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1. Introduction

In this study, we aim to implement a novel matrix-collocation method dependent on the Delannoy polynomial to solve
efficiently and precisely the time fractional telegraph differential equations having multiple space and time delays

C
t D

α
0 u(x, t) + C

t D
β
0 u(x − τ1, t − τ2) + p1u(x − τ3, t − τ4) = p2 xD2u(x, t) + g(x, t), (1)

subject to the initial condition u (x, c) = λ1 (x) in Ω and the boundary conditions u (a, t) = λ2 (t) and u (b, t) = λ3 (t) on
∂Ω,

where u (x, t) and g(x, t) are analytic functions on the domain

Ω = {(x, t) : a ≤ x ≤ b, c ≤ t ≤ d} ,

C
t D

α
0 (similarly C

t D
β
0 ) (1 < α ≤ 2, 0 < β ≤ 1) is the time fractional derivative operator in the Caputo sense [1];

{p1, p2} are the real constants; {τ1, τ3} and {τ2, τ4} are the spatial and temporal delays, respectively.

It is explicit to state that the partial differential equations (PDEs) govern physical and mathematical modelling of many
natural phenomena arising in real world applications. PDEs can easily built a model into a mathematical formation
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This paper is concerned with solving numerically the time fractional telegraph equations 
having multiple space and time delays by proposing a novel matrix-collocation method 
dependent on the Delannoy polynomial. This method enables easy and fast approximation 
tool consisting of the matrix expansions of the functions using only the Delannoy 
polynomial. Thus, the solutions are obtained directly from a unique matrix system. Also, the 
residual error computation, which involves the same procedure as the method, provides the 
improvement of the solutions. The method is evaluated under some valuable error tests in the 
numerical applications. To do this, a unique computer module is devised. The present results 
are compared with those of the existing methods in the literature, in order to oversee the 
precision and efficiency of the method. One can express that the proposed method admits 
very consistent approximation for the equations in question.
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by enclosing time and space variables on specific domains of this model, such as rectangular plate or elliptic domain.
In particular, the fields of application of PDEs have been spread due to the inclusion of the time or space fractional
manner of partial derivatives. In fact, there is a growing interest and attention in the fractional PDEs (FPDEs), with
the developments of real world hybrid models occurring especially in fluid mechanics [2], electrical circuits [3],
viscoelasticity [4], heat transfer [5], finance [6], diffusion phenomena [7] and so on. In addition to these composite
structured equations, temporal or spatial lags may also be encountered due to the indeterminable physical conditions.
These complexities can be detected via delay arguments in FPDEs. Inherently, the variational combinations of these
instruments make FPDEs too severe problems to handle them analytically. Therefore, the numerical implementations
have been proposed to acquire the approximate solutions of FPDEs of delay types so far. For example, Kürkçü et al.
[8] have applied a matrix method based on the matching polynomial of complete graph to solve the space-time FPDEs
of delay type. Dehestani et al. [9] have employed the Genocchi hybrid collocation method for solving several FPDEs
containing delay arguments. Rihan [10] has constructed the semi-discrete and ϑ-methods for delay FPDEs of parabolic
type. Usman et al. [11] have utilized an operational matrix method dependent on the shifted Gegenbauer polynomials
to treat FPDEs of delays. Motivating by these mentioned studies, we introduce a novel methodology consisting of
the matrix expansions of the functions via the Delannoy polynomial for solving equation (1). The main advantage of
the proposed method is that it directly converts the functions in equation (1) into the matrix expansions, applying the
Delannoy polynomial base. This inventive tool provides easy and fast computation to get the approximate solutions.

On the other hand, the telegraph differential equations (TDEs) can be appeared differently in the study of the wave
propagation theory on the behaviour of electrical signals found in a cable transmission system [12, 13], particle transport
applications [14] and Brownian motion processes [15]. As a fractional sense of TEs, some numerical studies can be
detailed as follows: Kumar et al. [16] have studied a local meshless method to acquire the solutions of time fractional
TDEs with one and two dimensional forms. Hosseini et al. [3] have deployed the radial basis function method for
time fractional TDEs. Wang et al. [17] have solved a class of time fractional TDE subjected to the initial conditions
by implementing the reproducing kernel method. Pandey and Mishra [18] have established the numerical simulation
of the time-space fractional TDEs using the homotopy analysis method and Sumudu transform. For the numerical
solutions of TDEs of integer order, the Galerkin-type method [19], the thin plate splines radial basis method [20], the
Chebyshev cardinal function method [21], the Crank–Nicolson finite difference scheme and Haar wavelet method [22],
and the cubic B-spline collocation method [23] have been deployed up to now. We here draw attention to the fact that
TEs of equation (1) type are hardly found in the literature. Indeed, we establish and solve equation (1) efficiently via
this study.

The layout of this paper is shaped as follows: Section 1.1 presents a brief information about the Delannoy numbers
and their polynomial form. Section 2 admits the details of the proposed method and its matrix expansions related to
the equation (1). Section 3 reveals the properties of the residual error computation to improve the obtained solutions
emerged from Section 2. Section 4 applies three specific problems to exhibit the efficiency and precision of the method.
Section 5 emphasizes on a competitive innovation and developments via the method, interpreting the results obtained
in Section 4.

1.1. Preliminary to Delannoy numbers and their polynomial form

The Delannoy numbers D(n, k) (n, k ∈ N), which are named after Henri Delannoy [24], are related to the lattice path
enumeration (n, k) using the number of walk from the initial point (0, 0) to (n, k) with (0, 1), (1, 1) or (1, 0) increments
[24, 25]. The generating function of the Delannoy walks is formulated as

F[x, y, t] =
∑
n≥0
(xt + yt + xyt)n =

1
1 − t(x + y + xy)

,

where x, y and xy imply the three steps (0, 1), (1, 1) and (1, 0), respectively, and t implies the length of the walk [25].

The main implicit formulation of the Delannoy numbers can be stated as follows [25, 26]:
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D(n, k) =
n∑
i=0

(
n
i

) (
k
i

)
2i =

(
n + k

k

)
2F1 (−n,−k;−(n + k);−1) ,

where 2F1 (a, b; c; t) is a hypergeometric function.

A fundamental recurrence relation of D(n, k) is defined to be

D(n, k) = D(n − 1, k) + D(n − 1, k − 1) + D(n, k − 1),

where D(0, 0) = 1 [26, 27] and this relation can provide the generating function (see [27])

∞∑
n,k=0

D(n, k)xnyk = (1 − x − y − xy)−1.

The central Delannoy numbers, which are denoted by D(n, n) or briefly D(n) instead of k, can be defined to be (see
[28])

D(n, n) = D(n) =
n∑
i=0

(
n
i

) (
n + i

i

)
,

or another expression (see [28])

D(n) =
n∑
i=0

(
n
i

)2
2i .

Their recurrence relation stands for (see [29])

nD(n) = 3(2n − 1)D(n − 1) − (n − 1)D(n − 2),

and also their generating function has the form (see [26, 27])

∞∑
n=0

D(n)xn = (1 − 6x + x2)−1/2.

D(n) yields an algebraical relation between the Legendre polynomial Pn(x) as (see [25])

D(n) = Pn(3),

and more uniquely, D(n) stands for the equality

D(n + α, n) = P(α,0)n (3), ∀α ∈ Z, 3 α ≥ −n,

where P(α,0)n (x) is the Jacobi polynomial with the parameters (α, 0) [30].

As a combinatorial purpose, D(n) is equivalent to the generalized central trinomial coefficients Tn(3, 2), where Tn(b, c)
implies the coefficient of xn when (x2 + bx + c)n is expanded algebraically [31].
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Indeed, the Delannoy numbers can occur in the applications of lattice and posets [25], number theory [32] and the
formulation of the alignments between DNA sequences [33].

In view of the Delannoy numbers, their polynomial implicit form was established by Sun [31] as

Dn(x) =
n∑
i=0

(
n
i

) (
n + i

i

)
xi . (2)

In particular, the Delannoy polynomial can be associated with the Legendre polynomial Pn(x) and the generalized
central trinomial coefficients Tn(b, c) [31], so

Dn(x) = Pn(2x + 1) = Tn(2x + 1, x2 + x), ∀x ∈ Z.

In addition to these coincides, the Delannoy polynomial has also a natural connection with the Schmidt polynomial
Sn(α, x) for α = 1 [34].

2. Foundation of the matrix expansions for method of solution

In this section, the matrix expansions of the functions in equation (1) are derived to form a fundamental basis of the
proposed method. Supposing that u (x, t) be an analytic function on Ω and xDn (or tDn) is a differential operator of
integer order n with respect to x (or t). Firstly, the Delannoy polynomial solution of equation (1) is found to be

u (x, t) � uN (x, t) =
N∑

m=0

N∑
n=0

zmnDm (x)Dn (t) , (3)

where zmn’s are the unknown Delannoy coefficients to be identified via the method and Dm (x) represents the Delannoy
polynomial (2).

The matrix expansion of the Delannoy polynomial solution (3) can be constructed as

uN (x, t) = D (x)D (t)A, (4)

where

D (x) =
[

D0(x) D1(x) · · · DN (x)
]
,

D (t) =


D (t) 0 · · · 0

0 D (t) · · · 0
...

...
. . .

...
0 0 · · · D (t)


,

and

A =
[

a00 a01 · · · a0N a10 · · · a1N aN0 · · · aNN

]T
,

such that D (t) is spanned by D (t) with dimensional 1 × N + 1.
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Inserting properly the spatial delay x → x − τ3 and temporal delay t → t − τ4 into the matrix expansion (4), it holds

u (x − τ3, t − τ4) = D (x − τ3)D (t − τ4)A, (5)

where

D (x − τ3) =
[

D0(x − τ3) D1(x − τ3) · · · DN (x − τ3)
]
,

and

D (t − τ4) =


D (t − τ4) 0 · · · 0

0 D (t − τ4) · · · 0
...

...
. . .

...
0 0 · · · D (t − τ4)


.

Now, using the time fractional Caputo derivative operator in terms of α, which is of the form:

Definition 2.0.1 [1] Suppose that t > a and α, t ∈ R. Then the time fractional Caputo derivative of order α is defined
to be

C
t D

α
0 u (x, t) =


1

Γ( dαe−α)

t∫
0
(t − s) dαe−α−1

(
sD dαeu (x, s)

)
ds, dαe − 1 < α < dαe

α ∈ N

.

∂αu (x, t) /∂tα, 

We can insert this operator on the matrix expansion (4) as

C
t D

α
0 u (x, t) = D (x)D(α) (t)A, 1 < α ≤ 2, (6)

where

D(α) (t) =
[

C
t D

α
0 (D0(t)) C

t D
α
0 (D1(t)) · · · C

t D
α
0 (DN (t))

]
,

and

D(α) (t) =


D(α) (t) 0 · · · 0

0 D(α) (t) · · · 0
...

...
. . .

...

0 0 · · · D(α) (t)


.

Using analogously the matrix expansions (5) and (6), we can write

C
t D

β
0 u (x − τ1, t − τ2) = D (x − τ1)D(β) (t − τ2)A, 0 < β ≤ 1, (7)

where
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D(β) (t − τ2) =


D(β) (t − τ2) 0 · · · 0

0 D(β) (t − τ2) · · · 0
...

...
. . .

...

0 0 · · · D(β) (t − τ2)


.

In addition, by making use of the matrix expansion (4), we can inherently state the following matrix expansion with
respect to the spatial partial derivative of integer order:

xD2u(x, t) = D(2) (x)D (t)A, (8)

where

D(2) (x) =
[

D(2)0 (x) D(2)1 (x) · · · D(2)N (x)
]
.

We are now ready to constitute a fundamental matrix form of the equation (1) by means of the matrix expansions
(5)-(8). Thereby, collecting them under a unique form, it follows that

W(xi, tj)A = G(xi, tj), (9)

where

W(xi, tj) =
[
D (xi)D(α)

(
tj
)
+ D (xi − τ1)D(β)

(
tj − τ2

)
+ p1D (xi − τ3)D

(
tj − τ4

)
− p2 D(2) (xi)D

(
tj
) ]

,

and

G(xi, tj) =
[

G (x0, t0) · · · G (x0, tN ) · · · G (xN, t0) · · · G (xN, tN )
]T ,

such that xi and ti are the Chebyshev-Lobatto collocation points on Ω defined to be (see [8])

xi =
a + b

2
+

a − b
2

cos
(
πi
N

)
, tj =

c + d
2
+

c − d
2

cos
(
π j
N

)
, i, j = 0, 1, . . . , N .

For more brief form of the matrix form (9), it can be summarized as

WA = G⇒
[
W : G

]
, (10)

where

W =
[

W (x0, t0) · · · W (x0, tN ) · · · W (xN, t0) · · · W (xN, tN )
]T
.

On the other hand, using the main matrix expansion (4), we can form the matrix expansions of the initial and boundary
conditions at the Chebyshev-Lobatto collocation points, respectively, as
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u (xi, c) = D (xi)D (c)A = λ1(xi),
u
(
a, tj

)
= D (a)D

(
tj
)
A = λ2(tj),

u
(
b, tj

)
= D (b)D

(
tj
)
A = λ3(tj),

(11)

where i, j = 0, 1, . . . , N .

After replacing the conditional matrix expansions (11) by the last 3N + 3 rows in the matrix system (10), we can now
state the augmented matrix system as

[
W̃ : G̃

]
=


W∗ ; G∗

D (xi)D (c) : λ1(xi)
D (a)D

(
tj
)

: λ2(tj)
D (b)D

(
tj
)

: λ3(tj)


,

where W∗ and G∗ are of (N2−N−2)×1 matrix structures, this system is consistent as long as rankW̃= rank
[
W̃ : G̃

]
=

(N + 1)2. If this situation is satisfied, then the system can be solved via Gaussian elimination method or

A = G̃(W̃)−1, detW̃ , 0.

Eventually, the unknown Delannoy coefficients (zmn) are obtained and then substituted into the solution form (3), the
Delannoy polynomial solution of equation (1) is acquired.

3. Residual error computation

Formerly, the residual error analysis technique was employed to improve the approximate solutions of the space-time
fractional PDEs involving multi delays [8] and one dimensional TDE of integer order [19]. In this paper, we shall
construct a residual error computation based on the Delannoy polynomial. Basically, the residual error computation is
made up of the same procedure as the proposed method and a residual function obtained by substituting the Delannoy
polynomial solution into equation (1). A residual function corresponding to N can be described on Ω as

RN (x, t) = C
t D

α
0 uN (x, t) + C

t D
β
0 uN (x − τ1, t − τ2) + p1uN (x − τ3, t − τ4)                                                                                                                                       − p2 x D2uN (x, t) − g(x, t).                   (12) 

After taking the initial and boundary conditions, the error problem can be stated as (see [8])

L [eN (x, t)] = L [u (x, t)] − L [uN (x, t)] = −RN (x, t) , (13)

where eN (x, t) is an error function under the linear operator.

Equation (13) can be solved by following the algorithmic structure of the proposed method. Then, the estimated error
function eN,K (x, t) is derived by

eN,K (x, t) =
K∑

m=0

K∑
n=0

z∗mnDm (x)Dn (t) , K > N,
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and using this function, the corrected Delannoy polynomial solution and the corrected error function can be constructed,
respectively, as

uN,K (x, t) = uN (x, t) + eN,K (x, t) and EN,K (x, t) = u (x, t) − uN,K (x, t) .

4. Numerical problems

In this section, three problems are dealt numerically with the proposed method. To do this, a practical module is
uniquely devised on Mathematica 11.3 run on a standard personal computer with 6 GB RAM and 2.50 GHz i5-2450M
CPU. For this clearness, the computation results can be acquired sensitively from the mentioned problems. In addition,
graphical and numerical tools, such as a root mean squared error (ERMS) computation, are deployed to interpret the
precision and accuracy of the method. ERMS is formulated as follows [21]:

ERMS =

√√√
1
N

N∑
i=0
[u(xi,T) − uN (xi,T)]2,

where u(xi,T) and uN (xi,T) are the exact and Delannoy polynomial solutions at the spatial collocation points xi and
specific time T, respectively.

Problem 4.1. [3, 16, 17] Consider the time fractional TDE having non-polynomial exact solution

C
t D

α
0 u (x, t) + C

t D
β
0 u (x, t) + u (x, t) = xD2u(x, t) + g(x, t),

with 1 < α ≤ 2, 0 < β = α − 1 ≤ 1 and Ω = [0, 1]2,

subject to the initial condition u (x, 0) = x cos(x2) in Ω and boundary conditions u (0, t) = 0 and u (1, t) = cos(1 + t2)
on ∂Ω. The exact solution is formulated as u(x, t) = x cos(x2 + t2). The force function g(x, t) can be easily determined
in accordance with α. Solving this problem by employing the proposed method, the Delannoy polynomial solutions
are acquired. At first, the solution u13(x, t) is demonstrated along with its contour curves, which represent the absolute
error values, in Figure 1. From Figure 1, this solution takes five decimal accuracies (10−5). Besides, Table 1 compares
the computation results of ERMS in terms of the proposed (PM), the local meshless (LMM) [16], the radial basis
function (RBF) [3] and the reproducing kernel (RKM) [17] methods. It can be noticed from Table 1 that the proposed
method achieves far more accurate approximation than the other methods with respect to the low computation limit
(N) and each specified fractional derivative. Also, in Table 2, the proposed method (N = 20) takes 10−9 of accuracy,
while RKM (h = 0.001) [17] enables 10−5 of accuracy on average.

Table 1. Numerical computation results of ERMS at T = 1 with respect to the proposed and existing methods for Problem 4.1.

Methods α = 1.25 α = 1.5 α = 1.75 α = 1.95
PM (N = 20) 2.1583e–12 5.2895e–12 1.9302e–13 2.7054e–10

LMM (M = 50) [16] 2.2992e–05 1.0880e–04 6.8631e–04 2.4189e–03
RBF (N = 50) [3] 2.6551e–03 4.1743e–03 5.4164e–03 3.8800e–03

RKM (h = 0.001) [17] - - - 4.3309e–04

Problem 4.2. [16] Consider the time fractional TDE having non-polynomial exact solution

C
t D

α
0 u (x, t) + C

t D
β
0 u (x, t) + u (x, t) = xD2u(x, t) + g(x, t),
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(a) u13(x, t)

(b) The absolute error plot via contour curves

Figure 1. The Delannoy polynomial solution and its error plot for Problem 4.1 having α = 1.9 and β = 0.9.

Table 2. Absolute error history in terms of PM and RKM for Problem 4.1 having α = 1.95.

xi ti |e20 (xi, ti)| RKM
N = 20 h = 0.001 [17]

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

3.69731e − 10
1.33009e − 09
2.75515e − 09
4.15103e − 09
4.46054e − 09
3.41082e − 09
1.89897e − 09
7.62644e − 10
1.40729e − 10
9.33087e − 13

1.49994e − 07
2.39840e − 06
1.21090e − 05
3.79919e − 05
9.13299e − 05
1.84091e − 04
3.25310e − 04
5.15381e − 04
7.38682e − 04
9.56449e − 04
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with 1 < α ≤ 2, 0 < β = α − 1 ≤ 1, Ω = [0, 1]2 and

g(x, t) = sin2 x
(

6t3−α

Γ(4 − α)
+

6t4−α

Γ(5 − α)

)
− 2t3 cos 2x + t3 sin2 x,

subject to the initial condition u (x, 0) = 0 and boundary conditions u (0, t) = 0 and u (1, t) = t3 sin2 1. The exact
solution of the problem is given as u(x, t) = t3 sin2 x. The problem is immediately and accurately solved by the
proposed method for different N and α. As seen in Figure 2, the Delannoy polynomial solution u10(x, t) has a good
approximation to the exact solution, yielding 10−8 of accuracy for α = 1.7. Besides, Table 3 reveals that the proposed
method (PM) performs much more accurate computations than LMM [16], as well as much faster. It is explicit to say
from Figure 3 that the L2 and L∞ errors are decreased when N increases and so this situation confirms the precision of
the method in accordance with the results given in Table 3.

(a) u10(x, t)

(b) The absolute error plot via contour curves

Figure 2. The Delannoy polynomial solution and its error plot for Problem 4.2 having α = 1.7 and β = 0.7.

Problem 4.3. Consider the time fractional TDE with multiple space and time delays

C
t D

1.6
0 u (x, t) + C

t D
0.9
0 u (x − 1, t − 1) + 0.3u(x − 0.5, t − 0.1) = 0.5 xD2u(x, t) + g(x, t),

with Ω = [0, 1]2 and
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Table 3. Numerical comparisons of ERMS (at T = 1) and CPU running time (in seconds) in terms of PM and LMM for Problem 
4.2 having α = 1.9.

PM LMM [16] m & N = 1000
N ERMS Timing m ERMS Timing
6 4.0353e–05 0.906 3 6.5786e–05 34.249
7 2.8692e–05 1.250 7 6.5785e–05 35.542
9 5.0556e–07 2.359 9 6.5804e–05 37.021
11 3.2466e–09 4.672 11 6.5794e–05 37.380
13 1.8760e–09 9.625 15 6.5796e-05 38.332

Figure 3. The decreasing error computations on logarithmic scale versus N for Problem 4.2 having α = 1.2.

MANAS Journal of Engineering, Volume 9 (Special Issue 1) © (2021) www.journals.manas.edu.kg



Ö.K. Kürkçü / MANAS Journal of Engineering, 9 (2021), 82-96 93

g(x, t) = et (−0.135726 + 0.271451x + t0.1(−0.386692 + 0.386692x) 1F1(0.1; 1.1;−t)

+ 1.12706xt0.4
1F1(0.4; 1.4;−t)),

such that 1F1(a1; a2; t) is the confluent hypergeometric function of Kummer type [35],

subject to the initial condition u (x, 0) = x and boundary conditions u (0, t) = 0 and u (1, t) = et . The exact solution
of the problem is u(x, t) = xet . After solving this problem by arranging N = 4(1)11 in the method, the Delannoy
polynomial solution is illustrated along with its contour curves specifying 10−9 of accuracy in Figure 4. Besides, Figure
5 indicates the L2 and L∞ error computations and CPU running time versus N . It is worth clarifying from Figure 5
that the method gets much clearer precision to the exact solution and returns the solutions by consuming short time at
most 12 seconds, as N is increased from 4 to 11. On the other hand, the Delannoy polynomial solution for N = 6 is
easily improved by employing the residual error computation with its limit N = 7, as seen in Table 4.

(a) u11(x, t)

(b) The absolute error plot via contour lines

Figure 4. The Delannoy polynomial solution and its error plot for Problem 4.3.

5. Conclusions

A novel matrix-collocation method dependent on the Delannoy polynomial has been productively implemented to treat
the time fractional telegraph differential equations of space and time delays. To do this, the inventive and pure matrix
structures containing the fractional derivative forms have been developed to easily extend the functions in equation (1)
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(a) The error computations on logarithmic scale

(b) CPU running time

Figure 5. Displacements of the error computations and timing tool versus N for Problem 4.3.

Table 4. History of the absolute and corrected absolute error results for Problem 4.3.

(xi, ti) |e6(xi, ti)| |E6,7(xi, ti)|
(0.2, 0.2) 3.4034e–05 1.9525e–05
(0.4, 0.4) 9.2624e–05 6.2166e–05
(0.6, 0.6) 1.1806e–04 1.0044e–04
(0.8, 0.8) 1.0941e–04 8.3094e–05
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using the collocation points. With the involvement of the Delannoy polynomial in these matrix profiles, the proposed
method has enabled to obtain persistent numerical solutions, which are often in good agreement with the analytical
solutions corresponding to the specific problems. In addition, as noticed in the error and time complexity comparisons
given in Tables 1, 2 and 3, the method has yielded very remarkable results compared to the existing methods. As N
increases, the precision of the method becomes much clear as in Table 3, Figures 3 and 5.

When all computations are investigated, the findings reveal that the method is very competitive and provides a novel
approximation into the literature by treating the delay form of TDEs. In fact, we can specify that the method would
be applicable tool for some generations of the fractional partial differential equations. Inherently, this specification is
regarded as a next vision for incoming works.
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