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Abstract
Roopaei in [13] has introduced some factorization for the infinite Hilbert matrix and the Cesàro matrix of order n
based on the generalized Cesàro matrix. In this research, we investigate the norm of these two operators on the
generalized Cesàro matrix domain. Moreover we introduce some factorizations for the Hilbert matrix. Hence the
present study is a complement of Roopaei’s research.
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1. Introduction
Let ω be the space of all real-valued sequences. The space `p consists all real sequences x=(xk)

∞
k=0 ∈ω such that ∑

∞
k=0 |xk|p <∞

which a Banach space with the norm

‖x‖`p =

(
∞

∑
k=0
|xk|p

)1/p

< ∞,

where 1≤ p < ∞.
Let T is a matrix with non-negative entries, assumed to map `p into itself and satisfies the inequality

‖T x‖`p ≤ K‖x‖`p ,

where K is a constant which is not depending on x for every x ∈ `p. The constant K is called an upper bound for operator T and
the smallest possible value of K is called the norm of T .

For an infinite matrix A and sequence space X , we define the matrix domain A(X) as the set

A(X) = {x ∈ ω : Ax ∈ X}

which is also a sequence space. In this study, we use the notation Ap for the matrix domain associated with the matrix A on the
space X = `p. For an invertible matrix A, the matrix domain Ap is a normed space with ‖x‖Ap := ‖Ax‖`p . There are several
new Banach spaces who have introduced and studied by using matrix domains of special lower triangular matrices. For more
references we encourage the readers to some papers [1, 3, 17, 18] and textbook [2]. Recently, several mathematicians have
computed the bounds of operators on some matrix domains in [9, 11, 12, 15, 16, 17, 18, 19].
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Cesàro matrix. The infinite Cesàro operator is defined by

c j,k =

{ 1
j+1 0≤ k ≤ j
0 otherwise,

}
for all j,k ∈ N. It can be represented by its arrays as

C =


1 0 0 · · ·

1/2 1/2 0 · · ·
1/3 1/3 1/3 · · ·

...
...

...
. . .

 .

This matrix has the `p-norm ‖C‖`p =
p

p−1 . The inequality

∞

∑
n=0

(
n

∑
k=0

|xk|
n+1

)p

≤
(

p
p−1

)p ∞

∑
k=0
|xk|p,

which is called Hardy’s inequality is resulted from the boundedness of Cesàro operator.
The matrix domain associated with the Cesàro matrix is the set

Cp =

{
x = (xk) ∈ ω :

∞

∑
j=0

∣∣∣∣∣ j

∑
k=0

xk

j+1

∣∣∣∣∣
p

< ∞

}
,

which is a Banach space with norm

‖x‖Cp =

(
∞

∑
j=0

∣∣∣∣∣ j

∑
k=0

xk

j+1

∣∣∣∣∣
p) 1

p

.

The Cesàro sequence space Cp is studied in [10, 20]. Recently, Roopaei et al. [16] have investigated the general case Cn
p, its

inclusion relations, dual spaces, matrix transformations as well as computing the norm of operators on this matrix domain in
the case 1≤ p < ∞.

Generalized Cesàro matrix. Let N ≥ 1 be a real number, the generalized Cesàro matrix, CN = (cN
j,k), is defined by

cN
j,k =

{ 1
j+N 0≤ k ≤ j
0 otherwise,

and has the `p-norm ‖CN‖`p =
p

p−1 ([6], Lemma 2.3). That is

CN =


1
N 0 0 · · ·
1

1+N
1

1+N 0 · · ·
1

2+N
1

2+N
1

2+N · · ·
...

...
...

. . .

 .

Note that, C1 is the well-known Cesàro matrix C. For more examples

C2 =


1/2 0 0 · · ·
1/3 1/3 0 · · ·
1/4 1/4 1/4 · · ·

...
...

...
. . .

 and C3 =


1/3 0 0 · · ·
1/4 1/4 0 · · ·
1/5 1/5 1/5 · · ·

...
...

...
. . .

 .

The sequence space associated with the generalized Cesàro matrix is the set

C(N, p) =

{
x = (xk) ∈ ω :

∞

∑
j=0

∣∣∣∣∣ j

∑
k=0

xk

j+N

∣∣∣∣∣
p

< ∞

}
,
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who has the norm

‖x‖C(N,p) =

(
∞

∑
j=0

∣∣∣∣∣ j

∑
k=0

xk

j+N

∣∣∣∣∣
p) 1

p

.

Note that for N = 1 we use the notation Cp instead of C(1, p).
Recall the infinite Hilbert matrix which is defined by H = (h j,k) =

1
j+k+1 for all non-negative integers j and k and has the

matrix representation

H =


1 1/2 1/3 · · ·

1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .

 .

According to [8] Theorem 323, the Hilbert matrix is a bounded operator on `p with

‖H‖`p =
π

sin(π/p)
.

It has proved by Bennett [5] that the Hilbert operator can be factorized of the form H = BC, where C is the Cesàro matrix
and B = (b j,k) is defined by

b j,k =
k+1

( j+ k+1)( j+ k+2)
( j,k = 0,1, . . .). (1.1)

The matrix B is also a bounded operator on `p, ([5], Proposition 2), and ‖B‖`p =
π

p∗ sin(π/p) , where p∗ is the conjugate of p i.e.
1/p+1/p∗ = 1.

More recently, Roopaei in [13, 14] has generalized Bennett’s factorization to introduce several factorization for the Hilbert
matrix. He has showed that H can be presented of the form H = BNCN , where CN is the generalized Cesàro matrix of the form:

Theorem 1.1 ([13], Theorem 2.2). The Hilbert matrix H, admits a factorization of the form H = BNCN , where BN = (bN
j,k) has

the entries

bN
j,k =

k+N
( j+ k+1)( j+ k+2)

( j,k = 0,1, . . .). (1.2)

and is a bounded operator on `p with bounds

π

p∗ sin(π/p)
≤ ‖BN‖`p ≤

Nπ

p∗ sin(π/p)
.

In particular, for N = 1, H = BC and ‖B‖`p =
π

p∗ sin(π/p) .

2. Norm of Hilbert operator on generalized Cesàro space
The main purpose of this section is computing the norm of Hilbert operator on the generalized Cesàro space. Meanwhile, we
introduce some factorization for the Hilbert matrix.

In sequel, we need the definition of another Hilbert matrix, H1, who has the same norm as the Hilbert matrix and is defined
by

h1
j,k =

1
j+ k+2

( j,k = 0,1, . . .), (2.1)

or

H1 =


1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·
1/4 1/5 1/6 · · ·

...
...

...
. . .

 .
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Theorem 2.1. The Hilbert operator is a bounded operator from `p into the generalized Cesàro space C(N, p) and

‖H‖`p,C(N,p) ≤
p∗π

sin(π/p)
.

Proof. We have

‖H‖`p,C(N,p) = sup
x∈`p

‖Hx‖C(N,p)

‖x‖`p

= sup
x∈`p

‖CNHx‖`p

‖x‖`p

= ‖CNH‖`p ≤ π p∗ csc(π/p).

Theorem 2.2. The Hilbert operator is a bounded operator from the generalized Cesàro space C(N, p) into `p and

‖H‖C(N,p),`p ≤
Nπ

p∗ sin(π/p)
.

In particular, the Hilbert matrix is a bounded operator from the Cesàro sequence space into `p and

‖H‖Cp,`p =
π

p∗ sin(π/p)
.

Proof. According to Theorem 1.1, the Hilbert matrix can be written as H = BNCN , where BN is a bounded operator on `p and

π

p∗ sin(π/p)
≤ ‖BN‖`p ≤

Nπ

p∗ sin(π/p)
.

Since CN
p and `p are isomorphic, hence

‖H‖C(N,p),`p = sup
x∈C(N,p)

‖Hx‖`p

‖x‖C(N,p)
= sup

x∈C(N,p)

‖BNCNx‖`p

‖CNx‖`p

= sup
y∈`p

‖BNy‖`p

‖y‖`p

= ‖BN‖`p ≤
Nπ

p∗ sin(π/p)
.

In particular, for the symbol N = 1, CN =C and BN = B, where B is the factor in the Bennett’s factorization of the Hilbert
operator. Now, we have the desired result.

Theorem 2.3. The Hilbert operator is a bounded operator on the generalized Cesàro space and

‖H‖C(N,p) ≤
Nπ

sin(π/p)
.

In special case, the Hilbert operator is a bounded operator on the Cesàro matrix domain and

‖H‖Cp =
π

sin(π/p)
.

Proof. Let DN = (dN
j,k) be CNBN , where BN was defined by the relation (1.2). Then

dN
i,k =

i

∑
j=0

1
i+N

k+N
( j+ k+1)( j+ k+2)

=

(
k+N
k+1

)(
i+1
i+N

)
1

i+ k+2
.

But, k+N
k+1 ≤ N and i+1

i+N ≤ 1, for all non-negative integers j,k. Hence, dN
j,k ≤ Nh1

j,k which results in

‖DN‖`p ≤ N‖H1‖`p = N
π

sin(π/p)
.
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The map x→CNx shows that the two sequence spaces C(N, p) and `p are isomorphic, hence

‖H‖C(N,p) = sup
x∈C(N,p)

‖Hx‖C(N,p)

‖x‖C(N,p)
= sup

x∈C(N,p)

‖CNHx‖`p

‖CNx‖`p

= sup
x∈C(N,p)

‖DNCNx‖`p

‖CNx‖`p

= sup
y∈`p

‖DNy‖`p

‖y‖`p

= ‖DN‖`p ≤
Nπ

sin(π/p)
.

In particular, for N = 1, CN =C and DN = H1 which results the desired result.

Corollary 2.4. The Hilbert operator is a bounded operator from the generalized Cesàro space C(N, p) into Cesàro sequence
space Cp and

‖H‖C(N,p),Cp ≤
Nπ

sin(π/p)
.

In particular, the Hilbert matrix is a bounded operator on the Cesàro matrix domain and

‖H‖Cp =
π

sin(π/p)
.

Proof. Let PN = (pN
j,k) be CBN , where BN was defined by the relation (1.2). Then

pN
i,k =

i

∑
j=0

1
i+1

k+N
( j+ k+1)( j+ k+2)

=

(
k+N
k+1

)
1

i+ k+2
.

But, k+N
k+1 ≤ N for all non-negative integer k. Hence, pN

j,k ≤ Nh1
j,k which results in

‖PN‖`p ≤ N‖H1‖`p = N
π

sin(π/p)
.

Since CN
p and `p are isomorphic, hence

‖H‖C(N,p),Cp = sup
x∈C(N,p)

‖Hx‖Cp

‖x‖C(N,p)
= sup

x∈C(N,p)

‖CBNCNx‖`p

‖CNx‖`p

= sup
y∈`p

‖PNy‖`p

‖y‖`p

= ‖PN‖`p ≤
Nπ

sin(π/p)
.

In particular, for the symbol N = 1, CN =C and BN = B, where B is the factor in the Bennett’s factorization of the Hilbert
operator. Now, we have the desired result.

Similar to the above corollary we have the following result.

Corollary 2.5. The Hilbert operator is a bounded operator from the Cesàro sequence space Cp into the generalized Cesàro
space C(N, p) and

‖H‖Cp,C(N,p) ≤
π

sin(π/p)
.

In particular, the Hilbert matrix is a bounded operator on the Cesàro sequence space and

‖H‖Cp =
π

sin(π/p)
.
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Corollary 2.6. The Hilbert matrix H, can be represented of the form H =C−1PNCN , where PN = (pN
j,k) is defined by

pN
j,k =

(k+N)

(k+1)( j+ k+2)
( j,k = 0,1, . . .).

In particular, for N = 1, ‖P‖`p = π csc(π/p).

Proof. By a simple calculation, PN =CBN . Therefore by applying Theorem 1.1, C−1PNCN = H, which proves the factorization.
Note that for N = 1, P1 = P = H1, where the Hilbert matrix H1 is

h1
j,k =

1
j+ k+2

( j,k = 0,1, . . .),

and has the norm ‖H1‖`p =
π

sin(π/p) .

Theorem 2.7. The Hilbert matrix H, has a factorization of the form H =C−NANC, where AN = (aN
j,k) is defined by

aN
j,k =

j+1
( j+N)( j+ k+2)

( j,k = 0,1, . . .).

In particular, for N = 1, H has the factorization H =C−1AC, where ‖A‖`p = π csc(π/p).

Proof. It is not difficult to verify that AN = CNB, therefore by applying Theorem 1.1, C−NANCN = H, which proves the
factorization. Note that for N = 1, A1 = A = H1 and has the norm ‖A‖`p = ‖H1‖`p =

π

sin(π/p) .

3. Norm of Cesàro operator on the generalized Cesàro space
In this section we intend to compute the norm of Cesàro operator of order n on the generalized Cesàro space.

For the probability measure µ on the interval [0,1], the Hausdorff matrix Hµ = (h j,k), is defined by

h j,k =

{ ∫ 1
0
( j

k

)
θ k(1−θ) j−kdµ(θ) 0≤ k ≤ j

0 otherwise,

For 1≤ p < ∞, by Hardy’s formula ([7], Theorem 216) one can obtain the norm of Hausdorff matrices. These operators are
bounded iff

∫ 1
0 θ

−1
p dµ(θ)< ∞ and

‖Hµ‖`p =
∫ 1

0
θ
−1
p dµ(θ).

By inserting dµ(θ) = n(1−θ)n−1dθ in the definition of the Hausdorff matrix, the Cesàro matrix of order n, Cn = (cn
j,k) is

cn
j,k =


(n+ j−k−1

j−k )

(n+ j
j )

j ≥ k ≥ 0

0 otherwise.

This matrix has the `p-norm

‖Cn‖`p =
Γ(n+1)Γ(1/p∗)

Γ(n+1/p∗)
,

according to Hardy’s formula. Note that, C1 =C, where C is the well-known Cesàro matrix.
For computing the norm of Cesàro matrix of order n on the generalized Cesàro matrix domain we need the following

theorem.

Theorem 3.1 ([13], Theorem 3.2). For n ≥ 1, Cesàro matrix of order n, Cn, has a factorization of the form Cn = Rn,NCN ,
where CN is the generalized Cesàro matrix of order N and Rn,N is a bounded operator on `p with

‖Rn,N‖`p ≤
NΓ(n+1)Γ(1+1/p∗)

Γ(n+1/p∗)
.
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Corollary 3.2. The Cesàro operator of order n is a bounded operator from the generalized Cesàro space C(N, p) into sequence
space `p and

‖Cn‖C(N,p),`p ≤
NΓ(n+1)Γ(1+1/p∗)

Γ(n+1/p∗)
.

Proof. Since C(N, p) and `p are isomorphic, hence according to the Theorem 3.1 we have

‖Cn‖C(N,p),`p = sup
x∈C(N,p)

‖Cnx‖`p

‖x‖C(N,p)
= sup

x∈C(N,p)

‖Rn,NCNx‖`p

‖CNx‖`p

= sup
y∈`p

‖Rn,Ny‖`p

‖y‖`p

= ‖Rn,N‖`p ≤
NΓ(n+1)Γ(1+1/p∗)

Γ(n+1/p∗)
.

Now, we have the desired result.
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