Data Acquisition Module Design for Remote Monitoring of Uninterruptible Power Supply and Regression Models of Battery Life

Metehan Avkıran1,*, Vedat Gül2, Savaş Şahin3, İbrahim Tanağardıgil2

1 İzmir Katip Çelebi University, Faculty of Engineering and Architecture, Department of Electrical and Electronics Engineering, İzmir, Türkiye (*ORCID: 0000-0002-4165-3441)
2 Tescom Elektronik A.Ş, Department of Research and Development, İzmir, Türkiye

(Abu yazı 26-27 Haziran 2020 tarihinde HORA-2020 kongresinde sözlü olarak sunulmuştur.)

(DOI: 10.31590/ejosat.779967)

Abstract
In this study, the design of embedded system-based data acquisition card is implemented for uninterruptible power supply (UPS) for providing dataset of power, current, temperature, battery voltage values. The dataset is acquired with the developed data acquisition card designed with by using serial communication protocol and transmission control protocol/internet protocol. The obtained dataset is transferred with the its designed interface by using the Visual Studio program. Also, the battery life estimation of UPS is performed by various regression models with machine learning algorithms. Battery status, battery electrical energy consumption and temperature data were analyzed with root mean square error and R² score tests. Random forest regression performed better than other regression models for the obtained dataset for the battery life. The battery life estimation might be important for UPS performance.

Keywords: data acquisition card, interface, remote monitoring, battery life, machine learning, regression models.

Kesintisiz Güç Kaynağı için Uzaktan İzleme ile Veri Paylaşım Modül Tasarımı ve Regresyon Modelleri ile Akü Ömrü Tahmini

Öz

Anahtar Kelimeler: Veri paylaşım kartı, arayüz, uzaktan kontrol, akü ömrü, makine öğrenmesi, regresyon modelleri

1. Introduction
Uninterruptible power supplies (UPS) are devices that provide uninterrupted electrical power for the connected devices (Nasiri et al., 2008). Such devices are widely used in important sectors such as industry, healthcare and military (Gu et al., 2020). UPS might be designed at different operating conditions corresponding to the electrical power, electrical voltage, and current values suitable for the different sectors (Morrison and Egan, 2000; Mondal and Keisling, 2012). The electrical variable dataset of UPS might be monitored by using several communication ports and protocols depending on the area used (Hazen, 2003). Commonly used serial communication ports are RS232 and RS485 (Chai et al., 2008; Zhang et al., 2005). Communication protocols are used as transmission
control protocol/internet protocol (TCP/IP) and controller area network (CANBus) widely used in the industrial applications (Kaiser and Brudna, 2005; Yun et al., 2019; Wang and Dai, 2012). UPS data can be remotely controlled these communication ports and protocols (Medina et al., 2009). It was noted that monitoring UPS data set is a necessary issue for maintaining them (Morrison and Wells, 2009). Once the electrical energy is not supplied from the grid, UPS might supply the electrical energy to the connected systems with its batteries. So, such batteries performance is important for both sustainable electrical energy and efficiency of UPS (Asumadu et al., 2006). Therefore, in order to estimate battery life, the regression models might be used (Lin and Lin, 2019).

In this study, the design of embedded system-based data acquisition card is implemented for 10kVA UPS for providing dataset of power, current, temperature, battery voltage values. The dataset is acquired with the developed data acquisition card with serial communication protocol and TCP/IP. The battery life estimation of UPS is performed by several regression models. Battery status, battery electrical energy consumption and temperature data were analyzed with root mean square error (RMSE) and R² score tests. The obtained results are compared each other.

The rest of the paper is presented in the following sections, In Section 2, hardware design of data acquisition card briefly, software part of data transmitting and battery life estimation with regression models. In Section 3, the results from the prototype of the system are given, and conclusions and recommendations are presented in Section 4.

2. Material and Method

The developed data acquisition card module and UPS is given in the Fig.1. It consists of developed data acquisition card, transmitting data stage and interface design, respectively. There are two options for monitoring data remotely, they are provided with LAN connections and static IP connections.

![Image](image1.jpg)

Figure 1. The developed system for remote monitoring of the UPS

2.1. Developed Data Acquisition Card

The main components are given as follows ESP32-WROOM as microprocessor, RS-232 communication port as communication port, and LAN8710 as ethernet module. ESP32 is a series of low-cost, low-power system on a chip microcontroller with included Wi-Fi and dual-mode Bluetooth (Nikolov and Nakov, 2019). The RS232 is a standard originally introduced for serial communication transmission of data (Han and Kong, 2010). Ethernet modules enable the computer to communicate and stay in touch with all systems included in the network. The voltage, current, temperature and power data are displayed on the front panel of the UPS in Fig.2.
2.2. Transmitting Data and User Interface

The communication protocol of the 10kVA UPS was used with the developed algorithm given in Fig. 3 where the flowchart of communication algorithms is used for dataset transmitting. The correctness procedure of the data streaming is controlled with frame control function where each frame is check checked individually in terms of the number of incoming characters with parse command. TCP/IP communication protocol was used for the user interface monitoring UPS dataset in Fig.4. Once IP connection is provided, UPS dataset can be obtained remotely.

![Flowchart of communication algorithms for dataset transmitting](image)

2.3. Regression Models

Regression analysis might be assumed as a process of statistical methods which is used to estimate relationships between dependent and independent variables. The machine learning method aims to at learning the pattern recognition having several different algorithms and/or methods such as random forests, decision tree, support vector machines, neural networks, k-nearest neighbor and naive bayes (Pal, 2005). So it is to powerful method to provide the best fit for the obtained data (Freedman, 2009). In this study, it is aimed to estimate battery life of UPS by using regression models of machine learning algorithms. Regression model analysis provides both predicting and estimating of the relationship considered variables (Mason et al., 1991).
3. Result and Discussion

Battery life estimation of UPS is made with regression models by using machine learning algorithms. The data set is obtained from the 10kVA UPS produced by TESCOM A.Ş (Tescom, 2020). The attributes of the dataset used are as follows: discharge current, battery (+), battery (-), battery usage time and temperature. The overall dataset was preprocessed and analyzed thoroughly. Nine different regression models were examined to estimate battery life. These regression models are as follows; support vector machine, linear, light gradient boosting machine (LGBM), extreme gradient boosting (XGB), gradient boosting, random forest, decision tree, multi-layer perceptron (MLP) and K-neighbours regression. When applying these regression models, battery charge percentage and estimated time attributes in the data set were considered and in order to evaluate the their performances RMSE and R^2 score are used.

\[
RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2}
\]

where y_i is the estimated time data in the data set, \hat{y}_i is the value of the estimated time after the prediction of the regression model.

\[
R^2 = 1 - \frac{\sum_{i=1}^{m} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{m} (y_i - \bar{y}_i)^2}
\]

where y_i is the estimated time data in the data set, \hat{y}_i is the value of the estimated time after the prediction of the regression model and \bar{y}_i the is the average of the estimated times in the dataset.

As a result of data pre-processing, the battery charge percentage and estimated time are performed with random forest regression model is appropriate for battery charge estimation in Table 1 where the lowest RMSE value and the R^2 score value is closest to 1. It is depicted in Fig.5. The RMSE and R^2 results of random forests regression model is 63.1265 and 0.9964, respectively.

<table>
<thead>
<tr>
<th>Regression Models</th>
<th>Root Mean Square Error</th>
<th>R^2 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Vector Machine</td>
<td>1057.0299</td>
<td>0.0008</td>
</tr>
<tr>
<td>Linear Regression</td>
<td>77.2032</td>
<td>0.9946</td>
</tr>
<tr>
<td>LGBM Regression</td>
<td>465.0893</td>
<td>0.8065</td>
</tr>
<tr>
<td>XGB Regression</td>
<td>93.5188</td>
<td>0.9921</td>
</tr>
<tr>
<td>Gradient Boosting Regression</td>
<td>66.7964</td>
<td>0.9960</td>
</tr>
<tr>
<td>Random Forest Regression</td>
<td>63.1265</td>
<td>0.9964</td>
</tr>
<tr>
<td>Decision Tree Regression</td>
<td>117.6133</td>
<td>0.9876</td>
</tr>
<tr>
<td>Multi-Layer Perceptron Regression</td>
<td>965.1574</td>
<td>0.1670</td>
</tr>
<tr>
<td>K-Neighbours Regression</td>
<td>104.8204</td>
<td>0.9901</td>
</tr>
</tbody>
</table>

Figure 5. Battery charge estimation versus time
4. Conclusion and Recommendations

The embedded system-based data acquisition card is designed and implemented for 10kVA UPS for observing dataset of power, current, temperature, battery voltage values. The operating dataset of UPS variables are acquired with the developed data acquisition card having serial communication protocol and TCP/IP. The battery life estimation of UPS is examined by nine regression models with machine learning algorithms. Battery status, battery electrical energy consumption and temperature data were analyzed with RMSE and R^2 score. Random forest regression performed better than other regression models for the obtained dataset for the estimation of the battery life.

5. Acknowledge

This work is supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under 2209B-Bachelor Final Thesis Focused on Industry Program with Project number 1139B411901093

References

