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On the Loci of Relaxation Time and Magnetic Dispersion Maxima in the Mean-
Field Ising Model 

 

Songül ÖZÜM*1 

 

Abstract 

Based on the phenomenological approach, loci of relaxation time and magnetic dispersion 
maxima near the critical regime in a spin-1/2 mean-field Ising model were performed. The shift 
in temperature (T) of relaxation time (τ) maximum was detected and its behavior near the second-
order transition points are presented at different magnetic field values (h) and different lattice 
coordination numbers (q). An expression for the dynamic (or complex) susceptibility (χ = χ1 - iχ2) 
is also derived. The temperature dependence of the magnetic dispersion (χ1) and magnetic 
absorption (χ2) factors have been studied near the critical regime. It is found that the maximum 
of  χ1 as a function of frequency (ω) and kinetic coefficient (L) obeying an approximately 
exponential increases and decreases in T- ω  and T-L planes near the critical region. 

Keywords: Ising model, mean-field approximation, phenomenological approach, relaxation 
time, magnetic dispersion maxima 

 

1. INTRODUCTION 

The study of relaxation phenomena (RP) has 
attracted much attention in many areas of 
condensed matter and statistical physics. Recent 
efforts on the RP in many different systems are 
devoted to either experimental [1-5] or theoretical 
[6-9] basis. Besides above works, it is mostly 
known that the RP in different Ising systems are 
one of the most actively studied problems in 
statistical physics and encountered in different 
areas of physics [10-29]. Similarly, the magnetic 
responses of Ising systems have long time been a 
subject of interest because of their potential 
applications as: spin glasses [30], cobalt-based 
alloys [31], magneto-optical devices [32], 
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magnetic properties of magnetic fluids [33]. To 
achieve this aim, the authors constructed different 
types of Ising systems such as spin-1/2  Ising 
ferromagnet [34], Ising antiferromagnet [35], 
kinetic Ising model [36], spin-1/2  Ising system by 
using Monte Carlo simulations [37], an Ising 
system using the Glauber dynamics [38]. The 
static and dynamic properties of the magnetic 
responses of Ising systems have been investigated 
so far using a variety of techniques such as mean 
field approximation [27, 39, 40], Onsager’s theory 
of irreversible thermodynamics [41]. However, 
the dynamical magnetic response properties have 
not been studied in detail, e.g., the loci of 
relaxation time and magnetic dispersion maxima 
in a spin-1/2 mean-field Ising model. 
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In this paper, we would like to investigate the loci 
of relaxation time and magnetic dispersion 
maxima near the critical point in a spin-1/2 mean-
field Ising model in the presence of oscillating 
external magnetic field. Since then, we describe 
the model and give static properties in Section 2. 
Then, in Section 3, we derived the kinetic (or rate) 
equations and relaxation time under the 
phenomenological approach. The complex 
(magnetic) susceptibility is obtain and magnetic 
dispersion and absorption factors are calculated 
with the solution of rate equations in same 
section. In Sec. 4, we present and discuss the 
calculated results. Section 5 includes the 
summary and some concluding remarks related 
with the topic. 

2. THE MODEL AND ANALYSIS FOR 
EQUILIBRIUM STATE UNDER THE 

MEAN-FIELD APPROXIMATION 

The spin-1/2 Ising model can be described 
through the Hamiltonian (in the presence of an 
external magnetic field h)  

 
 i

i
ij

ji ShSSJ ,                                                   (1) 

where J  is the bilinear coupling between the 
spins at sites i and j. q  is the coordination number 
of the lattice (i.e. the number of nearest 
neighbours). Letting m  and N  be magnetization 
and the total number of Ising spins, Gibbs 
function )( hmTSEGG   may be written in 
the Curie-Weiss approximation      
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where k  and T  are the Boltzmann factor and 
temperature, respectively. Also, the second 
derivative of G  is 
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and we write the critical temperature ( CT ) by 

JqTC  . The magnetic field h is given by  
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The self-consistent equation has been obtained 
using Eq. (4) as  

))(tanh( hJqmm   .                                               (5) 

Thermal variations of m for different lattice 
coordination numbers ( 6,4q ) in the case of 

01.0L  and 1J  are plotted for the system 
which undergoes a second-order phase transition 
(SOPT) in Figure 1. The dotted lines in the figure 
show CT . From this figure one can see that m  

decrease to zero continuously from their values at 
4CT  for 4q  and 6CT  for 6q  as the 

temperature increases; hence a SOPT occurs. 

 

Figure 1 Temperature (T ) dependence of m  at 
various lattice coordination numbers ( q ) for 

01.0L  and 1J  
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3. DERIVATIONS OF KINETIC EQUATION, 
RELAXATION TIME AND DYNAMIC 

SUSCEPTIBILITY 

In this section, a mean-field approximation is used 
for the magnetic Gibbs free-energy production 
and a force and a current are defined. Then, the 
rate equation for the long-range order parameter 
(LROP or magnetization, m ) is obtained within 
linear response theory. By solving these equations 
relaxation time ( ) is calculated for temperatures 
near the SOPT. A good reference for the 
description of relaxation properties of the Ising 
model is [27], whose notation is used here. 

For a kinetic spin-1/2 Ising system, we define the 
)(tm  and for a nonequilibrium state, the   

towards equilibrium is written 


0mm

m


 .                                                                 (6) 

Where   characterizes the rate at which the 

LROP m  approaches the equilibrium ( 0m ). Eq. 

(6) is the simplest equation of irreversible 
thermodynamics [42] and can also be written as 
follows  

LXm ,                                                                               (7) 

where L  is the rate constant (or kinetic 
coefficient)  and X  is the generalized force 
conjugate to the current  m  by differentiating 

G  with respect to 0mm :  
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In Eq. (9), the coefficients are expressed: 
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The kinetic equation is found using Eqs. (8)-(10) 
in the Eq. (7): 

                                         
)()( 00 hhLmmLm mhmm   .                     (11) 

One can introduce the rate equation when 0h , 
i.e., 0hh   to find the   for the single RP. Eq. (11) 

can be written 

)( 0mmLm mm   .                                                   (12) 

If we had assumed a solution form with 
)/exp(0 tmm  for Eq. (12), we find 
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Using Eq. (10), one obtaines the relaxation time 
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The spin system is stimulated by a time dependent 

small external magnetic field tiehth 
1)(   

oscillating at an angular frequency  . The 
quantities will oscillate at the same   in the 
steady-state: therefore 

tiemmtm 
10)(  .                                                      (15) 

Substituting Eq. (9) into the rate equation Eq. (7) 
we obtain as following equation: 
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We will use Eq. (17) to obtain the complex 
(magnetic) susceptibility )( . The Ising system 
induced magnetization is written as 

)Re()( 1
tiemmtm   .                                           (18) 

m  is the magnetization induced by a h oscillating 
at  . In addition, )(  is given 

 tiehmtm  1)(Re)(   ,                                  (19) 

in which       21 i  is the dynamic 
susceptibility.  Real   1  and imaginary   2

parts of )(  are magnetic dispersion and 
absorption factors, respectively. Eq. (16)  can be 
given 

1
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The magnetic dispersion and absorption factors 
become 
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4. NUMERICAL RESULTS AND 
DISCUSSION 

Firstly, we plot the relaxation time   as a 
function of T  at using different lattice structures 
(with 6,4q  corresponding to the square and 
simple cubic lattice structures, respectively) for 
the case 01.0L  and 1J  in Figure 2. In this 
figure,   grows rapidly with increasing T  and 
diverges as the T  approaches the SOPT 
temperature. The curves shift towards higher 
temperatures with increasing q .  

 

Figure 2 T  dependence of   at various q  for 

01.0L  and 1J  

Thermal behaviours of    are performed for four 
values of the external fields ( ,0h  ,03.0 ,05.0  1.0 ) 
for 01.0L  and 6q  and for two lattice 
coordination numbers 6,4q  with 05.0h , 

01.0L . The results are displayed in Figures 3(a) 
and 3(b), respectively. Figure 3(a) shows that   
(black-colored curve) grows rapidly with 
increasing T  and diverges to infinity around CT  (as 

seen dotted line) when 0h . This result is a very 
good overall agreement with the relaxation 
phenomena around the Curie temperature 
belonging to the Bethe approximation in Barry’s 
works [34]. On the other hand, for 0h , maxima 
of the curves (or peaks) are observed in Figure 3(a). 
In particular, the maxima of these curves depend on 
the external field. One can see that with the increase 
of h  ( ,03.0h  05.0  and 1.0 ) the maxima become 
smaller and shift towards higher T . In Figure 3(b), 
for the sake of comparison in the case of different 
lattice structures ( 4q , square lattice and 6q , 
simple cubic lattice), we have also calculated   vs. 
T  for this system with 05.0h . The peaks become 
smaller and shift towards higher T  with increasing 
q . Also, we construct the plots of the maxima of   
that obtained from Figure 3(a) predicted for Ising 
model with 01.0L  and 1J  on the Th  plane in 
Figure 3(c).  
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Figure 3 (a) T  dependence of   at various h  for 
01.0L , 1J  and 6q . (b) T  dependence of   

for various q  with 01.0L , 1J  and 05.0h . (c) 
Loci of maxima of   (blue-colored square for 

4q ) and (red-colored square for 6q ) with 

01.0L  and 1J  on the Th   plane 

 

Figure 4 shows that the temperature behaviors of 
the 1   and 2  for the lower frequency regime 

1  for the case 01.0L  and 1J . Figures 4(a) 
and 4(b) show 1  and 2  increase with T  and tend 
to infinity around the phase transition point. The 1  
is independent of the  , whereas 2  depends on 

 . In these figures, dotted lines illustrate the CT  

and the black-, blue- and red-colored curves are for  
,102 5  ,104 5 ,106 5  respectively. These 

results are in qualitative agreement with the 
obtained calculations by Barry and Harrington [34, 
35, 41] and Gülpınar and co-workers [39, 40].  

 

 

 

Figure 4  (a) 
1  and (b) 

2  as a function of the T  
for the low-frequency region  1  when 01.0L  

and 1J  

The temperature behaviors of 1  and 2  are 

shown in the 1  for the case of 01.0L  and 
1J  in Figures 5(a) and 5(b). In both figures, 
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dotted lines represent the CT . 1  has two local 

maxima in the FM and paramagnetic (PM) phase 
regions, as shown in Figure 5(a). In this figure, one 
can see that these maxima are  - dependent.  The 
maximum observed at a temperature in the FM 
phase decreases and shifts to lower T  when   
increases. The peak found at a T  in the PM phase 
decreases but shifts towards higher T . A local 
minimum or a sharp dip is seen at the CT  for 

magnetic dispersion 1 . These results are also in 
coherent with other theoretical studies of dynamic 
susceptibility for well-known spin systems [34, 35, 
39-47].  

 

 

Figure 5 Same as Figure 4 but for the high-
frequency region ( 1 ) 

To observe the effect of rate constant (or kinetic 
coefficient) L  on 1  and 2  vs T  curves, we 
have drawn, in Figure 6, for different values of L  
with 1J  and 5102   obeying the 1  
condition. The red-, blue- and green-colored curves 
in Figures 6(a) and 6(b) correspond to the cases  

,03.0L  ,02.0  ,01.0  respectively. 1  in the 
FM and PM regions does not depend on the 
statistical rate parameter while 2  inversely 
proportional to L  (Figure 6(b)). Although 1  is 
very similar to that in Figure 4(a), 2  is different 
from the case in Figure 4(b). 

 

 

Figure 6 (a) 
1  and (b) 

2  as a function of the T  
for various values of L  when 1J  and 

52 1 0    

Figure 7 shows 1  and 2  vs T  curves using  
1J  and different L  values for 1 . In these 

figures, the dotted lines refer to the CT . Also, we 

have found that increasing values of L  raises the 
peaks for 1  and 2 . One can see in Figure 7(a), 
the heights and loci of the peaks obtained for 1  in 
the FM and PM phases depend on the L .  
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Figure 7 Same as Figure 6 but for 0.02   

As the last figures, we represent the loci of 
magnetic dispersion maxima in T -  and T - L  
planes in Figures 8(a) and 8(b). As seen in Figure 
8(a), the temperatures of maxima observed in the 
PM phase ( m

PT ) exponentialy increase (red-colored 
open diamonds) whereas the peak temperature in 
FM phase ( m

FT ) exponentialy decrease (blue-
colored open diamonds) with increasing frequency 
from 0  to 1. We also described, the exponential 
variation of the T  with the L for 02.0 and 

1J in Figure 8(b). It could be emphasized that 
the functional behaviours of m

PFT ,  obey second-

order exponential form as 
BaAaAT m

PF  )/exp()/exp( 2211,   . In 

Figure 8(a), for the blue-colored open diamonds we 
have determined the constants as ,13.21 A  

,04.01 a  ,42.12 A  1.302 a  and 35.5B  while 
for the red-colored open diamonds these are 
obtained to be ,9.361 A  ,27.01 a  ,9.342 A  

80.12 a , 9.7B . Also, we can present the 

exponential variation of the temperatures m
PFT ,  with 

the L  by BaLAaLAT m
PF  )/exp()/exp( 2211,   

in Figure 8(b). As a result of our calculations, the 
fit to second-order exponential function gave 
values equal to ,4.31 A  ,014.01 a  ,9.02 A  

,2.22 a  35.5B  for the red diamonds and 
,0.11 A  ,02.01 a ,01.02 A  ,02.02 a  9.5B  

for the blue diamonds in Figure 8(b). For Figures 
8(a) and 8(b), converging to 6T  (horizontal 
dotted lines) of both peak temperatures presents 
that 1  diverges to infinity is the continuous phase 
transition temperature. This result is the expected 
behaviour for Ising systems.  

 

 

 Figure 8 Loci of maxima of 
1  (a) for 01.0L  

on the T  plane and                                                                     
(b) for 02.0 on the LT   plane. 1J  
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5. CONCLUSION 

In this paper, we have investigated the loci of 
relaxation time and magnetic dispersion maxima 
in the mean-field spin-1/2 Ising model near the 
critical region. Firstly, having used LROP 
(magnetization) description, we obtained the 
simplest relaxation time ( ) based on 
phenomenological theory. Using different lattice 
coordination numbers ( q ) and magnetic field  ( h
) values, temperature vs   has been discussed.   
tends to infinity at 0h  near the phase transitions 
while it shows a peak in the presence of h . The 
plots of the maxima of   for different q  values 
have been also investigated. The temperature 
dependence of the magnetic dispersion ( 1 ) and 
absorption ( 2 ) factors have been analyzed and 
illustrated in the case of 01.0L  and 1J  for low- 
and high-frequency regimes. 1  and 2  
diverges to infinity at low-frequency regime as 

1  has two frequency-dependent local maxima 
(or peaks) in the FM and PM phases. In order to 
observe the effect of rate constant L  on the 
temperature dependence of 

1  and 
2 , we have 

plotted the magnetic dispersion and absorption 
factors in the low- and high-frequency regimes. 
As a result of frequency and kinetic coefficient 
dependence of 1 , we have shown loci of maxima 
of 1  with interesting features in T -  and T - L  
planes. The study of dynamic response of a spin 
system in the presence of sinusoidally varying 
magnetic field is an important subject for all 
magnetic systems and their potential applications. 
It shoul be mentioned that the knowledge of 
dynamic susceptibility reveal the technological 
importance of a variety of physical phenomena 
such as nanocomposite particles for the design of 
magneto-optical devices. 
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