CONSTRUCTIVE MATHEMATICAL ANALYSIS 4 (2021), No. 1, pp. 20-33 http://dergipark.gov.tr/en/pub/cma ISSN 2651 - 2939

Research Article

Grüss and Grüss-Voronovskaya-type estimates for complex convolution polynomial operators

SORIN G. GAL* AND IONUT T. IANCU

ABSTRACT. The aim of this paper is to obtain Grüss and Grüss-Voronovskaya inequalities with exact quantitative estimates (with respect to the degree) for the complex convolution polynomial operators of de la Vallée Poussin, of Zygmund-Riesz and of Jackson, acting on analytic functions.

Keywords: Complex convolution polynomials, de la Vallée-Poussin kernel, Riesz-Zygmund kernel, Jackson kernel, Grüss-type estimate, Grüss-Voronovskaya-type estimate, analytic functions.

2020 Mathematics Subject Classification: 41A10, 41A25, 30E10.

Dedicated to Professor Francesco Altomare, on occasion of his 70th birthday, with esteem and friendship.

1. INTRODUCTION

A classical well-known result in approximation theory is the Grüss inequality for positive linear functionals $L : C[0,1] \to \mathbb{R}$, which gives an upper bound for the Chebyshev-type functional

$$T(f,g) := L(f \cdot g) - L(f) \cdot L(g), \quad f,g \in C[0,1].$$

Starting also from a problem posed in [3], this inequality was investigated in terms of the least concave majorants of the moduli of continuity and for positive linear operators $H : C[0,1] \rightarrow C[0,1]$, for the first time in [1] and in the note [5], where the cases of classical Hermite-Fejér and Fejér-Korovkin convolution operators were considered.

Refined versions of the Grüss-type inequality in the spirit of Voronovskaya's theorem were obtained in [4] for Bernstein and Păltaănea operators of real variable and for complex Bernstein, genuine Bernstein-Durrmeyer and Bernstein-Faber operators attached to analytic functions of complex variable.

After the appearance of these results, several papers by other authors have developed these directions of research.

For example, let $C_{2\pi} = \{f : \mathbb{R} \to \mathbb{R}; f \text{ continuous and } 2\pi \text{ periodic on } \mathbb{R}\}$. A classical method to construct trigonometric approximating polynomials for $f \in C_{2\pi}$ is that of convolution of f with various trigonometric even polynomials $K_n(t)$ (called kernels), under the form

(1.1)
$$L_n(f)(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) K_n(t) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(u) K_n(x-u) du, \quad x \in \mathbb{R}, n \in \mathbb{N}.$$

Upper estimate in the Grüss-type inequality for convolution trigonometric polynomials with respect to general form of the kernel $K_n(t)$, was obtained in [1].

DOI: 10.33205/cma.780906

Received: 15.09.2020; Accepted: 19.10.2020; Published Online: 01.03.2021

^{*}Corresponding author: Sorin G. Gal; galso@uoradea.ro

Now, by analogy, for f analytic in a disk $\mathbb{D}_R = \{z \in \mathbb{C}; |z| < R\}$ and continuous in the closure of the disk, one can attach the convolution complex (algebraic) polynomials by

(1.2)
$$\mathcal{L}_{n}(f)(z) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(ze^{it}) \cdot K_{n}(t) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(ze^{-it}) \cdot K_{n}(t) dt, z \in \mathbb{D}_{R}, \quad n \in \mathbb{N}.$$

The goal of this paper is to continue the above mentioned directions of research, obtaining Grüss and Grüss-Voronovskaya exact estimates (with respect to the degree) for the de la Vallée-Poussin complex polynomials in Section 2, for Zygmund-Riesz complex polynomials in Section 3 and for Jackson complex polynomials in Section 4.

2. DE LA VALLÉE-POUSSIN COMPLEX CONVOLUTION

In this section, we extend the Grüss and the Grüss-Voronovskaya estimates for the de la Vallée-Poussin complex polynomials given by the general formula (1.2) and based on the convolution with the de la Vallée-Poussin kernel

$$K_n(t) = \frac{1}{2} \cdot \frac{(n!)^2}{(2n)!} \cdot (2\cos(t/2))^{2n}$$

defined by

(2.3)
$$\mathcal{V}_n(f)(z) = \frac{1}{\binom{2n}{n}} \sum_{j=0}^n c_j \binom{2n}{n+j} z^j = \sum_{j=0}^n c_j \frac{(n!)^2}{(n-j)!(n+j)!} z^j,$$

attached to analytic functions in compact disks, $f(z) = \sum_{i=0}^{\infty} c_i z^i$.

Let us denote $\mathbb{D}_R = \{z \in \mathbb{C}; |z| < R\}$ and $||f||_r = \max\{|f(z)|; |z| \le r\}$.

Firstly, we prove a theorem for the general complex convolutions given by (1.2).

Theorem 2.1. Suppose that R > 1 and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R , that is $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ for all $z \in \mathbb{D}_R$.

Let $1 \leq r < R$ and consider the operators \mathcal{L}_n given by (1.2). For all $n \in \mathbb{N}$, it follows

$$\|\mathcal{L}_{n}(fg) - \mathcal{L}_{n}(f)\mathcal{L}_{n}(g)\|_{r} \leq \sum_{m=0}^{\infty} \left[\sum_{j=0}^{m} |a_{j}| \cdot |b_{m-j}| \cdot \|A_{n,m,j}\|_{r}\right],$$

where denoting $A_{n,m,j}(z) = \mathcal{L}_n(e_m)(z) - \mathcal{L}_n(e_j)(z) \cdot \mathcal{L}_n(e_{m-j})(z)$ and $e_m(z) = z^m$, $m \in \mathbb{N} \cup \{0\}$, we have

$$\begin{aligned} \|A_{n,m,j}\|_{r} &\leq \|\mathcal{L}_{n}(e_{m}) - e_{m}\|_{r} + \|e_{j}\|_{r} \cdot \|e_{m-j} - \mathcal{L}_{n}(e_{m-j})\|_{r} \\ &+ \|\mathcal{L}_{n}(e_{m-j})\|_{r} \cdot \|e_{j} - \mathcal{L}_{n}(e_{j})\|_{r}. \end{aligned}$$

Proof. Since $f(z)g(z) = \sum_{m=0}^{\infty} c_m z^m$, where $c_m = \sum_{j=0}^{m} a_j b_{m-j}$, it follows

$$\mathcal{L}_n(fg)(z) = \sum_{m=0}^{\infty} \left[\sum_{j=0}^m a_j b_{m-j} \right] \mathcal{L}_n(e_m)(z).$$

Also,

$$\mathcal{L}_n(f)(z) = \sum_{k=0}^{\infty} a_k \mathcal{L}_n(e_k)(z), \ \mathcal{L}_n(g)(z) = \sum_{k=0}^{\infty} b_k \mathcal{L}_n(e_k)(z)$$

and

$$\mathcal{L}_n(f)(z)\mathcal{L}_n(g)(z) = \sum_{m=0}^{\infty} \left[\sum_{j=0}^m a_j b_{m-j} \mathcal{L}_n(e_j)(z) \mathcal{L}_n(e_{m-j})(z) \right],$$

which immediately implies

$$\begin{aligned} |\mathcal{L}_n(fg)(z) - \mathcal{L}_n(f)(z)\mathcal{L}_n(g)(z)| &= \left| \sum_{m=0}^{\infty} \left[\sum_{j=0}^m a_j b_{m-j} \left(\mathcal{L}_n(e_m)(z) - \mathcal{L}_n(e_j)(z)\mathcal{L}_n(e_{m-j})(z) \right) \right] \right| \\ &\leq \sum_{m=0}^{\infty} \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}| \cdot |\mathcal{L}_n(e_m)(z) - \mathcal{L}_n(e_j)(z)\mathcal{L}_n(e_{m-j})(z)| \right] \end{aligned}$$

Then, we get

$$\begin{aligned} |A_{n,m,j}(z)| &= |\mathcal{L}_n(e_m)(z) - \mathcal{L}_n(e_j)(z)\mathcal{L}_n(e_{m-j})(z)| \\ &\leq |\mathcal{L}_n(e_m)(z) - e_m(z)| + |e_j(z) \cdot e_{m-j}(z) - \mathcal{L}_n(e_j)(z)\mathcal{L}_n(e_{m-j})(z)| \\ &\leq |\mathcal{L}_n(e_m)(z) - e_m(z)| + |e_j(z)| \cdot |e_{m-j}(z) - \mathcal{L}_n(e_{m-j})(z)| \\ &+ |\mathcal{L}_n(e_{m-j})(z)| \cdot |e_j(z) - \mathcal{L}_n(e_j)(z)|, \end{aligned}$$

which immediately proves the lemma.

The following Grüss-type estimate holds.

Corollary 2.1. Suppose that $1 \leq r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R , that is $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ for all $z \in \mathbb{D}_R$. For all $n \in \mathbb{N}$, we have

$$\|\mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g)\|_r \le \frac{3}{n} \cdot \sum_{m=1}^{\infty} m^2 \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}|\right] r^m,$$

where $\sum_{m=1}^{\infty} m^2 \left[\sum_{j=0}^{m} |a_j| \cdot |b_{m-j}| \right] r^m < \infty.$

Proof. We estimate $||A_{n,m,j}||_r$ in the statement of Theorem 2.1 for $\mathcal{L}_n = \mathcal{V}_n$. For that purpose, by [2, p. 182], we easily get $||\mathcal{V}_n(e_k)||_r \leq r^k$, for all $n \in \mathbb{N}$, $k \in \mathbb{N} \bigcup \{0\}$, while from [2, p. 183], we have $||\mathcal{V}_n(e_k) - e_k||_r \leq \frac{k^2}{n}r^k$, for all k, n. This implies, for all $n, m, j \in \mathbb{N}$ and $j \leq m$

$$\begin{split} \|A_{n,m,j}\|_r &\leq \frac{m^2}{n} r^m + r^j \cdot \frac{(m-j)^2}{n} \cdot r^{m-j} + r^{m-j} \cdot \frac{j^2}{n} \cdot r^j \\ &\leq \frac{3}{n} \cdot m^2 r^m, \end{split}$$

which by Theorem 2.1, immediately implies the estimate in the statement of the corollary.

It remains to show that $\sum_{m=1}^{\infty} m^2 \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}| \right] r^m < \infty$. Indeed, since f and g are analytic it follows that the series $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ converge uniformly for $|z| \leq r$ and all $1 \leq r < R$, that is the series $\sum_{k=0}^{\infty} |a_k| r^k$ and $\sum_{k=0}^{\infty} |b_k| r^k$ converge for all $1 \leq r < R$. Then, by Mertens' theorem (see e.g. [6, Theorem 3.50, p. 74] their (Cauchy) product is a convergent series and therefore

$$\sum_{m=0}^{\infty} \left[\sum_{j=0}^{m} |a_j| \cdot |b_{m-j}| \right] r^m$$

is a convergent series for all $1 \le r < R$. Denoting $A_m = \sum_{j=0}^m |a_j| \cdot |b_{m-j}|$, this means that the power series $F(z) = \sum_{m=0}^\infty A_m z^m$ is uniformly convergent for $|z| \le r$, for all $1 \le r < R$, which implies that $F''(z) = \sum_{m=2}^\infty m(m-1)A_m z^{m-2}$ also is uniformly convergent for $|z| \le r$,

with $1 \leq r < R$ arbitrary, fixed. Indeed, choose an r' with $1 \leq r < r' < R$ and consider the uniformly convergent series $F(z) = \sum_{m=0}^{\infty} A_m z^m$ on $|z| \leq r'$. Therefore $\sum_{m=2}^{\infty} m(m-1)A_m r^{m-2} < \infty$, which immediately implies that

$$\sum_{m=1}^{\infty} m^2 \left[\sum_{j=0}^{m} |a_j| \cdot |b_{m-j}| \right] r^m < \infty.$$

In what follows, it is natural to ask for the limit

$$\lim_{n \to \infty} n[\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z)].$$

By simple calculation, we have

$$n[\mathcal{V}_{n}(fg)(z) - \mathcal{V}_{n}(f)(z)\mathcal{V}_{n}(g)(z)]$$

$$= n\left\{\mathcal{V}_{n}(fg)(z) - f(z)g(z) + \frac{z^{2}}{n}(f(z)g(z))'' + \frac{z}{n}(f(z)g(z))' - g(z)\left[\mathcal{V}_{n}(f)(z) - f(z) + \frac{z^{2}}{n}f''(z) + \frac{z}{n}f'(z)\right] - \mathcal{V}_{n}(f)(z)\left[\mathcal{V}_{n}(g)(z) - g(z) + \frac{z^{2}}{n}g''(z) + \frac{z}{n}g'(z)\right] + \left(\frac{z^{2}}{n}g''(z) + \frac{z}{n}g'(z)\right)[\mathcal{V}_{n}(f)(z) - f(z)] - \frac{2z^{2}}{n}f'(z)g'(z)\right\}.$$

Indeed, the above equality easily follows by simple algebraic manipulations, replacing in the right-hand side of the equality [f(z)g(z)]' = f'(z)g(z) + f(z)g'(z), [f(z)g(z)]'' = f''(z)g(z) + 2f'(z)g'(z) + f(z)g''(z) and reducing the corresponding terms.

Taking into account the estimate in [2, Theorem 3.1.2, p. 183] applied successively there for $f \cdot g$, f and g, passing to the limit it easily follows

$$\lim_{n \to \infty} n[\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z)] = -2z^2 f'(z)g'(z).$$

This suggests us to prove the following Grüss-Voronovskaya-type estimate.

Theorem 2.2. Suppose that $1 \le r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . Then, for all $|z| \le r$, there exists a constant C(r, f, g) > 0 depending on r, f, g, such that

$$\left|\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z) + \frac{2z^2}{n}f'(z)g'(z)\right| \le \frac{C(r, f, g)}{n^2}, \ n \in \mathbb{N}.$$

Proof. Firstly, note that we have the decomposition formula

$$\begin{split} \mathcal{V}_{n}(fg)(z) &- \mathcal{V}_{n}(f)(z)\mathcal{V}_{n}(g)(z) + \frac{2z^{2}}{n}f'(z)g'(z) \\ &= \left[\mathcal{V}_{n}(fg)(z) - (fg)(z) + \frac{z^{2}}{n}(f(z)g(z))'' + \frac{z}{n}(f(z)g(z))'\right] \\ &- f(z)\left[\mathcal{V}_{n}(g)(z) - g(z) + \frac{z^{2}}{n}g''(z) + \frac{z}{n}g'(z)\right] \\ &- g(z)\left[\mathcal{V}_{n}(f)(z) - f(z) + \frac{z^{2}}{n}f''(z) + \frac{z}{n}f'(z)\right] \\ &+ [g(z) - \mathcal{V}_{n}(g)(z)] \cdot [\mathcal{V}_{n}(f)(z) - f(z)]. \end{split}$$

 \Box

Passing to modulus with $|z| \le r$ and taking into account the estimates in [2, Theorem 3.1.1, (i), p. 182] and [2, Theorem 3.1.2, p. 183], we get

$$\begin{aligned} \left| \mathcal{V}_{n}(fg)(z) - \mathcal{V}_{n}(f)(z)\mathcal{V}_{n}(g)(z) + \frac{2z^{2}}{n}f'(z)g'(z) \right| \\ &\leq \left| \mathcal{V}_{n}(fg)(z) - (fg)(z) + \frac{z^{2}}{n}(f(z)g(z))'' + \frac{z}{n}(f(z)g(z))' \right| \\ &+ |f(z)| \left| \mathcal{V}_{n}(g)(z) - g(z) + \frac{z^{2}}{n}g''(z) + \frac{z}{n}g'(z) \right| \\ &+ |g(z)| \left| \mathcal{V}_{n}(f)(z) - f(z) + \frac{z^{2}}{n}f''(z) + \frac{z}{n}f'(z) \right| \\ &+ |g(z) - \mathcal{V}_{n}(g)(z)| \cdot |\mathcal{V}_{n}(f)(z) - f(z)|. \\ &\leq \frac{C_{1}(r, f, g)}{n^{2}} + \|f\|_{r} \cdot \frac{C_{2}(r, g)}{n^{2}} + \|g\|_{r} \cdot \frac{C_{3}(r, f)}{n^{2}} + \frac{C_{4}(r, g)}{n} \cdot \frac{C_{5}(r, f)}{n} \\ &\leq \frac{C(r, f, g)}{n^{2}}, \end{aligned}$$

for all $n \in \mathbb{N}$ and $|z| \leq r$, with C(r, f, g) > 0 independent of n and depending on r, f, g. \Box

In what follows, the above theorem is used to obtain a lower estimate in the Grüss-type inequality.

Corollary 2.2. Suppose that $1 \le r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . Then there exists an $n_0 \in \mathbb{N}$, depending only on r, f and g, such that

$$\|\mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g)\|_r \ge \frac{1}{n} \cdot \|e_2 f'g'\|_r, \ n \ge n_0.$$

Proof. We can write

$$\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z)$$

= $\frac{1}{n}\left\{-2z^2f'(z)g'(z) + \frac{1}{n}\left[n^2\left(\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z) + \frac{2z^2}{n}f'(z)g'(z)\right)\right]\right\}.$

Applying to the above identity, the obvious inequality

$$||F + G||_r \ge ||F||_r - ||G||_r| \ge ||F||_r - ||G||_r,$$

and denoting $e_2(z) = z^2$, we obtain

$$\|\mathcal{V}_{n}(fg) - \mathcal{V}_{n}(f)\mathcal{V}_{n}(g)\|_{r} \geq \frac{1}{n} \left\{ \|2e_{2}f'g'\|_{r} - \frac{1}{n} \left[n^{2} \left\|\mathcal{V}_{n}(fg) - \mathcal{V}_{n}(f)\mathcal{V}_{n}(g) + \frac{2e_{2}}{n}f'g'\right\|_{r} \right] \right\}.$$

Since *f* and *g* are not constant functions, we easily get $||2e_2f'g'||_r > 0$.

Taking into account that by Theorem 2.2, we get

$$n^{2} \left\| \mathcal{V}_{n}(fg) - \mathcal{V}_{n}(f)\mathcal{V}_{n}(g) + \frac{2e_{2}}{n}f'g' \right\|_{r} \leq C(r, f, g)$$

and that $\frac{1}{n} \to 0$, there exists an index n_0 (depending only on r, f, g), such that for all $n \ge n_0$, we have

$$\begin{aligned} \|2e_2f'g'\|_r &- \frac{1}{n} \left[n^2 \left\| \mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g) + \frac{2e_2}{n}f'g' \right\|_r \right] \ge \frac{\|2e_2f'g'\|_r}{2} \\ &= \|e_2f'g'\|_r \\ > 0, \end{aligned}$$

which for all $n \ge n_0$ implies

$$\|\mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g)\|_r \ge rac{1}{n} \cdot \|e_2 f'g'\|_r.$$

As an immediate consequence of Corollary 2.1 and Corollary 2.2, we obtain the following exact estimate.

Corollary 2.3. Suppose that $1 \le r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . If f and g are not constant functions, then there exists $n_0 \in \mathbb{N}$ depending only on r, f and g, such that we have

$$\|\mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g)\|_r \sim \frac{1}{n}, n \in \mathbb{N}, n \ge n_0,$$

where the constants in the equivalence are independent of n but depend on r, f, g.

3. ZYGMUND-RIESZ COMPLEX CONVOLUTION

This section deals with the Grüss and the Grüss-Voronovskaya estimates for the Zygmund-Riesz complex polynomials based on the convolution with the Zygmund-Riesz kernel

$$K_{n,s}(t) = \frac{1}{2} + \sum_{j=1}^{n-1} \left(1 - \frac{j^s}{n^s}\right) \cos(jt), s \in \mathbb{N} \text{ fixed},$$

defined by

(3.4)
$$\mathcal{R}_{n,s}(f)(z) = \sum_{j=0}^{n-1} c_j \left[1 - \left(\frac{j}{n}\right)^s \right] z^j,$$

attached to analytic functions in compact disks, $f(z) = \sum_{j=0}^{\infty} c_j z^j$.

Firstly, as a consequence of Theorem 2.1, the following Grüss-type estimate holds for Zygmund-Riesz complex polynomial convolution.

Corollary 3.4. Suppose that $1 \le r < R$, $s \in \mathbb{N}$ are fixed arbitrary and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R , that is $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ for all $z \in \mathbb{D}_R$. For all $n \in \mathbb{N}$, we have

$$\|\mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g)\|_{r} \le \frac{3}{n^{s}} \sum_{m=1}^{\infty} m^{s} \left[\sum_{j=0}^{m} |a_{j}| \cdot |b_{m-j}|\right] r^{m},$$

where $\sum_{m=1}^{\infty} m^s \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}| \right] r^m < +\infty.$

Proof. Denote $e_m(z) = z^m$. We will estimate $||A_{n,m,j}||_r$ in the case when in Theorem 2.1, we take $\mathcal{L}_n = \mathcal{R}_{n,s}$.

From the formula (3.4), we immediately get that $\mathcal{R}_{n,s}(e_k)(z) = 0$ if $k \ge n$ and that $\mathcal{R}_{n,s}(e_k)(z) = [1 - \frac{k^s}{n^s}] e_k(z)$ if $k \le n - 1$. This immediately implies $\|\mathcal{R}_{n,s}(e_k)\|_r \le r^k$ for all n, k. Also,

 \square

 $\|\mathcal{R}_{n,s}(e_k) - e_k\|_r = r^k \leq \frac{k^s}{n^s} \cdot r^k$ if $k \geq n$ and $\|\mathcal{R}_{n,s}(e_k) - e_k\|_r \leq \frac{k^s}{n^s}r^k$ if $k \leq n-1$, which easily implies

$$|A_{m,n,j}||_{r} \leq \frac{m^{s}}{n^{s}}r^{m} + r^{j} \cdot \frac{(m-j)^{s}}{n^{s}} \cdot r^{m-j} + r^{m-j} \cdot \frac{j^{s}}{n^{s}} \cdot r^{j} \leq \frac{3}{n^{s}}m^{s}r^{m}.$$

It remains to show that $\sum_{m=1}^{\infty} m^s \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}| \right] r^m < +\infty$. This follows immediately by reasoning exactly as in the proof of Corollary 2.1. Indeed, keeping the notation there for the series $F(z) = \sum_{m=0}^{\infty} A_m z^m$, we analogously get that for any $1 \le r < R$, all the series F'(z), ..., $F^{(s)}(z)$ are uniformly convergent for $|z| \le r$.

In conclusion, we obtain the conclusions in the statement.

In what follows, it is natural to ask for the limit

$$\lim_{n \to \infty} n^s [\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z)].$$

For this purpose, for arbitrary $k, s \in \mathbb{N}$, let us denote the coefficients $\alpha_{j,s} \in \mathbb{N}$, independent of k which satisfy (see, e.g., [2, Lemma 3.1.7, p. 190])

(3.5)
$$k^{s} = \sum_{j=1}^{s} \alpha_{j,s} k(k-1) \cdot \ldots \cdot (k-(j-1)),$$

and the recurrence formula

(3.6) $\alpha_{j,s+1} = \alpha_{j-1,s} + j\alpha_{j,s}, j = 2, ..., s, s \ge 2$, with $\alpha_{1,s} = \alpha_{s,s} = 1$, for all $s \ge 1$.

By simple calculation (see the indications for the relation after the proof of Corollary 2.1), we have

$$n^{s} [\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z)]$$

$$= n^{s} \left\{ \mathcal{R}_{n,s}(fg)(z) - f(z)g(z) + \frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j,s} z^{j} (f(z)g(z))^{(j)} - g(z) \left[\mathcal{R}_{n,s}(f)(z) - f(z) + \frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j,s} z^{j} f^{(j)}(z) \right] - \mathcal{R}_{n,s}(f)(z) \left[\mathcal{R}_{n,s}(g)(z) - g(z) + \frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j,s} z^{j} g^{(j)}(z) \right] + \left(\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j,s} z^{j} g^{(j)}(z) \right) [\mathcal{R}_{n,s}(f)(z) - f(z)] + E_{n,s}(f,g)(z) \right\},$$

where $E_{n,s}(f,g)(z) = \frac{1}{n^s}G_s(f,g)(z)$ with

(3.7)
$$G_s(f,g)(z) = \sum_{j=1}^s \alpha_{j,s} z^j [f(z)g^{(j)}(z) + g(z)f^{(j)}(z) - (f(z)g(z))^{(j)}].$$

Taking into account the estimate in [2, Theorem 3.1.8, p. 190], applied successively there for $f \cdot g$, f and g, passing to the limit it easily follows

$$\lim_{n \to \infty} n^s [\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z)] = G_s(f,g)(z).$$

This suggests us to prove the following Grüss-Voronovskaya-type estimate.

Theorem 3.3. Suppose that $1 \le r < R$, $s \in \mathbb{N}$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . Then, for all $|z| \le r$, there exists a constant C(r, s, f, g) > 0 depending on r, s, f, g, such that

$$\left|\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z) - \frac{1}{n^s}G_s(f,g)(z)\right| \le \frac{C(r,s,f,g)}{n^{s+1}}, n \in \mathbb{N}.$$

Proof. Firstly, note that we have the decomposition formula

$$\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z) - \frac{1}{n^s}G_s(f,g)(z) \\= \left[\mathcal{R}_{n,s}(fg)(z) - (fg)(z) + \frac{1}{n^s}\sum_{j=1}^s \alpha_{j,s}z^j(f(z)g(z))^{(j)}\right] \\-f(z)\left[\mathcal{R}_{n,s}(g)(z) - g(z) + \frac{1}{n^s}\sum_{j=1}^s \alpha_{j,s}z^jg^{(j)}(z)\right] \\-g(z)\left[\mathcal{R}_{n,s}(f)(z) - f(z) + \frac{1}{n^s}\sum_{j=1}^s \alpha_{j,s}z^jf^{(j)}(z)\right] \\+[g(z) - \mathcal{R}_{n,s}(g)(z)] \cdot [\mathcal{R}_{n,s}(f)(z) - f(z)].$$

Passing to modulus with $|z| \le r$ and taking into account the estimates in the second line of the proof of [2, Theorem 3.1.6, p. 189] and [2, Theorem 3.1.8, p. 190], we get

$$\begin{aligned} \left| \mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z) - \frac{1}{n^s}G_s(f,g)(z) \right| \\ &\leq \left| \mathcal{R}_{n,s}(fg)(z) - (fg)(z) + \frac{1}{n^s}\sum_{j=1}^s \alpha_{j,s}z^j(f(z)g(z))^{(j)} \right| \\ &+ |f(z)| \left| \mathcal{R}_{n,s}(g)(z) - g(z) + \frac{1}{n^s}\sum_{j=1}^s \alpha_{j,s}z^jg^{(j)}(z) \right| \\ &+ |g(z)| \left| \mathcal{R}_{n,s}(f)(z) - f(z) + \frac{1}{n^s}\sum_{j=1}^s \alpha_{j,s}z^jf^{(j)}(z) \right| \\ &+ |g(z) - \mathcal{R}_{n,s}(g)(z)| \cdot |\mathcal{R}_{n,s}(f)(z) - f(z)| \\ &\leq \frac{C_1(r,s,f,g)}{n^{s+1}} + \|f\|_r \cdot \frac{C_2(r,s,g)}{n^{s+1}} + \|g\|_r \cdot \frac{C_3(r,s,f)}{n^{s+1}} + \frac{C_4(r,s,g)}{n^s} \cdot \frac{C_5(r,s,f)}{n^s} \\ &\leq \frac{C(r,s,f,g)}{n^{s+1}}, \end{aligned}$$

for all $n \in \mathbb{N}$ and $|z| \leq r$, with C(r, s, f, g) > 0 independent of n and depending on r, s, f, g.

Remark 3.1. Taking s = 1 in Theorem 3.3 and using that $G_1(f,g)(z) = 0$ for all $z \in \mathbb{D}_R$, in this case we get a better estimate in the Grüss-type inequality than that in Corollary 3.4, namely

$$\|\mathcal{R}_{n,1}(fg) - \mathcal{R}_{n,1}(f)\mathcal{R}_{n,1}(g)\|_r \le \frac{C(f,g)}{n^2}.$$

In what follows, the above theorem is used to obtain lower estimate in the Grüss-type inequality.

Corollary 3.5. Suppose that $1 \le r < R$, $s \in \mathbb{N}$, $s \ge 2$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . Then there exists $n_0 \in \mathbb{N}$ depending on r, s, f and g, such that

$$\|\mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g)\|_r \ge \frac{1}{n^s} \cdot \frac{\|G_s(f,g)\|_r}{2}, \ n \in \mathbb{N}, n \ge n_0,$$

where $G_s(f,g)(z)$ is given by relation (3.7).

Proof. We can write

$$\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z)$$

$$= \frac{1}{n^s} \left\{ G_s(f,g)(z) + \frac{1}{n^s} \left[n^{2s} \left(\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z) - \frac{1}{n^s}G_s(f,g)(z) \right) \right] \right\}$$

Applying to the above identity, the obvious inequality

$$||F + G||_r \ge ||F||_r - ||G||_r| \ge ||F||_r - ||G||_r,$$

we obtain

$$\begin{aligned} & \left\| \mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f) \mathcal{R}_{n,s}(g) \right\|_{r} \\ \geq & \frac{1}{n^{s}} \left\{ \left\| G_{s}(f,g) \right\|_{r} - \frac{1}{n^{s}} \left[n^{2s} \left\| \mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f) \mathcal{R}_{n,s}(g) - \frac{1}{n^{s}} G_{s}(f,g) \right\|_{r} \right] \right\}. \end{aligned}$$

By hypothesis, we easily get $||G_s(f,g)||_r > 0$.

Taking into account that by Theorem 3.3, we get

$$n^{s+1} \left\| \mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f) \mathcal{R}_{n,s}(g) + \frac{1}{n^s} G_s(f,g) \right\|_r \le C(r,s,f,g)$$

and that $\frac{1}{n} \to 0$, there exists an index n_0 (depending only on r, f, g), such that for all $n \ge n_0$, we have

$$\begin{split} \|G_{s}(f,g)\|_{r} &- \frac{1}{n^{s}} \left[n^{2s} \left\| \mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f) \mathcal{R}_{n,s}(g) + \frac{1}{n^{s}} G_{s}(f,g) \right\|_{r} \right] \\ \geq \|G_{s}(f,g)\|_{r} &- \frac{K(r,s,f,g)}{n} \\ \geq \frac{\|G_{s}(f,g)\|_{r}}{2} \\ > 0, \end{split}$$

which for all $n \ge n_0$ implies

$$\mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g)\|_r \ge \frac{1}{n^s} \cdot \frac{\|G_s(f,g)\|_r}{2}.$$

The corollary is proved.

As an immediate consequence of Corollary 3.4 and Corollary 3.5, we obtain the following exact estimate.

Corollary 3.6. Suppose that $1 \le r < R$, $s \in \mathbb{N}$, $s \ge 2$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . If f and g are such that $G_s(f,g)(z)$ is not identical zero in \mathbb{D}_r , then there exists $n_0 \in \mathbb{N}$ depending only on r, s, f, g, such that we have

$$\|\mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g)\|_r \sim \frac{1}{n^s}, n \in \mathbb{N}, n \ge n_0,$$

where the constants in the equivalence are independent of n but depend on r, s, f, g.

Remark 3.2. The statements of Corollaries 3.5 and 3.6 suggest to be of interest to examine the pair of functions f, g, for which $G_s(f, g)(z) \equiv 0$. For example, in the particular case s = 2, taking into account the formula for $G_s(f, g)(z)$ in (3.7), we easily obtain that

$$f(z)g''(z) + f''(z)g(z) - [f(z)g(z)]'' \equiv 0.$$

This easily one reduces to $f'(z)g'(z) \equiv 0$, which means that f is a constant function and g is an arbitrary analytic function, or f is an arbitrary analytic function and g is a constant function.

The cases $s \ge 3$ are more complicated and remain as open questions.

4. JACKSON COMPLEX CONVOLUTION

In this section, we study the Jackson complex polynomials based on the convolution with the Jackson kernel

$$K_n(t) = \frac{3}{2n(2n^2+1)} \cdot \left(\frac{\sin(nt/2)}{\sin(t/2)}\right)^4,$$

defined by

(4.8)
$$\mathcal{J}_n(f)(z) = c_0 + \sum_{j=1}^{2n-2} c_j \cdot \lambda_{j,n} \cdot z^j$$

attached to analytic functions on compact disks, $f(z) = \sum_{j=0}^{\infty} c_j z^j$, where $\lambda_{j,n} = \frac{4n^3 - 6j^2 n + 3j^3 - 3j + 2n}{2n(2n^2+1)}$ if $1 \le j \le n$, $\lambda_{j,n} = \frac{j - 2n - (j - 2n)^3}{2n(2n^2+1)}$ if $n \le j \le 2n - 2$.

As a consequence of Theorem 2.1, the following Grüss-type estimate holds for Jackson complex convolution.

Corollary 4.7. Suppose that $1 \le r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R , that is $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ for all $z \in \mathbb{D}_R$. For all $n \in \mathbb{N}$, we have

$$\|\mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g)\|_r \le \frac{3C_r}{n^2} \sum_{m=1}^{\infty} m^2 \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}|\right] r^m.$$

Here, $C_r > 0$ *is a constant depending only on r.*

Proof. Denote $e_m(z) = z^m$. We will estimate $||A_{n,m,j}||_r$ in the case when in Theorem 2.1, we take $\mathcal{L}_n = \mathcal{J}_n$.

From the formula for \mathcal{J}_n in (4.8), we get $\mathcal{J}_n(e_k)(z) = 0$, if k > 2n - 2 and $\mathcal{J}_n(e_k) = \lambda_{k,n}e_k(z)$ if $0 \le k \le 2n - 2$, which implies that $\|\mathcal{J}_n(e_k)\|_r \le r^k$, for all k, n (here we take into account that by e.g. [2, Remark 3, p. 195], we have $0 \le \lambda_{k,n} \le 1$ for all k, n).

Also, from [2, Theorem 3.1.10, (iv), p. 195], combined with the mean value theorem applied to the divided difference of the complex valued function $g(t) = f(re^{it})$, we immediately get

$$\begin{aligned} |\mathcal{J}_{n}(f)(z) - f(z)| &\leq C_{r}\omega_{2}(f; 1/n)_{\partial \mathbb{D}_{r}} \\ &\leq \frac{C_{r}}{n^{2}} \|g''\|_{[0,2\pi]} \\ &\leq \frac{C_{r}}{n^{2}} \left[\|f'\|_{r} + \|f''\|_{r} \right] \\ &\leq \frac{C_{r}}{n^{2}} \left[\sum_{k=1}^{\infty} |c_{k}| kr^{k-1} + \sum_{k=2}^{\infty} |c_{k}| (k-1)kr^{k-2} \right] \\ &\leq \frac{C_{r}}{n^{2}} \sum_{k=1}^{\infty} |c_{k}| \cdot k^{2} \cdot r^{k}. \end{aligned}$$

Note that here, the constant C_r depends only on r and is different at each occurrence.

It is worth noting here that the above estimate corrects a little the constant in the estimate in [2, Corollary 3.1.11, (i)] (where instead of $\sum_{k=1}^{\infty} |c_k| \cdot k^2 \cdot r^k$ we got the incorrect constant $\sum_{k=1}^{\infty} |c_k| \cdot k(k-1) \cdot r^{k-2}$, which appears because in [2, p. 196] we used the incorrect estimate $||g''||_{[0,2\pi]} \leq ||f''||_r$).

Now, if we put above e_k instead of f, we easily arrive at

$$\|\mathcal{J}_n(e_k) - e_k\|_r \le \frac{C_r}{n^2} \cdot k^2 r^k$$

for all k, n.

Therefore, for all $j \leq m$, it follows

$$\begin{split} \|A_{m,n,j}\|_{r} &\leq \frac{C_{r}}{n^{2}}m^{2}r^{m} + r^{j} \cdot \frac{C_{r}}{n^{2}}(m-j)^{2}r^{m-j} + r^{m-j} \cdot \frac{C_{r}}{n^{2}}j^{2}r^{j} \\ &\leq \frac{3C_{r}}{n^{2}} \cdot m^{2}r^{m}, \end{split}$$

which combined with Theorem 2.1 proves the corollary.

In what follows, it is natural to ask for the limit

$$\lim_{n \to \infty} n^2 [\mathcal{J}_n(fg)(z) - \mathcal{J}_n(f)(z)\mathcal{J}_n(g)(z)].$$

By simple calculation, we have (see the indications for the relation after the proof of Corollary 2.1)

$$n^{2}[\mathcal{J}_{n}(fg)(z) - \mathcal{J}_{n}(f)(z)\mathcal{J}_{n}(g)(z)]$$

$$= n^{2} \left\{ \mathcal{J}_{n}(fg)(z) - f(z)g(z) + \frac{3z^{2}}{2n^{2}}(f(z)g(z))'' + \frac{3z}{2n^{2}}(f(z)g(z))' - g(z) \left[\mathcal{J}_{n}(f)(z) - f(z) + \frac{3z^{2}}{2n^{2}}f''(z) + \frac{3z}{2n^{2}}f'(z) \right] - \mathcal{J}_{n}(f)(z) \left[\mathcal{J}_{n}(g)(z) - g(z) + \frac{3z^{2}}{2n^{2}}g''(z) + \frac{3z}{2n^{2}}g'(z) \right] + \left(\frac{3z^{2}}{2n^{2}}g''(z) + \frac{3z}{2n^{2}}g'(z) \right) \left[\mathcal{J}_{n}(f)(z) - f(z) \right] - \frac{3z^{2}}{n^{2}}f'(z)g'(z) \right\}.$$

Taking into account the estimate in [2, Theorem 3.1.12, p. 196], applied successively there for $f \cdot g$, f and g, passing to the limit it easily follows

$$\lim_{n \to \infty} n^2 [\mathcal{J}_n(fg)(z) - \mathcal{J}_n(f)(z)\mathcal{J}_n(g)(z)] = -3z^2 f'(z)g'(z).$$

This suggests us to prove the following Grüss-Voronovskaya-type estimate.

Theorem 4.4. Suppose that $1 \le r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . Then, for all $|z| \le r$, there exists a constant C(r, f, g) > 0 depending on r, f, g, such that

$$\left|\mathcal{J}_n(fg)(z) - \mathcal{J}_n(f)(z)\mathcal{J}_n(g)(z) + \frac{3z^2}{n^2}f'(z)g'(z)\right| \le \frac{C(r, f, g)}{n^3}, n \in \mathbb{N}.$$

Proof. Firstly, note that we have the decomposition formula

$$\begin{aligned} \mathcal{J}_n(fg)(z) &- \mathcal{J}_n(f)(z)\mathcal{J}_n(g)(z) + \frac{3z^2}{n^2}f'(z)g'(z) \\ &= \left[\mathcal{J}_n(fg)(z) - (fg)(z) + \frac{3z^2}{2n^2}(f(z)g(z))'' + \frac{3z}{2n^2}(f(z)g(z))'\right] \\ &- f(z) \left[\mathcal{J}_n(g)(z) - g(z) + \frac{3z^2}{2n^2}g''(z) + \frac{3z}{2n^2}g'(z)\right] \\ &- g(z) \left[\mathcal{J}_n(f)(z) - f(z) + \frac{3z^2}{2n^2}f''(z) + \frac{3z}{2n^2}f'(z)\right] \\ &+ [g(z) - \mathcal{J}_n(g)(z)] \cdot [\mathcal{J}_n(f)(z) - f(z)]. \end{aligned}$$

Passing to modulus with $|z| \le r$ and taking into account the estimates in [2, Theorem 3.1.12, p. 196] and the estimate in the proof of Corollary 4.7, we get

$$\begin{aligned} \left| \mathcal{J}_{n}(fg)(z) - \mathcal{J}_{n}(f)(z)\mathcal{J}_{n}(g)(z) + \frac{3z^{2}}{n^{2}}f'(z)g'(z) \right| \\ &\leq \left| \mathcal{J}_{n}(fg)(z) - (fg)(z) + \frac{3z^{2}}{2n^{2}}(f(z)g(z))'' + \frac{3z}{2n^{2}}(f(z)g(z))' \right| \\ &+ |f(z)| \left| \mathcal{J}_{n}(g)(z) - g(z) + \frac{3z^{2}}{2n^{2}}g''(z) + \frac{3z}{2n^{2}}g'(z) \right| \\ &+ |g(z)| \left| \mathcal{J}_{n}(f)(z) - f(z) + \frac{3z^{2}}{2n^{2}}f''(z) + \frac{3z}{2n^{2}}f'(z) \right| \\ &+ |g(z) - \mathcal{J}_{n}(g)(z)| \cdot |\mathcal{J}_{n}(f)(z) - f(z)| \\ &\leq \frac{C_{1}(r, f, g)}{n^{3}} + \|f\|_{r} \cdot \frac{C_{2}(r, g)}{n^{3}} + \|g\|_{r} \cdot \frac{C_{3}(r, f)}{n^{3}} + \frac{C_{4}(r, g)}{n^{2}} \cdot \frac{C_{5}(r, f)}{n^{2}} \\ &\leq \frac{C(r, f, g)}{n^{3}} \end{aligned}$$

for all $n \in \mathbb{N}$ and $|z| \leq r$, with C(r, f, g) > 0 independent of n and depending on r, f, g. \Box

In what follows, the above theorem is used to obtain a lower estimate in the Grüss-type inequality.

Corollary 4.8. Suppose that $1 \le r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . Then there exists an $n_0 \in \mathbb{N}$, depending only on r, f and g, such that

$$\|\mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g)\|_r \ge \frac{1}{n^2} \cdot \frac{\|3e_2f' \cdot g'\|_r}{2}, \quad n \in \mathbb{N}, n \ge n_0$$

Proof. We can write

$$\mathcal{J}_{n}(fg)(z) - \mathcal{J}_{n}(f)(z)\mathcal{J}_{n}(g)(z) = \frac{1}{n^{2}} \left\{ -3z^{2}f'(z)g'(z) + \frac{1}{n^{2}} \left[n^{4} \left(\mathcal{J}_{n}(fg)(z) - \mathcal{J}_{n}(f)(z)\mathcal{J}_{n}(g)(z) + \frac{3z^{2}}{n^{2}}f'(z)g'(z) \right) \right] \right\}.$$

Applying to the above identity, the obvious inequality

 $||F + G||_r \ge ||F||_r - ||G||_r| \ge ||F||_r - ||G||_r,$

and denoting $e_2(z) = z^2$, we obtain

$$\|\mathcal{J}_{n}(fg) - \mathcal{J}_{n}(f)\mathcal{J}_{n}(g)\|_{r} \geq \frac{1}{n^{2}} \left\{ \|3e_{2}f'g'\|_{r} - \frac{1}{n^{2}} \left[n^{4} \left\| \mathcal{J}_{n}(fg) - \mathcal{J}_{n}(f)\mathcal{J}_{n}(g) + \frac{3e_{2}}{n^{2}}f'g' \right\|_{r} \right] \right\}.$$

Since *f* and *g* are not constant functions, we easily get $||3e_2f'g'||_r > 0$. Taking into account that by Theorem 4.4, we get

$$n^{3} \left\| \mathcal{J}_{n}(fg) - \mathcal{J}_{n}(f)\mathcal{J}_{n}(g) + \frac{3e_{2}}{n^{2}}f'g' \right\|_{r} \leq C(r, f, g)$$

and that $\frac{1}{n} \to 0$, there exists an index n_0 (depending only on r, f, g), such that for all $n \ge n_0$, we have

$$\|3e_2f'g'\|_r - \frac{1}{n} \left[n^3 \left\| \mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g) + \frac{3e_2}{n^2}f'g' \right\|_r \right] \ge \frac{\|3e_2f'g'\|_r}{2} > 0,$$

which for all $n \ge n_0$ implies

$$\|\mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g)\|_r \ge \frac{1}{n^2} \cdot \frac{\|3e_2 f'g'\|_r}{2}$$

The corollary is proved.

As an immediate consequence of Corollary 4.7 and Corollary 4.8, we obtain the following exact estimate.

Corollary 4.9. Suppose that $1 \le r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . If f and g are not constant functions, then there exists $n_0 \in \mathbb{N}$ depending only on r, f and g, such that we have

$$\|\mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g)\|_r \sim \frac{1}{n^2}, \quad n \in \mathbb{N}, n \ge n_0,$$

where the constants in the equivalence are independent of n but depend on r, f, g.

Acknowledgement. The authors thank the referees for their very good remarks.

REFERENCES

- A. M. Acu, H. Gonska and I. Raşa: Grüss-type and Ostrovski-type inequalities in approximation theory. Ukrainian Mathematical Journal 63 (2011), No. 6, 843-864.
- [2] S. G. Gal: Approximation by Complex Bernstein and Convolution Type Operators. World Scientific Publ. Co., New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai, 2009.
- [3] I. Gavrea, B. Gavrea: Ostrowski type inequalities from a linear functional point of view. JIPAM. J. Inequal. Pure Appl. Math. 1 (2000), Article 11.
- [4] S. G. Gal, H. Gonska: Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables. Jaen J. Approx. 7 (1)(2015), 97-122.
- [5] H. Gonska, I. Raşa and M. Rusu: Čebyšev-Grüss-type inequalities revisited. Mathematica Slovaca 63 (2013), No. 5, 1007-1024.

[6] W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, Inc., New York, 1976.

Sorin G. Gal University of Oradea Department of Mathematics and Computer Science Str. Universitatii Nr. 1, 410087, Oradea, Romania ORCID: 0000-0002-5743-3144 *E-mail address*: galso@uoradea.ro

IONUT T. IANCU UNIVERSITY OF ORADEA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE STR. UNIVERSITATII NR. 1, 410087, ORADEA, ROMANIA ORCID: 0000-0002-7625-5144 *E-mail address*: ionutz.tudor.iancu@gmail.com