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Abstract: The dimensionless temperature, the entropy generation rate and Nusselt number for a power-law fluid flow 

in a pipe with constant wall heat flux have been determined as functions of the Brinkman number, power-law index, 

dimensionless temperature difference and group parameters. The one-dimensional approximate equations with viscous 

dissipation for the energy, the entropy and the Nusselt number for a power-law fluid flow have been determined by 

accounting for the order of magnitude of terms and asymptotic techniques. The one-dimensional approximate equations 

of the velocity, the temperature and the entropy generation rate have been analytically solved to determine the velocity, 

the temperature and the entropy distributions in a non-Newtonian fluid flow as functions of the effective process 

parameters. The derived equation with viscous dissipation term for Nusselt number depending on power-law index and 

Brinkman number covers all types of pseudo-plastic and dilatant fluid behaviors. It has found that the Brinkman number 

is quite effective on the temperature, the Nusselt number and the entropy generation number. The Nusselt number has 

exponentially decreased with increasing Brinkman number at values of power-law index.  

Keywords: Brinkman number; entropy generation; viscous dissipation; power-law fluid flow. 

 

DAİRESEL BİR BORUDA ÜST KANUNU AKIŞKANININ AKIŞINDA ZORLANMIŞ 

TAŞINIMLA ISI TRANSFERİ 

 
Özet: Sabit duvar ısı akısına sahip bir boruda üst kanunu akışkan akışı için boyutsuz sıcaklık, entropi üretim hızı ve 

Nusselt sayısı, üst kanunu indeksi, Brinkman sayısı, boyutsuz sıcaklık farkı ve grup parametrelerinin fonksiyonu olarak 

belirlenmiştir. Üst kanunu akışkan akışında enerji, entropi ve Nusselt sayısı için sürtünme kaynaklı enerji üretim 

terimini içeren bir boyutlu yaklaşık eşitlikler; terimlerin büyüklük dereceleri ve asimptotik teknikler göz önünde 

bulundurularak çıkarılmıştır. Hız, sıcaklık ve entropi üretimi için bir boyutlu yaklaşık eşitlikler Newton kanununa 

uymayan akışkan akışını için hız, sıcaklık ve entropi dağılımlarını belirlemek için analitik olarak etkin parametrelerin 

fonksiyonu olarak çözümlenmiştir. Akış indeksi ve Brinkman sayına bağlı Nusselt sayısı için sürtünme kaynaklı enerji 

üretim terimli türetilmiş eşitlik, bütün pseudo plastik ve dilatant akışkan davranışlarını kapsamaktadır. Brinkman 

sayısının sıcaklık, entropi üretim sayısı ve Nusselt sayısı üzerinde oldukça etkin olduğu bulunmuştur. Üs kanununu 

indeksinin tüm değerlerinde Nusselt sayısı, Brinkman sayısının artmasıyla üstel olarak azalmıştır.  

Anahtar Kelimeler: Entropy üretimi; zorlanmış taşınım; Brinkman sayısı; üst kanunu akışkanı akışı. 

 
NOMENCLATURE 

 

Be Bejan number, Be = (NR+NC)/(NR+NC+NF)  

Br Brinkman number (Br  = Pr × Ec) 

Ci Integration constants, i = 0-5 

cP Specific heat capacity (J kg-1 C-1) 

D Tube diameter (m) 

Ec Modified Eckert number,  

 1 ( 1)

max /n n

z pEc v c T R    ve 
0 /T q R k   

Fri Froude number in i-direction = 
2

0 / iv Lg  

gi Gravity in i-direction (m/s2) 

Gi Re/Fri 

k Thermal conductivity of fluid (W/m C ) 

L Length of tube (m) 

Pe Peclet number = 
max /z Pv c R k  

Pr Prandtl number = 
0 /Pc k  

0q  Constant heat flux at the tube wall (W/m2) 

R Radius (m) 

Re Reynolds number = 
0 0/v D   

  Modified power-law index = 1/n 

NC Entropy generation number due to conduction in 

axial direction 

NR Entropy generation number due to conduction in 

radial direction 

NF Entropy generation number due to fluid particles 

friction 

NS Entropy generation number 

SG Entropy generation rate (W/m3 K) 

T Temperature (C) 

Tr = T0 Reference temperature (C) 

vi Velocity in i-direction (m/s) 
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vzmax Maximum velocity in axial direction (m/s) 

z Axial distance (m) 

 

Greek symbols 

 Thermal diffusivity of the fluid (m2/s) 

0 Dynamic viscosity of the fluid (Ns/m2) 

 Dimensionless temperature    0/ /rT T q R k   

 =T/T0  Dimensionless temperature difference  

 Density of the fluid (kg/m3) 

 Irreversibility Ratio = Br / 

ij Stress for ij sub-indices 

 Dimensionless radius  

 Dimensionless axial distance 

 

INTRODUCTION 

 

Many investigations on the flow of a Newtonian or a non-

Newtonian fluid in a circular duct at low Reynolds 

number and the heat transfer with forced convection have 

long been performed due to its importance to a variety of 

situations. The heat convection processes in Newtonian 

and non-Newtonian fluids confined in a circular/non-

circular tube has been intensively studied theoretically 

and analytically due to its importance for science and 

technology. The forced convection heat transfer occurs in 

increasing variety of modern instruments and systems 

such as micro-electro-mechanical system, laser-cooling 

system. 

 

Thereby, to construct efficient equipment in terms of 

energy consumption efficiency is important since the 

useful energy will be conversed in this way, which 

requires thermodynamically efficient heat transfer 

processes. The thermodynamic irreversibility associated 

with fluid flow and heat transfer inside a circular or non-

circular ducts at different boundary conditions is a 

subject of many researches (Bejan, 1979, 1982, Sahin, 

1998, Narusawa, 2001). 

 

Entropy generation in convective heat transfer in laminar 

flow of a Newtonian fluid confined in a circular duct with 

constant heat flux at wall was studied by Bejan (1979) to 

analyze entropy generation because of irreversibility due 

to heat transfer along the finite temperature gradient and 

irreversibility due to viscous effect. This work is 

extended by Bejan (1996) by adding calculation of the 

optimum Reynolds number as a function of Prandtl 

number and duty parameter. In another study, Bejan 

(1982) focus on a minimization of entropy generation due 

to irreversibility because of different reasons in applied 

engineering. Sahin (1998) extended Bejan’s studies 

(1979, 1982) by performing a second law analysis of 

viscous fluids in a circular duct at constant wall 

temperature. In another study Sahin (1999)  examined an 

effect of viscosity on the entropy generation rate for a 

heated circular duct. 

 

Entropy generation in a Newtonian fluid flow and heat 

transfer in a rectangular duct were analytically and 

numerically analyzed by Narasuwa (2001). The second 

law optimization techniques were used by Nag and 

Kumar (1989) to analyze the convective heat transfer in 

a Newtonian fluid flow in a duct at constant heat flux.  

 

Kamisli (2009) analyzed the flow of an incompressible 

Newtonian fluid confined in a planar geometry filled with 

a homogeneous and isotropic porous medium in terms of 

determining the unsteady state and steady state velocities, 

temperature and entropy generation rate as functions of the 

pressure drop, the Darcy number and Brinkman number. 

In another study, Kamisli (2008) performed analysis on 

fully developed laminar flow in a horizontal thin slit with 

the wall suction/injection in terms of entropy generation as 

functions of Prandtl number, Eckert number, cross-flow 

Reynolds number and the dimensionless temperature. 

Kamisli and Oztop (2008) performed a second law 

analysis of 2D laminar flow of two immiscible, 

incompressible viscous fluids in a channel in terms of 

determining entropy generation as functions of effective 

parameters such as the Prandtl number, the Eckert number 

and the viscous dissipation ratio. 

 

Sahin (2014) recently studied on the entropy generation 

in a duct in an effort to develop a model to estimate 

entropy generation. 

 

Unlike previous researchers Mahmud and Fraser (2006) 

examined thermodynamic irreversibility associated with 

the laminar flow of a non-Newtonian fluid confined in a 

circular at constant heat flux with a view to minimize 

entropy generation and thus to conserve useful energy. 

Souli and Aiboud-Souli (2009) studied on the entropy 

generation of power-law fluid flow on an inclined heated 

plate. Mukherjee et al. (2017) studied on forced 

convection in power-law and Bingham plastic fluids in 

different cross-sectional area of ducts. Thermal analysis 

of power-law fluid flow in a circular microchannel was 

performed by Sarabandi and Moghadam (2016). The 

convective heat transfer and entropy generation in either 

Newtonian or non-Newtonian power-law fluids with 

either constant or variable thermophysical properties in a 

parallel plate and/or a circular micro-channel were 

investigated by Kosar and Shojaeiam (2014, 2016) and 

Kiyasatfar (2018) at different boundary conditions 

namely no-slip and slip boundary conditions. Imal et al. 

(2017) numerically solved momentum and energy 

equations together using pseudo-spectral method based 

on the Chebyshed polynomials to analyze entropy 

generation in a non-Newtonian fluid modeled with 

Carreau equation with an exponential temperature 

dependence of viscosity.  
 

In this study, the flow of an incompressible non-

Newtonian fluid confined in a pipe with constant heat 

flux on the walls is analyzed to determine the temperature 

profiles, the entropy generation rate and the Nusselt 

number as functions of the power-law index, the 

Brinkman numbers and group parameters. This study 

differs from the previous studies by including viscous 

dissipation term in the energy equation used to compute 

temperature, entropy and thus the Nusselt number. It is 

observed that the viscous dissipation is quite effective on 

the temperature, the entropy and the Nusselt number. The 
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Nusselt number with Brinkman number and power-law 

index that is rather different from the previous studies 

(see Mahmud and Fraser, 2006) covers all types of 

pseudo-plastic and dilatant fluid behaviors. Furthermore, 

the equation with the viscous dissipation term for entropy 

generation number derived here is different from the 

previous studies since the Brinkman number in the 

temperature equation cause it to obtain in different shape. 

 

THEORETICAL ANALYSIS AND 

MATHEMATICAL FORMULATION 

 

Consider a steady state, incompressible non-Newtonian 

fluid flowing in the axial direction in a circular tube having 

a radius of R and a length of  as shown in Fig. 1. It is 

assumed that the heat flux at wall is constant, the non-

Newtonian fluid complied with power-law fluid model and 

flow is laminar and fully developed. It is considered that 

axisymmetric flow and thus the swirling component of 

velocity or -component of velocity (v) is zero.   

 

Figure 1. Schematic presentation of a circular duct.  

Three-dimensional equations of the continuity and the 

equations of the motion in cylindrical coordinates were 

used to derive the one-dimensional equation for a non-

Newtonian fluid flow in a pipe with the constant wall heat 

flux. An asymptotic analysis was used to simplify the 

equations of continuity and motion in dimensionless 

forms. Finally, the desired one-dimensional equation 

describing flow behavior of a non-Newtonian fluid in a 

tube was derived by using an approximate form of the 

velocity field for this geometry.  

The dimensionless variables for obtaining 

dimensionless forms of equations of continuity and 

motion are defined as; 
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where   is the length of the circular duct, D is the diameter of  

tube, v0 is the characteristic velocity in the z-direction and vr, v, 

vz are the velocities in the r,  and z-directions. In order to 

preserve momentum balance in the axial direction, the pressure 

is scaled by the term of 0 v0  /D2 since the dominant flow 

occurs in this direction. The components of velocity are scaled 

with considering the mass conservation in the duct. The 

characteristic velocities in the r and -directions have to be 

proportional with v0 because the characteristic velocity in the z-

direction is larger than velocities in the r and -directions as 

expected. The dimensionless equation of continuity is obtained 

using the defined dimensionless variables. 

 

 
1

0z

r

v vD
rv

r r z





  
   

   
   (1) 

The diameter of duct (D) is quite small with respect to the 

characteristic length of a circular duct ( ); therefore, the term 

of D/  in Eq. (1) is much less than unity. The variations in 

dimensionless quantities come about over dimensionless length 

scales of order unity.  

 

The dimensionless stresses can be acquired using the defined 

dimensionless variables as follows: 
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 
 

   


   

 

 
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    

  

 

 

The steady state dimensionless momentum equations in terms 

of stresses in the r,  and z-directions are, respectively, given as 

follows: 

 

 

4

3 2

Re

1 1

r r

r z

r rz

rr

v v vv v
v v

r r r z

P
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  

 

 


  
  



    
     

    

   
          

   (2) 
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     (3) 

  2

Re

1 1

z z z

r z

z z

rz

vv v v
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r r z

P
r Gz

z r r r z


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 


 
 


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    
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         

         (4) 

 

Where; 

0

0

2 2

0 0

Re Re
, Re , , ,

Re
, ,

r

r

z i z

z i z

v DD
G G

Fr Fr

v v
G Fr Fr

Fr Lg Dg









   

  

 

 

Here gi stands for the component of gravity in the i-direction, 

Fri, the Froude number in the i-direction and Re, the Reynolds 

number.  

 

Since parameter of /D   is much less than unity, the 

obtained dimensionless continuity and momentum equations 

are simplified to be following equations. Thereby, as    0, 

Eqs. (1), (2) and (3) become respectively.  

 

R 

dz 

r 
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0zv

z





      (5) 

0
P

r





      (6) 

0
P







      (7) 

 

Eq. (5) shows velocity is independent of z-direction and Eqs. 

(6)  and (7) point out that there are no pressure variations in r 

and -directions. In other words, the pressure has to vary in the 

axial direction only.  

 

The equation of momentum in the axial direction will simplify 

to the following equation when letting   0 for a pipe and Re 

<< 1 for a laminar flow. 

 

 
1 1

0 z

rz

P
r Gz

z r r r




  
        

  (8) 

 

The dimensionless momentum equation in the axial direction 

for a Newtonian or non-Newtonian fluid flow in circular is 

obtained in Eq. (8). Froude number in the axial direction 

becomes infinity because the gravitational force in this direction 

is zero; thereby Gz has to be equal to zero. The second term in 

parenthesis in Eq. (8), /z   , is equal to zero since it is 

assumed that flow is axisymmetric. Therefore, Eq. (8) further 

simplifies to the following equation.  

 

 
1

0 rz

P
r

z r r


 
  

 
    (9) 

 

Eq. (9) is the dimensionless form of the momentum equation 

for unidirectional pressure driven flow of a Newtonian or a non-

Newtonian fluid in a circular duct. After obtaining its simplified 

form, the dimensional form of simplified equation will be taken 

into consideration in the solution. 

 

The following dimensionless variables are used to non-

dimensionalize the energy equation at steady state. 

 

   

   

2

0 00

0

, , ,
//

/ / ,

r z

r z

r

qq q
q q q

q q Dq D

z
T T q D k z

D Pe






  
 

  

 

 

The qr is scaled with the term of 0q by taking into account 

dominant energy transfer that takes place in radial direction. By 

considering energy conservation and the imposed boundary 

condition, the components of q were scaled as above. The 

characteristic heat fluxes in the  and z-directions have to be 

proportional with the characteristic heat flux ( 0q ) in the radial 

direction because the heat transfer in the r-direction is larger 

than those in the  and z-directions. The previously defined 

dimensionless variables except z  are also used here since 

dimensionless z is redefined to preserve third term on left hand 

side of Eq. (10). The steady state dimensionless equation of 

energy in cylindrical coordinate (for the equation see Bird et al., 

2007) is obtained as follows: 
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Where Pe is the Peclet number. The dimensionless form of 

: v   (for the equation of : v   see Bird et al., 2007) is 

obtained with using the dimensionless stresses and velocities as 

follows:  
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Where 0 0/ ( / )v D   , 0/v v v  and / (1/ )D   . The 

dimensionless equation of dissipation energy can be reduced to 

following equation since /D  is much less than unity. 

That is why, the equation of dissipation energy (Eq. (11)) 

becomes as   0. 
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As stated earlier the second term on right hand side of Eq. (12) 

is equal to zero for an axisymmetric flow. Thereby, Eq. (12) 

becomes  

 

: z

zr

v
v

r
 

 
   

 
     (13) 

 

Eq. (13) is the equation of viscous dissipation energy for one 

dimensional axial flow of a Newtonian or a non-Newtonian 

fluid confined in a circular duct. Substituting Eq. (13) into Eq. 

(10) and performing simplification by taking account of the 

order of magnitudes of terms as   0, the resulting equation 

becomes 

 

  
1 z

z r zr

v
v rq

z r r r




   
    

   
   (14) 

 

Eq. (14) is the dimensionless equation of energy with viscous 

dissipation term for a one-dimensional axial flow and a one-

dimensional heat transfer in radial direction. Here it is assumed 

that heat conduction in the axial is much less than that in radial 

direction by exempting a flow of liquid metal in a duct. After 

obtaining a one-dimensional equation of energy, the 

dimensional form of the simplified equation (Eq. (14)) will be 

considered in the solution. 
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ANALYTICAL SOLUTION 

 

A power-law fluid confined in a circular duct having radius of 

R and length of was considered in the solution. In order to 

solve Eq. (9) two boundary conditions are specified as follows: 

bounded at 0rz r       (15) 

0 atzv r R       (16) 

 

Integration of Eq. (9) once and applying the boundary condition 

in Eq. (15) gives following equation.  

 

 
1

2
rz

dP
r

dz
        (17) 

 

rz for a non-Newtonian fluid exhibiting a power-law 

fluid behavior is defined as:  
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Inserting Eq. (18) into Eq. (17), and then integrating and 

using the boundary condition given in Eq. (16) result in 

the following equation. 
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        (19) 

 

Here   = 1/n can be called as a modified fluid index and 

vzmax stands for maximum or centerline velocity and Eq. 

(19) in dimensionless form can be shown as follows: 

 

   1

max/ 1z zv v v         (20) 

 

where v and  = r/R are dimensionless velocity in the 

axial direction and dimensionless distance in radial 

direction (dimensionless radius), respectively.  

 

After obtaining the equation of velocity for a power-law 

fluid flow in a circular duct, we can deal energy equation. 

If Eq. (18) and the heat flux from Fourier law are inserted 

into Eq. (14), the energy equation in dimensional form 

can be expressed as follows:  
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  (21) 

 

The non-dimensionless form of this equation can be 

obtained with introducing following dimensionless 

variables. 
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Introducing these dimensionless variables to Eq. (21) the 

dimensionless energy equation will be obtained as 

follows: 
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       (22) 

 

Where  0 /Pc k  and  1 1

max 0/ [ / ]n n

z Pv q R k c R   are Prandtl 

number (Pr) and modified Eckert number (Ec), 

respectively and Pr × Ec is called as Brinkman (Br) 

number for power-law fluid. While the left hand side of 

Eq. (22) stands for the convection heat transfer in axial 

direction, the first and the second terms on the right hand 

side of Eq. (22) represent thermal diffusion and viscous 

dissipation, respectively. Since Eq. (22) is a non-

homogenous partial differential equation, it may be 

solved with the method of separation variables and it can 

be assumed that the dimensionless temperature is 

functions of  and  in following form (Mahmud and 

Fraser, 2006).   

 

         , f g f g            (23) 

 

The first term on the right side of Eq. (23) is substantial 

for an initial transient and entrance effect. The second 

term is in Eq. (23) for considering an enhancement of 

axial temperature because of the accumulated wall heat 

flux and viscous dissipation, and the third term is 

important for radial temperature variations because of the 

wall heat flux and viscous dissipation since the viscous 

dissipation term is significant parameter and not 

disregard in the present study. It is stated earlier that the 

system is at steady state and entrance effects are 

neglected; therefore, Eq. (23) will be reduced to 

following form. 

 

     , f g          (24) 

 

Substituting Eq. (24) and the suitable forms of Eq. (20) 

into Eq. (22) gives two separate ordinary differential 

equations as follows: 
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       (25) 

 

It is seen from Eq. (25) the axial temperature is directly 

proportional with the axial distance. Therefore, the 

solution of Eq. (25) will be as follows: 
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  (26) 

 

Here C0 can be called as a constant of separation variable 

and C3 and C4 are integration constants.  

The minus sign inside parenthesis in the term of 

  
( 1)/

1
 




   comes from the derivative of velocity of 

a power-law fluid is not realistic since its value is positive 

for   = 1 (Newtonian fluid) and it can be encountered 

with mathematic error even values of   are very close to 

1 such as 0.99 or 1.01. Therefore, the negative sign inside 

parenthesis will be dropped out hereafter since it is not 

possible such a dramatic change in the value of term by 

infinitesimal variation in  .  

In order to determine the constants C0, C3 and C4, the 

following boundary conditions are used.  

 

0 at 0, for 0 1         (27a) 

bounded at 0, for 0       (27b) 

/ 1 at 1, for 0          (27c) 

 

From Eq. (26) and boundary condition Eq. (27b) C3 has 

to be equal to zero since while the left side of Eq. (26) is 

finite, the right side of Eq. (26) does not unless C3 is equal 

to zero and from boundary condition Eq. (27c) C0 is 

determined as follows: 
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  (28) 

 

Note that C0 includes Brinkman number. C4 can be 

evaluated from the mixing cup temperature defined as 

follows: 
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Substituting Eq. (20) and Eq. (26) into Eq. (29) and 

performing the required integration yields following 

equation.  
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 (30) 

 

From the boundary condition of 0 at 0m   , C4 is 

determined as follows: 
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Substituting C4 into Eq. (30) yields following equation.  
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By substituting C3 and C4 into Eq. (26), the equation for 

temperature distribution is obtained as follows: 
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 (32) 

 

The dimensionless wall temperature (w) can be obtained 

from Eq. (32) by substituting 1 for  and then the 

asymptotic difference between wall and mixing-cup 

temperatures is obtained as 
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(33) 

 

The asymptotic Nusselt number in terms of the 

dimensionless wall temperature and mixing-cup 

temperature can be evaluated by considering the heat 

balance boundary condition at the internal surface of the 

tube wall as follows. 
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 (34) 

 

When Br is taken to be equal to zero, Eq. (34) becomes a 

similar equation given by Mahmud and Fraser (2006). 

For   = 1 that corresponds to Newtonian fluid, the 

asymptotic Nusselt number becomes  
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k Br
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
    (35) 

 

If Br is taken to be zero that represents the temperature 

of fluid is independent of viscous dissipation, the Nusselt 

number takes its well-known value of 4.36. As can be 

seen in Eq. (35) if heat transfer due to viscous dissipation 

is comparable with heat conduction due to temperature 

difference, the Nusselt number can substantially vary 

with Brinkman number. Eq. (34) can be used to evaluate 

Nusselt number for different flow situations such as slug 

flow, Newtonian flow and non-Newtonian flow. In other 

words, by using Eq. (35) the Nusselt number can be 

evaluated as functions of the Brinkman number and 
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power-law index that covers all types of pseudo-plastic 

fluid and dilatant fluid behaviors. 

 

ENTROPY GENERATION IN A NON- 

NEWTONIAN FLUID IN A CIRCULAR DUCT 

 

Consider a power-law fluid is flowing in the z-direction 

in a horizontal circular duct. It is assumed that laminar 

viscous flow through the circular duct subjected to 

constant wall heat flux occurs for a non-Newtonian fluid 

with the constant physical properties (, , k, cP). The 

entropy generates because of viscous dissipation of a 

power-law fluid flow and the constant heat flux at wall to 

the fluid. The volumetric rate of entropy generation for a 

non-Newtonian fluid flow in a circular duct can be 

expressed as follows (Bejan, 1979; Bird et al., 2007): 
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       

      
  (36) 

 

As can be seen from Eq. (36) the entropy generates 

during a Newtonian or non-Newtonian fluid flow 

because of the heat conduction in the spatial directions 

and viscous dissipation. 

 

The previously defined dimensionless variables were 

used to obtain the dimensionless entropy generation rate 

from Eq. (36) and the dimensionless simplified form of 

: v   (Eq. (13)) is inserted to Eq. (36) and the resulting 

equation is given by 
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 (37) 

In order to derive the one-dimensional approximate 

equation for entropy generation rate of a non-Newtonian 

fluid flow in a circular tube, the orders of magnitude of 

terms were used in the dimensionless entropy generation 

rate equation. Here 

max /z PPe v c R k , ( ) /rT T T    , 0 /T q R k  , 

0T/T , 0Pr /pc k ,  1 ( 1)

max /n n

z pEc v c T R   , 

Br = Pr × Ec 

 

The dimensionless entropy generation rate that is called 

as a local entropy generation number (Bejan, 1979) is 

given with Eq. (37) and  the denominator in the first term 

at the right hand side of Eq. (37) is called the 

characteristic entropy transfer rate (SG,C) that is equal to 

 

 2 2 2

, 0( ) /G CS k T R T  
      (38) 

 

It is assumed that temperature gradient in the r-direction 

is small (Bejan (1979)), that is, is much less than unity 

in T = Tr + T and T can be taken equal to Tr. That is 

why T is taken to be equal to T0 in Eqs. (37) and (38). 

An alternative form of Eq. (37) can be given as follows:  

 

S R C FN N N N        (39) 

 

On the right hand side of Eq. (39) the first term (NR) 

denotes the entropy generation by heat transfer due to the 

radial conduction, the second term (NC) represents the 

entropy generation due to axial heat conduction and the 

third term (NF) accounts for the entropy generation due 

to the friction among fluid particles.  

The entropy generation number for a flow of a 

power-law fluid confined in a circular geometry is 

obtained by substituting the derivatives of Eq. (20) with 

respect to   and Eq. (32) with respect to  and   into Eq. 

(39) as follows: 
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       (40) 

 

In literature the second term on the right hand side of Eq. 

(40) is dropped out for values of Peclet number larger 

than 4. In this study the second term on the right hand 

side of Eq. (40) is also dropped out for values of Peclet 

number larger than 4. 

 

For a Newtonian fluid flowing in a circular tube, the 

equation of entropy generation number with viscous 

dissipation term in temperature distribution can be 

obtained by taking 𝛾 = 1 in Eq. (40) as follows: 
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The obtained equation for entropy generation number for 

a non-Newtonian fluid flow in a circular duct is used to 

determine entropy generation profiles as functions of 

power-law index, the group parameters, the Brinkman 

number and the dimensionless radial distance (radius of 

the tube). 

 

If Eq. (40) is compared with Eq. (39), it will be seen that 

each term in Eq. (39) corresponds to the term in Eq. (40) 

as follows: 

 

 

   

 

 

( 1)/2

2
( 1)/

2

2 3 2 1

2 3 1 1

1

3

R

Br
N

Br

 

 



  

  












     
           

 
 

 

(42) 



24 

   
2

( 1)/

2

2 3 2 1 1

1 1
C

Br
N

Pe

 
 

 

  
  

   

  (43) 
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Eq. (42) denotes the entropy generation due to heat 

transfer by conduction and viscous dissipation in the 

radial direction and Eq. (43) represents the entropy 

generation due to heat transfer by conduction and viscous 

dissipation in the axial direction. On the other hand, Eq. 

(44) stands for the entropy generation due to viscous 

dissipation because of velocity gradient. Unlike previous 

studies, each terms contains viscous dissipation effect 

since the equation for temperature distribution has been 

derived by considering viscous dissipation effect that is 

expressed in terms of Brinkman number.  

 

RESULTS AND DISCUSSIONS 

 

The dimensionless entropy generation has been analyzed 

using the velocity and temperature distributions for a 

power-law fluid flow in a circular duct with constant wall 

heat flux. The effects of the power-law index, Brinkman 

number and group parameter on the temperature 

distribution and entropy generation number have been 

researched with changing one of the parameters while 

keeping the rest of parameters constant at certain values. 

 

Fig. 2 illustrates variation of dimensionless velocity of a 

power-law fluid in a circular duct as a function of 

dimensionless axial distance for various values of power-

law index. As can been in the figure bluntness of velocity 

profiles increases with decreasing power-law index. In 

other words, the shear layer becomes thinner with 

decreasing power-law index or increasing non-

Newtonian behavior of a fluid. Although it is not shown 

in the figure, an almost linear velocity gradient can be 

obtained by increasing power-law index to large values 

(n > 10). 

Figure 2. Dimensionless velocity profiles for various values of power-

law index (n). 

 

The obtained velocity expression was used in the energy 

equation with viscous dissipation term to obtain 

temperature distribution for the power-law fluid flowing 

in a circular duct. Dimensionless temperature () as a 

function of dimensionless radius at the constant axial 

distance of  = 0.1 and Br = 0 is presented in Fig. 3 for 

various values of power-law indices. As can be seen in 

the figure, temperature profiles increase with increasing 

power-law index (n) at any value of dimensionless  

radius. 

 

 
Figure 3. Dimensionless temperature as a function of   for various 

values of n at  = 0.1 and Br = 0. 

 

Unlike previous studies, in the present study a viscous 

dissipation term is not dropped out in the energy equation 

(see Eq. (22)). In order to examine the effect of viscous 

dissipation presented here in terms of Brinkman number 

(Br), the dimensionless temperature as a function of 

dimensionless radius is depicted in Fig. 4 for various 

values of Brinkman number at the constant axial 

direction ( = 0.1) and two constant values of power-law 

index of n = 0.90 and 3.60.  As can be seen in the figure 

the dimensionless temperature increases with increasing 

Br at any radial distance for the considered power-law 

indices. It is also seen that the dimensionless temperature 

increases with increasing power-law index at all values 

of Brinkman number. The comparison of Fig. 3 with Fig. 

4 reveals a magnitude of dimensionless temperature with 

Br is much larger than that of dimensionless temperature 

without Br.  

 

 
Figure 4. Dimensionless temperature as a function of   for various 

values of Br and n at  = 0.10. 
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Moreover, the dimensionless temperature without Br 

increases with dimensionless radius more rapidly than 

that containing Br as evidenced in Fig. 3 and Fig.4. 

 

The dimensionless temperature () as a function of 

dimensionless radial distance () at constant value of 

power-law index (n)  and Brinkman number (Br) is 

plotted in Fig. 5 for various values of the axial distance 

() to examine effect of the axial distance on the 

dimensionless temperature profiles. As seen in the figure 

the shape of dimensionless temperature profiles remains 

the same for all values of  at particular value of n (=0.90) 

but displays a shift to increasing temperature for 

increasing  since amount of thermal energy transferred 

to the fluid from the tube wall and the energy due to 

viscous dissipation increase with increasing the axial 

distance. In other words, due to the imposed boundary 

conditions, a power-law fluid inside the tube is heated by 

the energy generated due to viscous dissipation and 

thermal energy coming from the tube wall at all values of 

n as confirmed in Fig. 5.  As can be seen in the figure the 

dominant heat conduction takes place in the axial 

direction since the dimensionless temperature changes 

insignificantly with the dimensionless radius at all the 

values of .  The effect of dimensionless radius on the 

dimensionless temperature is perceivable at low values 

of . 

 

 

 
Figure 5. Variation of dimensionless temperature with an axial 

distance at constant n and Br. 

 

The effect of the power-law index on the dimensionless 

temperature gradient distribution as a function of the 

dimensionless radius is illustrated in Fig. 6 for a constant 

value of Brinkman number (Br = 0). The dimensionless 

temperature gradient values in Fig. 6 are computed from 

Eq. (32) by taking derivative with respect to   and 

changing   at each specified value of the power-law 

index and keeping the Brinkman number zero. The figure 

shows that the dimensionless temperature gradient is 

almost linear at low values of the power-law index; for 

instance n = 0.1. The variation of temperature signifies 

the heat flux increasing linearly from zero at the center of 

the tube to 1 at the tube wall by conduction heat transfer 

between these two points and the energy generation 

because of viscous dissipation is not existed since Br is 

taken to be zero. An increase in the power-law index 

results in a non-linear temperature gradient as evidenced 

in Fig. 6. The temperature gradient in a power-law fluid 

flow in a circular duct increases with increasing power-

law index  at constant values of the Brinkman number (Br 

= 0) and the maximum temperature gradient takes place 

inside the power-law fluid near the wall about values of 

 between 0.7 – 0.9  depending on values of power-law 

index. The nose of dimensionless temperature gradient 

happens at a region between the centerline and the wall 

of the circular geometry. A higher entropy generation 

takes place at around this region since the maximum 

temperature gradient occurs around this region.  

  

 
Figure 6. Dimensionless temperature gradient as a function of 

  for various values of n at Br = 0 
 

Fig. 7 illustrates the effects of Brinkman number on the 

dimensionless temperature gradient for a specified 

different value of the power-law index. As can be seen in 

the figure, the dimensionless temperature gradient varies 

nonlinearly at the considered values of the Brinkman 

number (Br). The linear temperature gradient indicates 

that the energy due to heat conduction in the radial 

direction is more pronounced than the energy owing to 

the viscous dissipation. As seen in the figure, an increase 

the power-law index causes an increase in the deviation 

from the linearity of the temperature gradients. As seen 

in the figure, the temperature gradient increases with 

increasing power-law index. 

 

For different values of Brinkman number, the 

dimensionless temperature gradients depending on the 

dimensionless radius are shown in Fig. 7 and Fig. 8 at the 

constant values of power-law index of n = 0.9 and 1.8, 

respectively. The energy generation on account of 

viscous dissipation increases with increasing the 

Brinkman number in Fig. 7 and Fig. 8 as expected. If one 

compares Fig. 6 and Fig. 7 or Fig. 8 with one another, it 

will be seen that the influence of the Brinkman number 

on the dimensionless temperature gradient is more 

pronounced than that of the considered values of power-

law index. Furthermore, comparison of Fig. 7 and Fig. 8 

with each other will reveal that the shapes of temperature 

profiles for different values of power-law indices (n = 0.9 

and 1.8) are almost identical at the considered values of 
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power-law indices although magnitudes of dimensionless 

temperature are somewhat different for the same values 

of Brinkman number. 

 

 
Figure 7. Temperature gradient as function of   for various values of 

Br  at n = 0.90. 

 

 

 
Figure 8. Temperature gradient as function of   for various values of 

Br  at n = 1.80. 

 

The derived dimensionless temperature expression was 

used in the boundary condition at the internal surface of 

tube wall to obtain Nusselt number that is derived 

functions of power-law index and Brinkman number (see 

Eq. (34)). The Nusselt number as a function of Brinkman 

number for various values of power-law index (n) is 

illustrated in Fig. 9. As can be seen in the figure the 

Nusselt number decreases exponentially with increasing 

Brinkman number at all values of power-law index and 

the effect of power-law index on the Nusselt number is 

getting decrease with increasing Brinkman number and 

eventually disappears. A decrease in the Nusselt number 

with increasing Brinkman number at constant value of 

power-law index can be attributed to variation of thermal 

properties of fluid such as an increase in thermal 

conductivity and a decrease in density of the fluid with 

increasing temperature due to viscous dissipation. Fig. 10 

shows the variation of Nusselt number with power-law 

index at constant value of Brinkman number (Br = 0). As 

can be seen in the figure the Nusselt number decreases 

exponentially with increasing power-law index and it 

takes its well-known value of 4.36 at n = 1 (Newtonian 

fluid). A decrease in Nusselt number with increasing 

power-law index can be attributed to an increase in the 

film thickness of fluid on the tube surface that may cause 

heat transfer coefficient to decrease in the internal surface 

of a circular tube wall since the shear layer becomes 

thicker with increasing power-law index (see Fig. 2).  

 

 
Figure 9. Nusselt number as function of Brinkman number for various 

values of n. 

 

 
Figure 10. Nusselt number as a function of power-law index (n) at Br = 0. 

 

The entropy generation in the non-Newtonian fluid flow 

in a circular duct was analyzed using the obtained 

equations for velocity and temperature gradients. In this 

context, to determine the effect of the power-law index 

on the entropy generation, the dimensionless entropy 

generation number as a function of the dimensionless 

radius is depicted in Fig. 11 for constant values of the 

Brinkman number (Br = 0) in the equation of temperature 

gradient and the group parameter (Br/  = 0) in the 

equation of entropy generation. Eq. (40) was used to 

compute the entropy generation values by changing  at 

each specified value of the power-law index while 

keeping the Brinkman number and the group parameter 

being zero. Fig. 11 illustrates that the dimensionless 

entropy generation rate increases insignificantly with 

increasing the power-law index at all values of the 

dimensionless radius. The tip of entropy generation rate 

locates between the centerline and the wall of tube, which 

occurs at the maximum velocity gradient (see velocity 
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profiles). Furthermore, there is no entropy generation at 

centerline for each specified value of the power-law 

index. This figure agrees with Fig. 6 in which the nose of 

temperature gradient at each specified value of the 

power-law index has developed in a region between the 

centerline and the tube wall. The minimum temperature 

gradient will produce the minimum entropy generation. 

It is also seen in the figure the entropy generation near 

the walls is larger than that in any other locations in the 

circular duct. Therefore, the larger velocity and 

temperature gradients near the walls cause larger entropy 

generation in the same region. Furthermore, when Br and 

Br/  are, respectively, taken to be zero in the equations 

of temperature gradient and entropy generation rate, the 

entropy generation at each considered value of the 

power-law index displays a similar trend. 

 

 
Figure 11. Entropy generation number as function of   for various 

values of n at Br = 0. 

 

Fig. 12 depicts that the entropy generation number versus 

dimensionless radial distance at different values of Br for 

constant values of power-law index (n = 0.9) and group 

parameter (Br/  = 0). The effect of Brinkman number 

on the entropy generation rate is much more pronounced 

than on temperature as evidenced in Fig. 12 although the 

group parameter in the equation of entropy generation 

rate is taken to be zero. As can be seen in the figure an 

increase in Brinkman number increases the entropy 

generation at a constant value of power-law index.  As 

mentioned previously there is no entropy generation at 

the centerline of the tube at all the values of Brinkman 

numbers and the entropy generation rate reaches the 

maximum value at the values of dimensionless radius 

between 0.6 and 0.75 depending on values of Brinkman 

number and is equal to 1.0 at the wall of circular duct due 

to the imposed boundary condition on it. 

 

In order to evaluate the effect of the group parameter 

(Br/ ) on the entropy generation for two different values 

of the power-law index, the entropy generation number 

versus the dimensionless radius are depicted in Fig. 13 

and Fig. 14 at different values of Br/.  The entropy 

values in Fig. 13 and 14 were calculated from Eq. (40) by 

varying the  while keeping the power-law index 

constant at values of 0.9 and 2.7, respectively. The figure 

displays that an increase in the group parameter (Br/ ) 

causes an increase in the entropy generation number at 

constant values of power-law index. The entropy 

generation number at a value of Br/ = 0.45 is much less 

than that at the high value of Br/ = 2.10. There is no 

entropy generation rate at the centerline of the circular 

duct for all the values of Br/  and the entropy generation 

rate increases substantially with increasing the 

dimensionless radius () at all values of group parameter. 

Therefore, the effect of dimensionless radius on the 

entropy generation rate is pronounced at the considered 

values of group parameter as confirmed in Fig. 13 and 

Fig. 14. Owing to high temperature and velocity 

gradients near the walls, it can be said that circular duct 

walls behaves as an irreversibility producer at high values 

of group parameter. If one compares Fig. 13 and Fig. 14 

with one another, it will be seen that the effect of group 

parameter on the entropy generation is more pronounced 

at the high value of power-law index (n = 2.7) than at the 

low value of power-law index (n = 0.9). As seen in those 

figures entropy generation rates are not ended at value of 

1.0 since viscous dissipation effect becomes more 

effective with increasing Br and Br/  and the end points 

of profiles increase with increasing group parameter. 

 

 
Figure 12. Entropy generation number as function of   for 

various values of Br  at n = 0.90. 
 

 
Fig. 13. Entropy generation number as function of   for various 

values of Br and  at n = 0.90. 
 

The dimensionless entropy generation number (Ns) as a 

function of dimensionless radius () is depicted in Fig. 15 
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for various values of Brinkman number and group 

parameter at constant Peclet number. The local heat 

transfer irreversibility remains almost constant with 

increasing dimensionless radial distance () , which 

means the term coming from the axial conduction (Eq. 

(43)) is dominant over the term coming from the radial 

conduction (Eq. (42)) and the viscous dissipation as in 

temperature distribution obtained by considering axial 

conduction (see Fig. 5). As seen from Eq. (43) and Eq. 

(42) both terms, the one coming from the axial 

conduction and the other coming from the radial 

conduction include the Brinkman numbers (viscous 

dissipation).  As seen in Fig. 15 the entropy generation 

number increases with increasing values of Brinkman 

number and group parameter at constant Peclet number 

and it is also seen that the entropy generation number 

decreases with increasing Peclet number at all values of 

Br and Br/ since the term coming from the axial heat 

conduction decreases with the square of the Peclet 

number (see Eq. (43)). 

 

 
Figure 14. Entropy generation number as function of   for various 

values of Br and  at n = 2.7. 

 

 
Figure 15. Entropy generation number as function of   for various 

values of Br and  at Pe = 0.5-1.0 and n = 2.70. 

 

In order to examine effects of Br and Br/  on the 

irreversibility ratio as a function of the dimensionless 

radius (),  Fig. 16 is plotted for various values of Br and 

Br/   at constant value of power-law index of 0.90 and 

Pe-2. As can be seen in the figure the irreversibility ratio 

increases with increasing Br and Br/   at all location in 

the fluid. However the effects of Br and Br/  on the 

irreversibility ratio is negligible at the low values of 

dimensionless radius (0-0.6) for all values of Br and Br/ 

. The irreversibility ratio begins to increase exponentially 

with increasing the dimensionless axial distance at  = 

0.6 for all considered values of Br and Br/  except the 

values of Br = 0.10 and Br/  =  = 0.15. As mentioned 

previously a high velocity gradient near the tube wall 

contribute a major portion of entropy generation due to 

the friction of fluid particles. It can be seen in Fig. 2 the 

velocity gradient is higher in magnitude as n takes lower 

values although Fig. 16 is depicted for a constant value 

of power-law index of 0.9. 

 

 
Figure 16. Irreversibility ratio as a function of   for various values of 

Br and  at Pe-2= 0 and n = 0.90. 

 

It is known that Br is much less than unity for many 

engineering processes (Bejan, 1979). The ratio of entropy 

generation due to the friction of fluid particles (NF) to 

heat transfer (NR+NC) is known to be irreversibility 

distribution ratio that is equal to the ratio of Brinkman 

number to the dimensionless temperature difference 

(Br/). Here  stands for the irreversibility distribution 

ratio. That is why values of  are less than unity mean 

irreversibility due to heat transfer is higher than that 

owing to fluid friction. Otherwise, the irreversibility 

because of fluid friction dominates over that due to heat 

transfer ( > 1). The irreversibilities due to heat transfer 

and fluid friction are comparable and make the same 

contribution to entropy generation when  = 1. Paoletti et 

al. (1989) defined an alternative irreversibility 

distribution parameter, called Bejan number, given by  
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Eq. (45) points out that Bejan number is a ratio of entropy 

generation due to heat transfer to the total entropy 

generation. As can be seen from Eq. (45) the 

interpretation just made above can be made using Bejan 

number. Its values have to be between 0 and 1. The 

irreversibility on account of heat transfer dominates over 

the irreversibility due to fluid friction when Be = 1, which 

means the value of  is less than unity namely  = 0. If 
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the irreversibility owing to fluid friction is much higher 

than that because of the heat transfer, Be can be equal to 

zero, which corresponds to the limit of   . if Be = 

1/2, that the irreversibilities owing to heat transfer and 

fluid friction have the same contribution to entropy 

generations, which is identical to the case of  = 1. 

 

Fig. 17 is depicted for variation of the global entropy 

generation number per unit length as a function of power-

law index for the selected values of Brinkman and group 

parameter at constant Peclet number (= 1.0).  

 

 
Figure 17. Global entropy generation number per unit length as a 

function of n for various values of Br and  at Pe = 1.0. 

 

The magnitude of Ns/L is larger for larger values of 

Brinkman number and group parameter at a particular 

value of n. As seen in the figure, the global entropy 

generation number per unit length increases with 

increasing values of the Brinkman number and group 

parameter at all values of power-law index.  The global 

entropy generation remains almost constant up to a value 

of power-law index reaches to 0.1 and begins to increase 

at this value as evidenced in Fig. 17.  In other words, the 

power-law index is not effective on global entropy 

generation for low values of power-law index (n < 0.10). 

As can be seen in the figure, the power-law index has a 

substantial effect on the global entropy generation in 

pseudo plastic and dilatant fluids when the viscous 

dissipation is taken into consideration in the energy 

equation. The minimum for entropy generation takes 

place at a minimum value of power-law index for all 

values of Br and Br/.   The profiles of global entropy 

generation numbers seem to illustrate asymptotic 

behavior for dilatant fluids when n > 3. 

 

CONCLUSIONS 

 

The velocity, the temperature, the Nusselt number and 

the entropy distributions for the flow of a power-law fluid 

in a circular duct have been determined as functions of 

the influential parameters such as the power-law index, 

the Brinkman number, the group parameter and the 

irreversibility ratio. The one-dimensional equations for 

the velocity, the temperature and entropy generation rate 

for an incompressible non-Newtonian fluid flowing in a 

circular duct have been obtained from simplification of 

momentum, the energy and entropy equations by 

asymptotic techniques. Those equations for the velocity, 

the temperature and entropy generation rate have been 

analytically solved and used to determine distributions of 

those variables. It have been observed that the velocity 

profiles of a non-Newtonian fluid flowing in a circular 

geometry become blunter with decreasing the power-law 

index and thus, the heat generation owing to the viscous 

dissipation shifts to near the tube wall. It has been also 

observed that the changes of the temperature gradient as 

a function of the dimensionless radius is linear between 

the centerline and the tube wall at the low values of 

power-law index (n = 0.1). It is concluded that the 

deviations from the linearity of temperature gradient 

increase with increasing the power-law index since the 

temperature gradient in the non-Newtonian fluid 

becomes higher near the wall of circular duct. The similar 

trend with different magnitudes in the temperature 

gradient has been observed for variations of the 

Brinkman number. The temperature gradient increased 

substantially in the fluid with increasing the Brinkman 

number. It has been observed that the viscous dissipation 

term is significant parameter on Nusselt number since it 

varies substantially with the variations of the Brinkman 

number at a constant value of power-law index. 

Brinkman number dramatically affects the Nusselt 

number that has exponentially decreased with increasing 

the Brinkman number at all values of power-law index. 

In addition, the Nusselt number has exponentially 

decreased with increasing the power-law index at the 

certain values of Brinkman number and it took well-

known value of 4.36 at n = 1 (Newtonian fluid). The 

effect of power-law index on the Nusselt number has 

gotten decrease and eventually disappeared with 

increasing values of Brinkman number. The entropy 

generation distribution is dependent on the velocity and 

the temperature gradients. While the entropy generation 

rate increases insignificantly with increasing the power-

law index, it increases substantially with increasing the 

Brinkman number and group parameter at the certain 

values of power-law index.  
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