layer of the Hierarchical HMM is utilized for each known sound event to recognize audio patterns. Also, an HMM in the upper
layer for all the events is employed to decide whether the pattern belongs to a known event class, or none of the existing classes. After
the recognition of a known event or the detection of an unknown event, using the feature set the HMM of the recognized event is
updated by retraining or a HMM is generated for the unknown event. The performance of audio feature extraction, UED, and
continual learning with retraining is assessed by various experiments in a domestic environment in terms of prediction performance
and computational time.

The rest of the paper is organized as follows: in Section 2 the related works are reviewed. The stages of the proposed continual
learning for ASA are described in Section 3. In Section 4, the offline and real-time experiments carried out in a domestic environment,
the evaluation metrics and the results of the experiments are explained, followed by the conclusion and the future work.

2. Related Work
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The types of features used in Acoustic Event Recognition (AER) can be typically divided into time-domain and frequency-
domain features. The Zero-Crossing Rate (ZCR) [15] is an important time-domain feature mostly used for the classification of vocal
and non-vocal sounds by indicating the most dominant frequency of a frame. It is a measure of the number of times when the sign
changes between successive samples along with a signal. Also, the time feature is mostly utilized to discriminate voices from
unvoiced speech [16], and to model the music. Moreover, it is utilized by being combined with other features like Mel-Frequency
Cepstral Coefficient (MFCC) and discrete wavelet transform [17].

MPEG-7 low-level descriptors are frequency-domain features such as the spectral centroid, the spectral spread, and the spectral
flatness [18]. These descriptors are also used to extract features from the acoustic events: the spectral centroid is a measure of the
shape of the power spectrum; the spectral spread gives the information about the spectral shape by taking the root-mean-square
deviation of the spectrum from its centroid; and the spectral flatness measures the flatness of the power spectrum. Another frequency-
domain feature is spectral roll-off [19] used to measure the frequency, which takes 95% of the power spectrum and indicates the
skewness of the spectral shape, and pitch ratio calculated on the pitches estimated in each frame to discriminate the speech from non-
speech signals [20].

For AER, several works have used MFCC features as discriminative features to describe the spectral shape of the signal. These
coefficients are computed by applying the discrete cosine transform to the log-energy outputs of Mel-scaling filter-bank; and its first
and second-time derivatives AMFCCs, A’MFCCs [21] are widely-used cepstrum features. Also, MFCC has been combined the other
audio features such as spectral centroid, spectral spread, and spectral flatness to model events by HMM for surveillance [7]. In [22],
MFCC features are combined with an MPEG-7 low-level descriptors, and wavelet features to generate an HMM. Furthermore, many
AER studies have focused on feature selection based on Kullback-Leibler (KL) distance-based AdaBoost to analyze the
discriminative audio features in order to select the most distinctive feature set [23]. In our study, we also employed the KL distance
for feature selection to determine the discriminant feature vectors with the least number of dimensions to accomplish the fast
retraining of HMMs in both of the layers for continual learning in real-time.

For acoustic object/event recognition, various generative classification algorithms such as HMM, long short-term memory, etc.,
and discriminative classification algorithms such as Support Vector Machine (SVM), multilayer perceptron, random forest, k-nearest
neighbor, etc. have been utilized on different kinds of features such as spectral, temporal or perceptual features [24, 25]. In [26], non-
speech event sounds are modeled for time-series classification using HMM with MFCCs. Also, two-dimensional time-frequency
representations are utilized for time-series based AER like Stabilized Auditory Image (SAI) [27], Spectrogram Image Feature (SIF)
with SVM and with a deep neural network studied in [28], with convolutional neural network studied in [29], etc.

In the work [30], an acoustic event detection approach used in the scenes such as busy street, restaurant, kid play area, pool hall,
etc., was developed by applying multiple instance learning classifier, maximum margin early event detector both operating in the
feature space and the landmarking space. The similarity measuring method is proposed to provide a mapping between the temporal
sequences of MFCC features to a landmarking space. An AER approach proposed [22] for automatic recognition of different
environmental sounds at home, which are speech, music, dog and cat sounds, doorbell sound, baby crying, explosion, gunshot, and
laughter. Moreover, an ASA approach [31] utilized for robotic tasks has been proposed to recognize the physical and functional
properties of the objects, that are the material type and the event occurred while the robot interacts with the objects. Also, in another
ASA study [32], five manipulation behaviors performed by the robot on 36 objects, that are grasping, shaking, dropping, pushing, and
tapping are recognized. In this work [33], an AER platform for monitoring elderly people to improve their life quality is proposed
which is able to localize and recognize the human voice and activities in a domestic environment.

Various algorithms have been developed for Sound Source Localization (SSL) to estimate the Direction Of Arrival (DOA) on the
emitted signals from the microphone array [34]. The spatial feature gives much information about the time, the location of the event,
and the location of the noise sources interfering with the target sound source, which may be useful for AER. The well-known
approaches for SSL are based on beamforming [35] and Multiple Signal Classification (MUSIC) [36] used in different types of
environments. MUSIC, also used in our work, is a subspace-based method used by deriving a steering vector to detect reliable peaks
with low computational cost, allowing to work in real-time. Another SSL approach for dynamic environments is Generalized Eigen-
Value Decomposition based MUSIC (GEVD-MUSIC) [37] which performs noise-robust localization. It uses a noise correlation
matrix to suppress the noises. Also, Bian et al. worked on an SSL approach to monitor and understand domestic activities [38].
Moreover, the localization can be utilized for tracking of the sound sources in a living space after recognizing the sources. Thus, it is
based on employing sound recognition and SSL based on MUSIC together by using Gaussian Mixture Model (GMM) with outlier
rejection [39]. Their tracker on moving sound sources is applied in real-time.

Only in few studies, the development of lifelong learning abilities has been investigated in the audio domain. Most of the studies
whose main aim is object learning with a few examples, novel object detection, and incremental learning, have used deep learning
methods. Due to the limited number of labeled data, most of the works conducted in the field of computer vision have targeted the
learning model based on a few examples, which is also known as few-shot learning. However, in a few approaches, acoustic data have
been utilized to generate few-shot learning models. In the work of Wang [40], a metric-based few-shot learning method has been
proposed for AER due to high cost of listening to a mixed sound to label each location of an event. Another few-shot learning
approach based on the acoustic data has used an Attentional Graph Neural Network [41]. However, none of these existing deep
learning works are appropriate for few-shot learning particularly in real-time.

In addition, for few-shot learning and novelty detection, some studies have utilized acoustic data to generalize an audio class with
few number of examples, and detect novel audio classes. In [42], few-shot method based on meta-learning has been presented for
acoustic event detection to detect the unknown acoustic classes. Also, only a few works exist using unsupervised algorithms for
novelty detection. The acoustic novelty detection studies have utilized unsupervised deep networks such as Recurrent Neural Network
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based Autoencoders on a benchmark speech dataset [43], and Convolutional Long Short Term Memory (LSTM) Autoencoders and
Convolutional Autoencoders on the sounds of the different types of manufacturing processes [44]. However, using these deep
networks, the generation of the model for a novel class is not possible in real-time due to the massive computational resources.

In various studies, the lifelong learning problem have been extensively tackled using various types of machine learning methods.
However, only a few works have achieved to combine the novelty detection and few-shot learning. An incremental approach has been
proposed for novelty detection with few-shot learning, based on a Parzen window kernel density estimator. The method is applied to
real-time data streams regarding gestures under the problems, concept-drift, and existence of novel classes. Also, a class-based
incremental learning approach [45] has been proposed, in which unknown classes are detected and incrementally adapted into a model
by preserving the knowledge of the known classes. An incremental few-shot learning approach based on Attention Attractor Network,
a meta-learning method has been presented to incrementally achieve few-shot learning without retraining the data [46]. In general,
most existing approaches suffer from a high computational cost; so there is apparently a lack of studies on continual learning in real-
time.

3. Real-time Auditory Scene Analysis System

3.1. Overview of System

The proposed real-time Auditory Scene Analysis (ASA) approach shown in Figure 1 includes five main modules: (1) feature
extraction including Sound Source Localization (SSL) used for detection and location monitoring of a sound source in a scene, audio
pattern segmentation, extraction of audio features and construction of a feature set of this pattern, (2) model generation of a lower
HMM for each event, and an upper HMM for all the known events, (3) Acoustic Event Recognition (AER), (4) Unknown Event
Detection (UED) regarding the outputs of AER module, and (5) continual learning by retraining of the lower-layer and upper-layer
of Hierarchical HMM. All the stages are applied to the signal captured from a microphone. However, for real-time ASA, fast and
efficient techniques for these modules are developed. The ASA begins with the localization of a salient sound source in a real
environment. The acoustic signal stream from this source is processed to recognize acoustic known events and to detect unknown
events, or undefined events. Subsequently, continual learning is achieved to learn knowledge about a known event by retraining, or
unknown event by adapting its knowledge into the model. In the offline initial model generation module being a separate pipeline,
however, at least one initial model may be generated using one, a few, or several audio patterns.

—~ Feature Extraction Model Generation Model Generation

i § Audio Feature Viterbi 7
o — Audio Feature Set Lower-HMM | Sequences Uppe_’-Hl-,Il,-l
Vent soun Set Extraction Training Feature Sets with Training
Samples Their Sequences
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Figure 1. The overview of the proposed auditory scene analysis framework.

In real-time, an audio feature set utilized in the AER, UED, and continual learning stages is composed of a humber of audio
feature vectors extracted from the patterns segmented on the signals of the localized salient sound source. The ASA approach requires
two types of thresholds for the recognition of known events and the detection of unknown events. These are an event-wise likelihood
threshold, T for each event e, and a suspicion threshold, Ts for all events to be compared with the outputs of the AER and UED
models in order to obtain the likelihood value and the novelty rate. The threshold values are dynamically updated by taking the
median of all the likelihood values computed by the upper HMM, or each lower HMM.

Details of each module of the system will be elaborated in the following sections.

3.2. Sound Source Localization

e-1SSN: 2148-2683 218



European Journal of Science and Technology

The location of the sound can be important to discriminate useful sound sources from the background noises, or non-target
sources in a dynamically-changing environment. Thus, the location of a sound is utilized to ignore the sound sources not in the scene.
Besides, the spatial information may carry essential cues, depending heavily on the characteristics of the scene. The spatial feature of
the source can be utilized as an additional feature during pattern segmentation, event recognition, and unknown event detection, since
it may provide important information about the event. Moreover, non-target sounds such as footsteps of a person, keystrokes, opening
and closing of the door, the human voice, etc., can be ignored.

In this work, Generalized Eigen-Value Decomposition based Multiple Slgnal Classification (GEVD-MUSIC) [37] method which
performs noise-robust localization is employed, since it is quickly able to localize the azimuth angle of multiple sound sources. Using
this method, a sound source was monitored over its location in order to process its signal in an ASA pipeline. Thus, each stage of ASA
is performed on the signal of a source. If a new source is localized, its signal will be analyzed by a separate ASA process. To monitor
a detected source, a power threshold and an interval threshold in angle are utilized. If the source has higher power than the threshold,
and the difference between its current position and the previous position is smaller than the interval threshold, the same source id is
given, namely, the location of the source did not change over time.

3.3. Audio Pattern Segmentation

The aim of the segmentation is not only to distinguish the audio pattern of an event from silence, but also from another
overlapped sound event. Therefore, the patterns with variable lengths are segmented from the signal stream of a localized source. A
pattern has a boundary with the onset and offset frames on the stream. Thus, these frames need to be detected to segment an audio
pattern in real-time. For the detection of the frames, the energy feature is extracted, and then a peak is picked by a sliding window on
these features. If the energy value of the peak frame is higher than a threshold dynamically updated, this frame is tagged as the onset
frame. Thereafter, we need to estimate the ending point of the pattern. The last frame before another peak frame with energy higher
than the recent threshold value, or a silent frame with around zero energy is the offset frame. All the frames between the onset and
offset frames are assumed as a useful audio pattern. For good performance in the AER, a fast and robust real-time segmentation
technique is crucial.

3.4. Audio Feature Set Extraction

After the segmentation of the audio pattern, audio features are extracted, and a feature set for each audio pattern, including a
number of feature vectors consequently as many as the length of the pattern is constructed. Thus, different cepstral, spectral, and
temporal types of audio features are used as in Table 1 (to be later benchmarked in terms of AER performance and computational time
of continual learning).

Table 1: The audio features evaluated for AER.

Cepstral Spectral Temporal
MFCC Flatness ZCR
MFCC with Derivatives Centroid Energy
LPCC Roll-off
LSP Flux

Furthermore, to reduce the computational time of retraining process in the continual learning, Kullback-Leibler distance based
feature selection is applied to evaluate the discrimination capability of each feature unit in the vector of the estimated best audio
feature as follows:

Dij

D(pilla)) = [ pijlog P

where p is the distribution of the i feature unit of the j" audio event class, and q is the distribution of the it feature units of all the
known event classes. Thus, the discriminant capability of a unit is;

D(p;) = X b;D(pijllq).
where by is the prior probability of the j™ event class.

The feature units with high distance to all the others are selected to be used in audio feature extraction stage for continual
learning. The feature selection is required to remove redundant and similar feature units of different classes. It aims to attain similar
AER performance using lower number of features for the decrease of the computational time, because after a new knowledge is
obtained the retraining process will be employed.

3.5. Unknown Event Detection

Initially, HMMs in the lower layer of Hierarchical HMM are generated using the feature sets of audio patterns segmented from
the sound samples of the existing events, and then the sets with their Viterbi sequences are utilized to generate an HMM in the upper
layer. Using the event-wise likelihood thresholds for AER, and a suspicion threshold for UED, the abnormal feature sets are detected
as illustrated in Figure 1.

The UED functions as follows; (1) the salient sound source is detected and localized, (2) audio patterns segmented from new
incoming signal from this source are predicted by existing lower-layer HMMs, (3) the likelihood value of the most likely event is
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compared with the event’s likelihood threshold estimated during the training of the existing sound samples of this event, (4) if it is less
than the threshold, its Viterbi sequence is extracted, and combined with the corresponding feature set, (5) the combined feature set is
predicted by the upper-layer HMM, (6) if the likelihood computed by the HMM is lower than the novelty rate, the pattern is predicted
as highly anomaly, an unknown event class is detected.

In real environments, a novel sound source may emerge in the domestic scenes. Therefore, the real-time ASA with continual
learning system needs to detect the abnormal audio features from the unknown sound sources. Firstly, the audio feature set of an audio
pattern extracted from the acoustic data stream is recognized in the AER stage by the lower layer HMMs and the event-wise
likelihood thresholds. If the best log likelihood value is less than the relevant threshold, the feature set with its proto Viterbi symbols
belonging to the event with the best likelihood is predicted by the upper layer HMM. Then, the likelihood value computed by this
HMM used for UED is compared with a suspicion score for the UED to decide whether the feature set belongs to 1) a new event, 2) to
a known one with the highest value, or 3) to none of them because of the low precision.

3.6. Continual Learning

The methods for modelling time-series data suffer from various problems affecting the performance, such as large-scale and high-
dimensional data, series with variable-length, missing values and patterns of the series, modelling of occluded multiple series, high
computational time required for real-time tasks and so on. Under these challenges we developed a Hidden Markov Model (HMM)
based lifelong learning approach with UED and retraining. Therefore, the computation time for the stages of ASA is as important as
the AER performance. Obtaining a robust and fast performance from HMM is taken into consideration while developing the model
for continual learning.

The HMM has been utilized for modeling time-series data like in different signal processing tasks such as analysis and
recognition of speech, voice, acoustic events, etc, and modeling sequential data like in natural language processing and bioinformatics
tasks such as analysis of text data, biosignal, etc. In our study, we have used the HMM algorithm for analysis of auditory scenes on
the audio feature sets composed of a number of audio feature vectors. For each event, an HMM is generated on all the feature sets
belonging to this event regarding a number of iterations, and a distinct number of states. At the training time, the HMM aims to
maximize an objective function computing the likelihood value of a Viterbi sequence most likely representing these sets. In the
prediction time of an audio pattern, the likelihood value estimated by the HMM of an event represents the probability of belonging to
this event. The AER is accomplished by comparing the highest likelihood value with a likelihood threshold of the most likely event. If
the likelihood is less than the threshold, the combination of the feature set and its Viterbi sequence is exploited in UED. However,
UED is applied to only one HMM generated on all the feature sets of all known acoustic events. Therefore, only one suspicion
threshold is utilized to decide on whether the combination may belong to an unknown or undefined event.

3.6.1 HMM Formulation Adapted for AER
In this problem, the ASA process may begin with an initial HMM H, (X,, A.) of an event, e to maximize the objective function:
H,(Xe, A.) = argmax P(I|X,, 4¢),
Ae

in which X denotes a matrix consisting of a consequent set of the feature vectors from an audio pattern segment of the event, |
represents the feature vector (state) sequence, and A is the set of HMM parameters different for each event, updated during the initial
training and also retraining. A humber of states is determined based on the acoustic event. The states of the HMM are connected by
transitions, and the likelihood value is computed by this object function that aims to estimate the most likely state sequence. Each
audio feature vector of the set belonging to an audio pattern is represented by a state, and the sequence is composed of a number of
state symbols as many as the size of the set.

One of the parameters of HMM is the transition probability matrix including the probability values of the transition from the state,
s; to the state, s;, is computed as a;; = P(qt+1 = sjlq, = si) where s; is the actual state at time, t. Thus, the probabilistic model is
generated regarding a Markov chain induced by these transition probabilities. In other words, an audio feature set of each segment of
an event is modeled by the transition probabilities, and characterized in terms of the state symbols at the training and prediction times.

At the training time, the parameters of HMM are optimized by the Expectation-Maximization algorithm that consists of two steps,
M-step and E-step. The expectation of the parameters is achieved in the E-step. In M-step, it is basically aimed to maximize the
likelihood over a number of iterations selected by the user, or convergence criteria. The main parameters are the state transition
probabilities and the initial state probabilities optimized by the forward and backward processes. At each step, the new parameter set,
A, of an HMM belonging to an event is estimated, and this re-estimation loop continues over the forward and backward variables until
the stopping criterium is satisfied;

log P(0]A; ) —log P(0]A,) <€,

where e denotes a small constant value. The optimization process is applied to each event’s model, H, in the lower layer of the
Hierarachical HMM, but for UED, only one HMM is generated using all the existing feature sets with the Viterbi sequences estimated
by its own model, H,.

Besides, the computational time of the training of an HMM scales linearly with the length of the feature sets of an event, and
quadratically with the number of states. Therefore, it is aimed to find the optimal number of iterations to decrease the computational
time while maintaining the prediction performance high. Also, the space complexity scales with the characteristics of the data, and an
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HMM. There are a few works proposed to achieve online HMM based on the online Baum-Welch and Expectation-Maximization
techniques [47], but none of them provides AER performance as much as retraining itself.

4. Experiments and Results
4.1. Software and Hardware Settings

The audio preprocessing operations for real-time ASA are implemented in HARK [48], which is an open-source robot audition
software. For the time-series based AER, the evaluation and the visualization hmmlearn, scikit-learn, and matplotlib libraries are used,
respectively. For the audio feature extraction stage, the audio python library, Librosa, and pymir are utilized. The experiments were
performed by a computer with Intel quad Core i7-3700K with 16 GB RAM on the recordings taken by Kinect microphone array with
4-channel.

4.2. Experimental Procedure

In the first part of the experiments, namely the offline experiments, the audio feature set and parameters for the models learned for
UED and AER were estimated so that they can be later used in the real-world, real-time experiments. For these offline experiments,
the recordings captured in a domestic environment have been utilized. In these offline experiments, a bunch of domestic sounds such
as being recorded from opening and closing doors, footsteps, kettle, vacuum cleaner, washing hands, dishwasher, toilet flush, and
washing machine have been generated in the near vicinity of a microphone array. There are 436 event sounds manually labeled (41
door opening and 50 door closing, 36 footsteps, 65 kettle, 55 vacuum cleaner, 24 washing hands, 85 dishwasher, 32 toilet flush, and
48 washing machine sounds). Using the pattern segmentation approach, 31905 audio patterns are obtained from the sound instances,
consisting of 1981 door opening and 2711 door closing, 2416 footsteps, 2449 kettle, 3972 vacuum cleaner, 6008 washing hands, 5112
dishwasher, 3184 toilet flush, and 4072 washing machine audio patterns. Sound files are divided into a training set (70%) with which
the model generation and retraining are performed, and a test set (30%) only used for performance evaluation in offline experiments.
The recordings in the training set were utilized as training and validation. Thus, continual learning begins using one or a few audio
patterns segmented from a recording in the training set and learns the rest in time.

The audio features are extracted with the sampling rate selected as 16kHz, Fast Fourier Transform size as 512, and the window
size as 256. Thus, a feature vector includes the features extracted from a window. The number of states and iterations used at the
training time of HMM are selected for each event considering the length of the audio pattern, and the number of feature sets.

In the second part of the experiments, the audio feature set and parameters for the models learned in the offline experiments were
utilized for the generation of AER and UED models to be used in the real-world, real-time experiments. For these experiments, the
same domestic sounds have been generated in real-time.

4.3. Evaluation Metrics

This section presents the evaluation criteria used in the framework of Hierarchical HMM based AER, continual learning with
retraining, and UED. The accuracy of AER, fl-score and time for retraining is computed to determine the most appropriate type of
audio features. We also evaluated the performance of the UED in terms of precision, recall, and the detection time including the
prediction time of the lower HMMs and upper HMM. The calculation of the computational time is performed for each stage to
evaluate the real-time performance of the proposed framework.

4.4. Results of Offline Experiments on Auditory Scene Analysis

In these experiments, the sounds of events recorded from a real domestic environment were utilized to evaluate the audio features,
continual learning with retraining, and UED. Subsequently, the outcomes of the experiments were exploited to develop the models for
the real-time ASA experiments in the domestic environment.

4.4.1 Results on Audio Feature Extraction

In this experiment, different types of audio features listed in Table 1 are evaluated in terms of prediction performance and
retraining time. We need to estimate most appropriate cepstral feature set that will comprise the major part of the set, and the
promotive features in the spectral and temporal features. Firstly, the cepstral features (Table 2) and then other variations of features
(Table 3) are evaluated by performing the experiment 10 times and taking the average accuracy, fl-score and retraining time. During
this continual learning, the retraining time is measured under the worst scenario in which most of the feature sets is retrained.

Table 2: The AER performance using the cepstral features.

Features Dimension | Avg. Accuracy Avg. F1-Score | Avg. Retraining Time (sec.)
MFCC 13 0.881 0.716 2.524
MFCC with Derivatives 39 0.914 0.772 5.110
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LPCC 20 0.711 0.389 4171
LSP 255 0.761 0471 12.820

Table 3: The performance of AER using different feature combinations including MFCCs with its derivatives.

Features Dimension Accuracy | F1-Score Retraining Time (sec.)
MFCC 13 0.881 0.716 2.524
MFCC with 16 0.889 0.734 2.828
Spectral Features
MFCC with 14 0.879 0.708 2.580
Energy
MFCC with ZCR 14 0.883 0.721 2.644

In Table 2, the results are listed, in which MFCCs and MFCCs with their derivatives have the best prediction performances. It is
decided to prefer only MFCCs by considering the dimension of the features, and the computational time required with respect to the
dimension. As table 3 illustrates, using the variations of features with 1-dimension, the performance either deteriorated, or not
improved remarkably.

Furthermore, to decrese the computational time in the feature domain, the Kullback-Leibler distance based feature selection is
applied on the 13-dimensional MFCC features. Through the realization of five experiments, for MFCC and selected coefficients of
MFCC, the average AER accuracy and fl-score of lower HMMs, and the average computation time of the retraining of an HMM in
worst case are listed in Table 4.

Table 4: AER performance and retraining time of both MFCC and selected coefficients of MFCC features.

Features Accuracy F1-Score Prediction Time Retraining Time

(sec.) (sec.)

MFCC with 13 0.881 0.716 0.0060 2.524
coefficients
MFCC with

selected 8 0.849 0.670 0.0043 1.986
coefficients
MFCC with

selected 4 0.811 0.577 0.0038 1.180
coefficients

4.4.2 Results on Unknown Event Detection

In the UED experiments, different scenarios are considered to evaluate the performance of the detection of an unknown sound
source. First of all, we need to demonstrate the benefit of the upper HMMs for UED. For UED, only lower HMM with predefined
thresholds is compared with the Hierarchical HMM in terms of precision and recall (Table 5). The single layer HMM based solution
for UED especially suffers when multiple HMMs provide lower likelihood values when little differences between them exist, which
eventually deteriorates the recall of the detection of the known events to unknown. Therefore, analyzing the novelty also on the
Viterbi sequences by an upper HMM increases the precision and recall due to the decrease in the false-positive, and false-negative
rates.

Table 5: UED performance and detection time of only HMM and Hierarchical HMM.

Number of Avg. Precision | Avg. Recall | Detection Time(sec.)
Known Event
Only HMM 0.799 0.494 0.0178
Hierarchical
HMM 0.889 0.818 0.0271

Furthermore, the performance of UED using Hierarchical HMM is investigated considering; (1) if only one class is known, (2) if
three event classes are known, (3) if five event classes are known and (4) if only one event class is unknown (eight are known), in
which HMMs in the lower and upper layers of the Hierarchical HMMs have been trained using few audio patterns segmented from
only one isolated sound sample. The performances of UED in terms of precision, recall, the computational time of generation of a
lower HMM, and retraining of the upper HMM are shown in Table 6. Also, the time for the detection of one unknown class, in which
the predictions of all existing lower HMMs and the upper HMM is evaluated.

Table 6: UED performance and detection time of Hierarchical HMM in different scenarios.
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Number of Avg. Precision | Avg. Recall Detection Time
Known Event (sec.)
1(only one event 0.884 0.818 0.0103

is known)
3 0.859 0.792 0.0179
5 0.830 0.761 0.0210

8 (only one event
is unknown) 0.819 0.745 0.0218

In Table 6, the results of Hierarchical HMM in the scenarios in which only one, three, or five events are known, or only one event
is unknown. The selected three and five events are not similar to each other, therefore, the performance of UED is evaluated when at
least one event similar to the unknown one is known. A sample of UED experiment is demonstrated in Fig. 2, in which the suspicion
threshold (the red point), and the likelihood values computed by the upper HMM of the patterns belonging to unknown events (dish
machine, door closing, and vacuum cleaner) are shown. The correctly detected patterns are represented by the blue points, and the
patterns detected as undefined and known are represented by the green and yellow points, respectively.
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Figure.2: The likelihood values of the unknown events that are the true-positive samples (blue points), the false-positive samples
(green points), the patterns detected as undefined (yellow points), and the suspicion threshold (red point) over the whole test data
represented with the indices along the x-axis.

In the offline UED experiments, it is observed that the humber of sound samples used for training HMMs directly affects the
threshold values. In real-time experiments, an initial model is generated with the parameter values obtained in these offline
experiments by using few patterns of a randomly selected event.

4.5. Results of Real-Time Experiment on Auditory Scene Analysis

In this experiment, using a few sound samples of a number of domestic events, we have trained an initial lower HMM for each
known event and an initial upper HMM for all the events. In real-time, the sounds of absolutely unknown events including footsteps,
toilet flush, washing hands and opening and closing the doors are generated. Also, the sounds of the known events including kettle,
vacuum cleaner, washing machine and dishwasher are generated in real-time to evaluate the AER performance on the known classes
of the initial model.

The results of the two real-time ASA experiments are shown in Table 7, including the precision and recall values of AER and
UED. The lowest precision is belonging to the kettle due to the similarity between the audio patterns of kettle boton with the footstep,
and vice versa. Also, several patterns of toilet flush sound are mixed with the patterns of the dishwasher and vacuum cleaner. Most
distinctive sound is the vacuum cleaner and closing the outdoor.

Table 7: AER and UED performances and retraining time of lower and upper HMMs for different sounds.

Events Precision for Recall for Precision for Recall for
AER AER UED UED
Door Openning 0.811 0.770 0.888 0.804
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Door Closing 0.874 0.841 0.910 0.864
Footsteps 0.790 0.731 0.764 0.681
Kettle 0.757 0.689 0.784 0.599
Vacuum Cleaner 0.889 0.814 0.929 0.871
Toilet Flush 0.803 0.782 0.861 0.802
Washing Machine 0.819 0.800 0.844 0.814
Washing Hands 0.821 0.804 0.809 0.821
Dishwasher 0.796 0.764 0.840 0.790

The AER performances of two different continual learning experiments are shown in Figure 3. Also, the number of detected
events are indicated on the AER accuracy line that represents the number of patterns being detected as unknown and adapted into the
Hierarchical HMM at this point. While the number of unknown classes increase, the AER accuracy also improves. An average of 20-
35 different classes are detected in various experiments considering 101 event sounds with 12901 audio patterns are introduced.
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Figure 3: The performances of AER in 4 different sessions of lifelong learning experiments.

5. Conclusion

In this study, we proposed an approach for auditory scene analysis with continual learning and unknown event detection (UED) to
recognize the acoustic events in real domestic environments. For this purpose, we developed a system comprising audio feature
extraction, audio pattern segmentation, unknown event detection, and time-series based continual learning with retraining. In the
learning module, we utilized Hierarchical HMMs in which the lower HMMs are utilized for AER to recognize the feature sets, and the
upper HMM is employed for UED to predict the sounds being either "known", "unknown" or "undefined" events. The new knowledge
regarding the event is used to retrain the previous knowledge, or brand new lower and upper HMMs are generated for this event
satisfying the continual learning constraints. However, the retraining process may require a long time after a while. Thus, in this work,
not only learning performance but also the complexity of prediction and retraining were investigated. We assessed the effectiveness of
the system using scenes in the offline and the real-time ASA experiments. As a result, it is observed that the time-series based method
on the Mel-frequency cepstral coefficients (MFCCs) can incrementally learn and recognize the acoustic events in real-time ASA tasks.

As future work, the number of everyday sounds to be recognized will be increased to the order of hundreds and the performance
of the system will be verified. Besides, the real-time ASA will be utilized with a real robot where intelligent and autonomous
behaviors such as getting closer to the events and tracking the moving targets in the scenes will be performed to improve the
performance of AER.
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