CONSTRUCTIVE MATHEMATICAL ANALYSIS **4** (2021), No. 1, pp. 20-33 http://dergipark.gov.tr/en/pub/cma ISSN 2651 - 2939

Research Article

Grüss and Grüss-Voronovskaya-type estimates for complex convolution polynomial operators

SORIN G. GAL* AND IONUT T. IANCU

ABSTRACT. The aim of this paper is to obtain Grüss and Grüss-Voronovskaya inequalities with exact quantitative estimates (with respect to the degree) for the complex convolution polynomial operators of de la Vallée Poussin, of Zygmund-Riesz and of Jackson, acting on analytic functions.

Keywords: Complex convolution polynomials, de la Vallée-Poussin kernel, Riesz-Zygmund kernel, Jackson kernel, Grüss-type estimate, Grüss-Voronovskaya-type estimate, analytic functions.

2020 Mathematics Subject Classification: 41A10, 41A25, 30E10.

Dedicated to Professor Francesco Altomare, on occasion of his 70th birthday, with esteem and friendship.

1. INTRODUCTION

A classical well-known result in approximation theory is the Grüss inequality for positive linear functionals $L : C[0,1] \to \mathbb{R}$, which gives an upper bound for the Chebyshev-type functional

$$
T(f,g) := L(f \cdot g) - L(f) \cdot L(g), \quad f, g \in C[0,1].
$$

Starting also from a problem posed in [\[3\]](#page-12-0), this inequality was investigated in terms of the least concave majorants of the moduli of continuity and for positive linear operators $H : C[0, 1] \rightarrow$ $C[0, 1]$, for the first time in [\[1\]](#page-12-1) and in the note [\[5\]](#page-12-2), where the cases of classical Hermite-Fejér and Fejér-Korovkin convolution operators were considered.

Refined versions of the Grüss-type inequality in the spirit of Voronovskaya's theorem were obtained in [\[4\]](#page-12-3) for Bernstein and Păltaănea operators of real variable and for complex Bernstein, genuine Bernstein-Durrmeyer and Bernstein-Faber operators attached to analytic functions of complex variable.

After the appearance of these results, several papers by other authors have developed these directions of research.

For example, let $C_{2\pi} = \{f : \mathbb{R} \to \mathbb{R} : f \text{ continuous and } 2\pi \text{ periodic on } \mathbb{R} \}$. A classical method to construct trigonometric approximating polynomials for $f \in C_{2\pi}$ is that of convolution of f with various trigonometric even polynomials $K_n(t)$ (called kernels), under the form

$$
(1.1) \tL_n(f)(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x - t) K_n(t) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(u) K_n(x - u) du, \quad x \in \mathbb{R}, n \in \mathbb{N}.
$$

Upper estimate in the Grüss-type inequality for convolution trigonometric polynomials with respect to general form of the kernel $K_n(t)$, was obtained in [\[1\]](#page-12-1).

DOI: 10.33205/cma.780906

Received: 15.09.2020; Accepted: 19.10.2020; Published Online: 01.03.2021

^{*}Corresponding author: Sorin G. Gal; galso@uoradea.ro

Now, by analogy, for f analytic in a disk $\mathbb{D}_R = \{z \in \mathbb{C} : |z| < R\}$ and continuous in the closure of the disk, one can attach the convolution complex (algebraic) polynomials by

$$
(1.2) \qquad \mathcal{L}_n(f)(z) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(ze^{it}) \cdot K_n(t)dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(ze^{-it}) \cdot K_n(t)dt, z \in \mathbb{D}_R, \quad n \in \mathbb{N}.
$$

The goal of this paper is to continue the above mentioned directions of research, obtaining Grüss and Grüss-Voronovskaya exact estimates (with respect to the degree) for the de la Vallée-Poussin complex polynomials in Section 2, for Zygmund-Riesz complex polynomials in Section 3 and for Jackson complex polynomials in Section 4.

2. DE LA VALLÉE-POUSSIN COMPLEX CONVOLUTION

In this section, we extend the Grüss and the Grüss-Voronovskaya estimates for the de la Vallée-Poussin complex polynomials given by the general formula [\(1.2\)](#page-1-0) and based on the convolution with the de la Vallée-Poussin kernel

$$
K_n(t) = \frac{1}{2} \cdot \frac{(n!)^2}{(2n)!} \cdot (2\cos(t/2))^{2n},
$$

defined by

(2.3)
$$
\mathcal{V}_n(f)(z) = \frac{1}{\binom{2n}{n}} \sum_{j=0}^n c_j \binom{2n}{n+j} z^j = \sum_{j=0}^n c_j \frac{(n!)^2}{(n-j)!(n+j)!} z^j,
$$

attached to analytic functions in compact disks, $f(z) = \sum_{j=0}^{\infty} c_j z^j$.

Let us denote $\mathbb{D}_R = \{z \in \mathbb{C}; |z| < R\}$ and $||f||_r = \max\{|f(z)|; |z| \le r\}.$

Firstly, we prove a theorem for the general complex convolutions given by [\(1.2\)](#page-1-0).

Theorem 2.1. *Suppose that* $R > 1$ *and* $f, g : \mathbb{D}_R \to \mathbb{C}$ *are analytic in* \mathbb{D}_R *, that is* $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ for all $z \in \mathbb{D}_R$.

Let $1 \leq r \leq R$ *and consider the operators* \mathcal{L}_n *given by [\(1.2\)](#page-1-0). For all* $n \in \mathbb{N}$ *, it follows*

$$
\|\mathcal{L}_n(fg) - \mathcal{L}_n(f)\mathcal{L}_n(g)\|_r \le \sum_{m=0}^{\infty} \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}| \cdot \|A_{n,m,j}\|_r \right],
$$

where denoting $A_{n,m,j}(z) = \mathcal{L}_n(e_m)(z) - \mathcal{L}_n(e_j)(z) \cdot \mathcal{L}_n(e_{m-j})(z)$ and $e_m(z) = z^m$, $m \in \mathbb{N} \cup \{0\}$, *we have*

$$
||A_{n,m,j}||_r \le ||\mathcal{L}_n(e_m) - e_m||_r + ||e_j||_r \cdot ||e_{m-j} - \mathcal{L}_n(e_{m-j})||_r
$$

+ $||\mathcal{L}_n(e_{m-j})||_r \cdot ||e_j - \mathcal{L}_n(e_j)||_r$.

Proof. Since $f(z)g(z) = \sum_{m=0}^{\infty} c_m z^m$, where $c_m = \sum_{j=0}^{m} a_j b_{m-j}$, it follows

$$
\mathcal{L}_n(fg)(z) = \sum_{m=0}^{\infty} \left[\sum_{j=0}^m a_j b_{m-j} \right] \mathcal{L}_n(e_m)(z).
$$

Also,

$$
\mathcal{L}_n(f)(z) = \sum_{k=0}^{\infty} a_k \mathcal{L}_n(e_k)(z), \ \mathcal{L}_n(g)(z) = \sum_{k=0}^{\infty} b_k \mathcal{L}_n(e_k)(z)
$$

and

$$
\mathcal{L}_n(f)(z)\mathcal{L}_n(g)(z) = \sum_{m=0}^{\infty} \left[\sum_{j=0}^m a_j b_{m-j} \mathcal{L}_n(e_j)(z) \mathcal{L}_n(e_{m-j})(z) \right],
$$

which immediately implies

$$
|\mathcal{L}_n(fg)(z) - \mathcal{L}_n(f)(z)\mathcal{L}_n(g)(z)| = \left| \sum_{m=0}^{\infty} \left[\sum_{j=0}^m a_j b_{m-j} \left(\mathcal{L}_n(e_m)(z) - \mathcal{L}_n(e_j)(z)\mathcal{L}_n(e_{m-j})(z) \right) \right] \right|
$$

$$
\leq \sum_{m=0}^{\infty} \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}| \cdot |\mathcal{L}_n(e_m)(z) - \mathcal{L}_n(e_j)(z)\mathcal{L}_n(e_{m-j})(z)| \right].
$$

Then, we get

$$
|A_{n,m,j}(z)| = |\mathcal{L}_n(e_m)(z) - \mathcal{L}_n(e_j)(z)\mathcal{L}_n(e_{m-j})(z)|
$$

\n
$$
\leq |\mathcal{L}_n(e_m)(z) - e_m(z)| + |e_j(z) \cdot e_{m-j}(z) - \mathcal{L}_n(e_j)(z)\mathcal{L}_n(e_{m-j})(z)|
$$

\n
$$
\leq |\mathcal{L}_n(e_m)(z) - e_m(z)| + |e_j(z)| \cdot |e_{m-j}(z) - \mathcal{L}_n(e_{m-j})(z)|
$$

\n
$$
+ |\mathcal{L}_n(e_{m-j})(z)| \cdot |e_j(z) - \mathcal{L}_n(e_j)(z)|,
$$

which immediately proves the lemma.

The following Grüss-type estimate holds.

Corollary 2.1. Suppose that $1 \leq r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R , that is $f(z) =$ $\sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ for all $z \in \mathbb{D}_R$. *For all* n ∈ N*, we have*

$$
\|\mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g)\|_r \leq \frac{3}{n} \cdot \sum_{m=1}^{\infty} m^2 \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}|\right] r^m,
$$

where $\sum_{m=1}^{\infty}m^2\left[\sum_{j=0}^m|a_j|\cdot|b_{m-j}|\right]r^m<\infty$.

Proof. We estimate $||A_{n,m,j}||_r$ in the statement of Theorem [2.1](#page-1-1) for $\mathcal{L}_n = \mathcal{V}_n$. For that purpose, by [\[2,](#page-12-4) p. 182], we easily get $\|\mathcal{V}_n(e_k)\|_r \leq r^k$, for all $n \in \mathbb{N}$, $k \in \mathbb{N} \bigcup \{0\}$, while from [2, p. 183], we have $\|\mathcal{V}_n(e_k) - e_k\|_r \leq \frac{k^2}{n}$ $\frac{k^2}{n}r^k$, for all k, n . This implies, for all $n, m, j \in \mathbb{N}$ and $j \leq m$

$$
||A_{n,m,j}||_{r} \leq \frac{m^{2}}{n}r^{m} + r^{j} \cdot \frac{(m-j)^{2}}{n} \cdot r^{m-j} + r^{m-j} \cdot \frac{j^{2}}{n} \cdot r^{j}
$$

$$
\leq \frac{3}{n} \cdot m^{2}r^{m},
$$

which by Theorem [2.1,](#page-1-1) immediately implies the estimate in the statement of the corollary.

It remains to show that $\sum_{m=1}^\infty m^2 \left[\sum_{j=0}^m |a_j|\cdot |b_{m-j}|\right] r^m<\infty.$ Indeed, since f and g are analytic it follows that the series $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ converge uniformly for $|z| \le r$ and all $1 \le r < R$, that is the series $\sum_{k=0}^{\infty} |a_k|r^k$ and $\sum_{k=0}^{\infty} |b_k|r^k$ converge for all $1 \leq r < R$. Then, by Mertens' theorem (see e.g. [\[6,](#page-13-0) Theorem 3.50, p. 74] their (Cauchy) product is a convergent series and therefore

$$
\sum_{m=0}^{\infty} \left[\sum_{j=0}^{m} |a_j| \cdot |b_{m-j}| \right] r^m
$$

is a convergent series for all $1 \leq r < R$. Denoting $A_m = \sum_{j=0}^m |a_j| \cdot |b_{m-j}|$, this means that the power series $F(z) = \sum_{m=0}^{\infty} A_m z^m$ is uniformly convergent for $|z| \le r$, for all $1 \le r < R$, which implies that $F''(z) = \sum_{m=2}^{\infty} m(m-1)A_m z^{m-2}$ also is uniformly convergent for $|z| \le r$,

with $1 \leq r < R$ arbitrary, fixed. Indeed, choose an r' with $1 \leq r < r' < R$ and consider the uniformly convergent series $F(z) = \sum_{m=0}^{\infty} A_m z^m$ on $|z| \le r'$.

Therefore $\sum_{m=2}^{\infty} m(m-1)A_m r^{m-2} < \infty$, which immediately implies that

$$
\sum_{m=1}^{\infty} m^2 \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}| \right] r^m < \infty.
$$

In what follows, it is natural to ask for the limit

$$
\lim_{n \to \infty} n[\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z)].
$$

By simple calculation, we have

$$
n[\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z)]
$$

\n
$$
= n\left\{\mathcal{V}_n(fg)(z) - f(z)g(z) + \frac{z^2}{n}(f(z)g(z))'' + \frac{z}{n}(f(z)g(z))' - g(z)\left[\mathcal{V}_n(f)(z) - f(z) + \frac{z^2}{n}f''(z) + \frac{z}{n}f'(z)\right] - \mathcal{V}_n(f)(z)\left[\mathcal{V}_n(g)(z) - g(z) + \frac{z^2}{n}g''(z) + \frac{z}{n}g'(z)\right] + \left(\frac{z^2}{n}g''(z) + \frac{z}{n}g'(z)\right)[\mathcal{V}_n(f)(z) - f(z)] - \frac{2z^2}{n}f'(z)g'(z)\right\}.
$$

Indeed, the above equality easily follows by simple algebraic manipulations, replacing in the right-hand side of the equality $[f(z)g(z)]' = f'(z)g(z) + f(z)g'(z)$, $[f(z)g(z)]'' = f''(z)g(z) +$ $2\bar{f}'(z)g'(z) + f(z)g''(z)$ and reducing the corresponding terms.

Taking into account the estimate in [\[2,](#page-12-4) Theorem 3.1.2, p. 183] applied successively there for $f \cdot g$, f and g , passing to the limit it easily follows

$$
\lim_{n \to \infty} n[\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z)] = -2z^2 f'(z)g'(z).
$$

This suggests us to prove the following Grüss-Voronovskaya-type estimate.

Theorem 2.2. *Suppose that* $1 \leq r < R$ *and* $f, g : \mathbb{D}_R \to \mathbb{C}$ *are analytic in* \mathbb{D}_R *. Then, for all* $|z| \leq r$ *, there exists a constant* $C(r, f, g) > 0$ *depending on* r, f, g *, such that*

$$
\left|\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z) + \frac{2z^2}{n}f'(z)g'(z)\right| \le \frac{C(r, f, g)}{n^2}, n \in \mathbb{N}.
$$

Proof. Firstly, note that we have the decomposition formula

$$
\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z) + \frac{2z^2}{n}f'(z)g'(z)
$$

= $\left[\mathcal{V}_n(fg)(z) - (fg)(z) + \frac{z^2}{n}(f(z)g(z))'' + \frac{z}{n}(f(z)g(z))'\right]$
 $-f(z)\left[\mathcal{V}_n(g)(z) - g(z) + \frac{z^2}{n}g''(z) + \frac{z}{n}g'(z)\right]$
 $-g(z)\left[\mathcal{V}_n(f)(z) - f(z) + \frac{z^2}{n}f''(z) + \frac{z}{n}f'(z)\right]$
+ $[g(z) - \mathcal{V}_n(g)(z)] \cdot [\mathcal{V}_n(f)(z) - f(z)].$

 \Box

Passing to modulus with $|z| \le r$ and taking into account the estimates in [\[2,](#page-12-4) Theorem 3.1.1, (i), p. 182] and [\[2,](#page-12-4) Theorem 3.1.2, p. 183], we get

$$
|\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z) + \frac{2z^2}{n}f'(z)g'(z)|
$$

\n
$$
\leq |\mathcal{V}_n(fg)(z) - (fg)(z) + \frac{z^2}{n}(f(z)g(z))'' + \frac{z}{n}(f(z)g(z))'|\n+|f(z)| |\mathcal{V}_n(g)(z) - g(z) + \frac{z^2}{n}g''(z) + \frac{z}{n}g'(z)|\n+|g(z)| |\mathcal{V}_n(f)(z) - f(z) + \frac{z^2}{n}f''(z) + \frac{z}{n}f'(z)|\n+|g(z) - \mathcal{V}_n(g)(z)| \cdot |\mathcal{V}_n(f)(z) - f(z)|.\n\leq \frac{C_1(r, f, g)}{n^2} + ||f||_r \cdot \frac{C_2(r, g)}{n^2} + ||g||_r \cdot \frac{C_3(r, f)}{n^2} + \frac{C_4(r, g)}{n} \cdot \frac{C_5(r, f)}{n^2}\n\leq \frac{C(r, f, g)}{n^2},
$$

for all $n \in \mathbb{N}$ and $|z| \leq r$, with $C(r, f, g) > 0$ independent of n and depending on r, f, g .

In what follows, the above theorem is used to obtain a lower estimate in the Grüss-type inequality.

Corollary 2.2. *Suppose that* $1 \leq r < R$ *and* $f, g : \mathbb{D}_R \to \mathbb{C}$ *are analytic in* \mathbb{D}_R *. Then there exists an* $n_0 \in \mathbb{N}$, depending only on r, f and g, such that

$$
\|\mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g)\|_r \geq \frac{1}{n} \cdot \|e_2 f'g'\|_r, n \geq n_0.
$$

Proof. We can write

$$
\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z)
$$

= $\frac{1}{n}\left\{-2z^2f'(z)g'(z) + \frac{1}{n}\left[n^2\left(\mathcal{V}_n(fg)(z) - \mathcal{V}_n(f)(z)\mathcal{V}_n(g)(z) + \frac{2z^2}{n}f'(z)g'(z)\right)\right]\right\}.$

Applying to the above identity, the obvious inequality

$$
||F+G||_r \ge ||F||_r - ||G||_r| \ge ||F||_r - ||G||_r,
$$

and denoting $e_2(z) = z^2$, we obtain

$$
\|\mathcal{V}_n(fg)-\mathcal{V}_n(f)\mathcal{V}_n(g)\|_r\geq \frac{1}{n}\left\{\|2e_2f'g'\|_r-\frac{1}{n}\left[n^2\left\|\mathcal{V}_n(fg)-\mathcal{V}_n(f)\mathcal{V}_n(g)+\frac{2e_2}{n}f'g'\right\|_r\right]\right\}.
$$

Since f and g are not constant functions, we easily get $||2e_2f'g'||_r > 0$.

Taking into account that by Theorem [2.2,](#page-3-0) we get

$$
n^2 \left\| \mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g) + \frac{2e_2}{n}f'g' \right\|_r \le C(r, f, g)
$$

and that $\frac{1}{n} \to 0$, there exists an index n_0 (depending only on r, f, g), such that for all $n \ge n_0$, we have

$$
||2e_2f'g'||_r - \frac{1}{n} \left[n^2 \left\| \mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g) + \frac{2e_2}{n}f'g' \right\|_r \right] \ge \frac{||2e_2f'g'||_r}{2}
$$

= $||e_2f'g'||_r$
> 0,

which for all $n \geq n_0$ implies

$$
\|\mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g)\|_r \geq \frac{1}{n} \cdot \|e_2 f'g'\|_r.
$$

As an immediate consequence of Corollary [2.1](#page-2-0) and Corollary [2.2,](#page-4-0) we obtain the following exact estimate.

Corollary 2.3. *Suppose that* $1 \leq r < R$ *and* $f, g : \mathbb{D}_R \to \mathbb{C}$ *are analytic in* \mathbb{D}_R *. If* f *and* g *are not constant functions, then there exists* $n_0 \in \mathbb{N}$ *depending only on* r, f and g, such that we have

$$
\|\mathcal{V}_n(fg) - \mathcal{V}_n(f)\mathcal{V}_n(g)\|_r \sim \frac{1}{n}, n \in \mathbb{N}, n \ge n_0,
$$

where the constants in the equivalence are independent of n *but depend on* r, f, g*.*

3. ZYGMUND-RIESZ COMPLEX CONVOLUTION

This section deals with the Grüss and the Grüss-Voronovskaya estimates for the Zygmund-Riesz complex polynomials based on the convolution with the Zygmund-Riesz kernel

$$
K_{n,s}(t) = \frac{1}{2} + \sum_{j=1}^{n-1} \left(1 - \frac{j^s}{n^s}\right) \cos(jt), s \in \mathbb{N}
$$
 fixed,

defined by

(3.4)
$$
\mathcal{R}_{n,s}(f)(z) = \sum_{j=0}^{n-1} c_j \left[1 - \left(\frac{j}{n} \right)^s \right] z^j,
$$

attached to analytic functions in compact disks, $f(z) = \sum_{j=0}^{\infty} c_j z^j$.

Firstly, as a consequence of Theorem [2.1,](#page-1-1) the following Grüss-type estimate holds for Zygmund-Riesz complex polynomial convolution.

Corollary 3.4. *Suppose that* $1 \leq r < R$, $s \in \mathbb{N}$ *are fixed arbitrary and* $f, g : \mathbb{D}_R \to \mathbb{C}$ *are analytic in* \mathbb{D}_R , that is $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ for all $z \in \mathbb{D}_R$. *For all* $n \in \mathbb{N}$ *, we have*

$$
\|\mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g)\|_{r} \leq \frac{3}{n^{s}} \sum_{m=1}^{\infty} m^{s} \left[\sum_{j=0}^{m} |a_{j}| \cdot |b_{m-j}|\right] r^{m},
$$

where $\sum_{m=1}^{\infty}m^{s}\left[\sum_{j=0}^{m}\left|a_{j}\right| \cdot\left|b_{m-j}\right|\right]r^{m} < +\infty$.

Proof. Denote $e_m(z) = z^m$. We will estimate $||A_{n,m,j}||_r$ in the case when in Theorem [2.1,](#page-1-1) we take $\mathcal{L}_n = \mathcal{R}_{n,s}$.

From the formula [\(3.4\)](#page-5-0), we immediately get that $\mathcal{R}_{n,s}(e_k)(z) = 0$ if $k \geq n$ and that $\mathcal{R}_{n,s}(e_k)(z) = 0$ $\left[1-\frac{k^s}{n^s}\right]$ $\frac{k^s}{n^s}$ $e_k(z)$ if $k \leq n-1$. This immediately implies $\|\mathcal{R}_{n,s}(e_k)\|_r \leq r^k$ for all n, k . Also,

 \Box

 $\|\mathcal R_{n,s}(e_k)-e_k\|_r=r^k\leq \frac{k^s}{n^s}\cdot r^k$ if $k\geq n$ and $\|\mathcal R_{n,s}(e_k)-e_k\|_r\leq \frac{k^s}{n^s}r^k$ if $k\leq n-1$, which easily implies

$$
||A_{m,n,j}||_r \le \frac{m^s}{n^s}r^m + r^j \cdot \frac{(m-j)^s}{n^s} \cdot r^{m-j} + r^{m-j} \cdot \frac{j^s}{n^s} \cdot r^j \le \frac{3}{n^s}m^s r^m.
$$

It remains to show that $\sum_{m=1}^\infty m^s\left[\sum_{j=0}^m |a_j|\cdot |b_{m-j}|\right]r^m<+\infty.$ This follows immediately by reasoning exactly as in the proof of Corollary [2.1.](#page-2-0) Indeed, keeping the notation there for the series $F(z) = \sum_{m=0}^{\infty} A_m z^m$, we analogously get that for any $1 \le r < R$, all the series $F'(z)$, ..., $F^{(s)}(z)$ are uniformly convergent for $|z| \leq r$.

In conclusion, we obtain the conclusions in the statement.

In what follows, it is natural to ask for the limit

$$
\lim_{n\to\infty} n^s [\mathcal{R}_{n,s}(fg)(z)-\mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z)].
$$

For this purpose, for arbitrary $k, s \in \mathbb{N}$, let us denote the coefficients $\alpha_{j,s} \in \mathbb{N}$, independent of k which satisfy (see, e.g., [\[2,](#page-12-4) Lemma 3.1.7, p. 190])

(3.5)
$$
k^{s} = \sum_{j=1}^{s} \alpha_{j,s} k(k-1) \cdot ... \cdot (k-(j-1)),
$$

and the recurrence formula

(3.6) $\alpha_{j,s+1} = \alpha_{j-1,s} + j\alpha_{j,s}, j = 2, ..., s, s \ge 2$, with $\alpha_{1,s} = \alpha_{s,s} = 1$, for all $s \ge 1$.

By simple calculation (see the indications for the relation after the proof of Corollary [2.1\)](#page-2-0), we have

$$
n^{s}[\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z)]
$$

\n
$$
= n^{s} \left\{ \mathcal{R}_{n,s}(fg)(z) - f(z)g(z) + \frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j,s} z^{j} (f(z)g(z))^{(j)} - g(z) \left[\mathcal{R}_{n,s}(f)(z) - f(z) + \frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j,s} z^{j} f^{(j)}(z) \right] - \mathcal{R}_{n,s}(f)(z) \left[\mathcal{R}_{n,s}(g)(z) - g(z) + \frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j,s} z^{j} g^{(j)}(z) \right] + \left(\frac{1}{n^{s}} \sum_{j=1}^{s} \alpha_{j,s} z^{j} g^{(j)}(z) \right) [\mathcal{R}_{n,s}(f)(z) - f(z)] + E_{n,s}(f,g)(z) \right\},
$$

where $E_{n,s}(f,g)(z)=\frac{1}{n^s}G_s(f,g)(z)$ with

(3.7)
$$
G_s(f,g)(z) = \sum_{j=1}^s \alpha_{j,s} z^j [f(z)g^{(j)}(z) + g(z)f^{(j)}(z) - (f(z)g(z))^{(j)}].
$$

Taking into account the estimate in [\[2,](#page-12-4) Theorem 3.1.8, p. 190], applied successively there for $f \cdot g$, f and g, passing to the limit it easily follows

$$
\lim_{n \to \infty} n^s [\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z) \mathcal{R}_{n,s}(g)(z)] = G_s(f,g)(z).
$$

This suggests us to prove the following Grüss-Voronovskaya-type estimate.

Theorem 3.3. *Suppose that* $1 \leq r < R$, $s \in \mathbb{N}$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . Then, for all $|z| \leq r$, there exists a constant $C(r, s, f, g) > 0$ depending on r, s, f, g , such that

$$
\left|\mathcal{R}_{n,s}(fg)(z)-\mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z)-\frac{1}{n^s}G_s(f,g)(z)\right|\leq \frac{C(r,s,f,g)}{n^{s+1}}, n\in\mathbb{N}.
$$

Proof. Firstly, note that we have the decomposition formula

$$
\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z) - \frac{1}{n^s}G_s(f,g)(z)
$$
\n
$$
= \left[\mathcal{R}_{n,s}(fg)(z) - (fg)(z) + \frac{1}{n^s}\sum_{j=1}^s \alpha_{j,s}z^j(f(z)g(z))^{(j)}\right]
$$
\n
$$
-f(z)\left[\mathcal{R}_{n,s}(g)(z) - g(z) + \frac{1}{n^s}\sum_{j=1}^s \alpha_{j,s}z^jg^{(j)}(z)\right]
$$
\n
$$
-g(z)\left[\mathcal{R}_{n,s}(f)(z) - f(z) + \frac{1}{n^s}\sum_{j=1}^s \alpha_{j,s}z^jf^{(j)}(z)\right]
$$
\n
$$
+ [g(z) - \mathcal{R}_{n,s}(g)(z)] \cdot [\mathcal{R}_{n,s}(f)(z) - f(z)].
$$

Passing to modulus with $|z| \leq r$ and taking into account the estimates in the second line of the proof of [\[2,](#page-12-4) Theorem 3.1.6, p. 189] and [\[2,](#page-12-4) Theorem 3.1.8, p. 190], we get

$$
\left| \mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z) - \frac{1}{n^s}G_s(f,g)(z) \right|
$$
\n
$$
\leq \left| \mathcal{R}_{n,s}(fg)(z) - (fg)(z) + \frac{1}{n^s} \sum_{j=1}^s \alpha_{j,s} z^j (f(z)g(z))^{(j)} \right|
$$
\n
$$
+ |f(z)| \left| \mathcal{R}_{n,s}(g)(z) - g(z) + \frac{1}{n^s} \sum_{j=1}^s \alpha_{j,s} z^j g^{(j)}(z) \right|
$$
\n
$$
+ |g(z)| \left| \mathcal{R}_{n,s}(f)(z) - f(z) + \frac{1}{n^s} \sum_{j=1}^s \alpha_{j,s} z^j f^{(j)}(z) \right|
$$
\n
$$
+ |g(z) - \mathcal{R}_{n,s}(g)(z)| \cdot |\mathcal{R}_{n,s}(f)(z) - f(z)|
$$
\n
$$
\leq \frac{C_1(r, s, f, g)}{n^{s+1}} + \|f\|_r \cdot \frac{C_2(r, s, g)}{n^{s+1}} + \|g\|_r \cdot \frac{C_3(r, s, f)}{n^{s+1}} + \frac{C_4(r, s, g)}{n^s} \cdot \frac{C_5(r, s, f)}{n^s}
$$
\n
$$
\leq \frac{C(r, s, f, g)}{n^{s+1}},
$$

for all $n \in \mathbb{N}$ and $|z| \leq r$, with $C(r, s, f, g) > 0$ independent of n and depending on r, s, f, g . \Box

Remark 3.1. *Taking* $s = 1$ *in Theorem [3.3](#page-7-0) and using that* $G_1(f,g)(z) = 0$ *for all* $z \in \mathbb{D}_R$ *, in this case we get a better estimate in the Grüss-type inequality than that in Corollary [3.4,](#page-5-1) namely*

$$
\|\mathcal{R}_{n,1}(fg)-\mathcal{R}_{n,1}(f)\mathcal{R}_{n,1}(g)\|_r\leq \frac{C(f,g)}{n^2}.
$$

In what follows, the above theorem is used to obtain lower estimate in the Grüss-type inequality.

Corollary 3.5. Suppose that $1 \leq r < R$, $s \in \mathbb{N}$, $s \geq 2$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . Then *there exists* $n_0 \in \mathbb{N}$ *depending on* r, s, f and g, such that

$$
\|\mathcal{R}_{n,s}(fg)-\mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g)\|_{r}\geq \frac{1}{n^{s}}\cdot \frac{\|G_s(f,g)\|_{r}}{2},\,n\in\mathbb{N},n\geq n_0,
$$

where $G_s(f, g)(z)$ *is given by relation* [\(3.7\)](#page-6-0)*.*

Proof. We can write

$$
\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z)
$$

=
$$
\frac{1}{n^s} \left\{ G_s(f,g)(z) + \frac{1}{n^s} \left[n^{2s} \left(\mathcal{R}_{n,s}(fg)(z) - \mathcal{R}_{n,s}(f)(z)\mathcal{R}_{n,s}(g)(z) - \frac{1}{n^s} G_s(f,g)(z) \right) \right] \right\}.
$$

Applying to the above identity, the obvious inequality

$$
||F+G||_r \ge |||F||_r - ||G||_r| \ge ||F||_r - ||G||_r,
$$

we obtain

$$
\begin{aligned}\n\|\mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g)\|_{r} \\
\geq & \frac{1}{n^s} \left\{ \|G_s(f,g)\|_{r} - \frac{1}{n^s} \left[n^{2s} \left\| \mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g) - \frac{1}{n^s} G_s(f,g) \right\|_{r} \right] \right\}.\n\end{aligned}
$$

By hypothesis, we easily get $||G_s(f, g)||_r > 0$.

Taking into account that by Theorem [3.3,](#page-7-0) we get

$$
n^{s+1}\left\|\mathcal{R}_{n,s}(fg)-\mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g)+\frac{1}{n^s}G_s(f,g)\right\|_r\leq C(r,s,f,g)
$$

and that $\frac{1}{n} \to 0$, there exists an index n_0 (depending only on r, f, g), such that for all $n \ge n_0$, we have

$$
||G_s(f,g)||_r - \frac{1}{n^s} \left[n^{2s} \left\| \mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f) \mathcal{R}_{n,s}(g) + \frac{1}{n^s} G_s(f,g) \right\|_r \right]
$$

\n
$$
\geq ||G_s(f,g)||_r - \frac{K(r,s,f,g)}{n}
$$

\n
$$
\geq \frac{||G_s(f,g)||_r}{2}
$$

\n
$$
>0,
$$

which for all $n \geq n_0$ implies

$$
\|\mathcal{R}_{n,s}(fg) - \mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g)\|_{r} \ge \frac{1}{n^s} \cdot \frac{\|G_s(f,g)\|_{r}}{2}
$$

The corollary is proved. \square

As an immediate consequence of Corollary [3.4](#page-5-1) and Corollary [3.5,](#page-8-0) we obtain the following exact estimate.

Corollary 3.6. *Suppose that* $1 \leq r < R$, $s \in \mathbb{N}$, $s \geq 2$ *and* $f, g : \mathbb{D}_R \to \mathbb{C}$ *are analytic in* \mathbb{D}_R *. If* f *and* g are such that $G_s(f, g)(z)$ *is not identical zero in* \mathbb{D}_r , *then there exists* $n_0 \in \mathbb{N}$ *depending only on* r, s, f, g*, such that we have*

$$
\|\mathcal{R}_{n,s}(fg)-\mathcal{R}_{n,s}(f)\mathcal{R}_{n,s}(g)\|_{r} \sim \frac{1}{n^{s}}, n \in \mathbb{N}, n \ge n_0,
$$

.

where the constants in the equivalence are independent of n *but depend on* r, s, f, g*.*

Remark 3.2. *The statements of Corollaries [3.5](#page-8-0) and [3.6](#page-8-1) suggest to be of interest to examine the pair of functions* f, g, for which $G_s(f, g)(z) \equiv 0$. For example, in the particular case $s = 2$, taking into account *the formula for* $G_s(f, g)(z)$ *in [\(3.7\)](#page-6-0), we easily obtain that*

$$
f(z)g''(z) + f''(z)g(z) - [f(z)g(z)]'' \equiv 0.
$$

This easily one reduces to $f'(z)g'(z) \equiv 0$, which means that f is a constant function and g is an arbitrary analytic function, or f is an arbitrary analytic function and g is a constant function.

The cases $s \geq 3$ are more complicated and remain as open questions.

4. JACKSON COMPLEX CONVOLUTION

In this section, we study the Jackson complex polynomials based on the convolution with the Jackson kernel

$$
K_n(t) = \frac{3}{2n(2n^2+1)} \cdot \left(\frac{\sin(nt/2)}{\sin(t/2)}\right)^4,
$$

defined by

(4.8)
$$
\mathcal{J}_n(f)(z) = c_0 + \sum_{j=1}^{2n-2} c_j \cdot \lambda_{j,n} \cdot z^j,
$$

attached to analytic functions on compact disks, $f(z)=\sum_{j=0}^{\infty}c_jz^j$, where $\lambda_{j,n}=\frac{4n^3-6j^2n+3j^3-3j+2n}{2n(2n^2+1)}$ if $1 \leq j \leq n$, $\lambda_{j,n} = \frac{j-2n-(j-2n)^3}{2n(2n^2+1)}$ if $n \leq j \leq 2n-2$.

As a consequence of Theorem [2.1,](#page-1-1) the following Grüss-type estimate holds for Jackson complex convolution.

Corollary 4.7. Suppose that $1 \leq r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R , that is $f(z) =$ $\sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ for all $z \in \mathbb{D}_R$. *For all* n ∈ N*, we have*

$$
\|\mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g)\|_r \le \frac{3C_r}{n^2} \sum_{m=1}^{\infty} m^2 \left[\sum_{j=0}^m |a_j| \cdot |b_{m-j}|\right] r^m.
$$

Here, $C_r > 0$ *is a constant depending only on r.*

Proof. Denote $e_m(z) = z^m$. We will estimate $||A_{n,m,j}||_r$ in the case when in Theorem [2.1,](#page-1-1) we take $\mathcal{L}_n = \mathcal{J}_n$.

From the formula for \mathcal{J}_n in [\(4.8\)](#page-9-0), we get $\mathcal{J}_n(e_k)(z) = 0$, if $k > 2n - 2$ and $\mathcal{J}_n(e_k) = \lambda_{k,n}e_k(z)$ if $0\leq k\leq 2n-2$, which implies that $\|\mathcal{J}_n(e_k)\|_r\leq r^k$, for all k,n (here we take into account that by e.g. [\[2,](#page-12-4) Remark 3, p. 195], we have $0 \leq \lambda_{k,n} \leq 1$ for all k, n).

Also, from [\[2,](#page-12-4) Theorem 3.1.10, (iv), p. 195], combined with the mean value theorem applied to the divided difference of the complex valued function $g(t) = f(re^{it})$, we immediately get

$$
|\mathcal{J}_n(f)(z) - f(z)| \le C_r \omega_2(f; 1/n)_{\partial \mathbb{D}_r}
$$

\n
$$
\le \frac{C_r}{n^2} ||g''||_{[0,2\pi]}
$$

\n
$$
\le \frac{C_r}{n^2} [||f'||_r + ||f''||_r]
$$

\n
$$
\le \frac{C_r}{n^2} \left[\sum_{k=1}^{\infty} |c_k| k r^{k-1} + \sum_{k=2}^{\infty} |c_k| (k-1) k r^{k-2} \right]
$$

\n
$$
\le \frac{C_r}{n^2} \sum_{k=1}^{\infty} |c_k| \cdot k^2 \cdot r^k.
$$

Note that here, the constant C_r depends only on r and is different at each occurrence.

It is worth noting here that the above estimate corrects a little the constant in the estimate in [\[2,](#page-12-4) Corollary 3.1.11, (i)] (where instead of $\sum_{k=1}^{\infty} |c_k| \cdot k^2 \cdot r^k$ we got the incorrect constant $\sum_{k=1}^{\infty} |c_k| \cdot k(k-1) \cdot r^{k-2}$, which appears because in [\[2,](#page-12-4) p. 196] we used the incorrect estimate $||g''||_{[0,2\pi]} \leq ||f''||_r$.

Now, if we put above e_k instead of f, we easily arrive at

$$
\|\mathcal{J}_n(e_k) - e_k\|_r \le \frac{C_r}{n^2} \cdot k^2 r^k
$$

for all k, n .

Therefore, for all $j \leq m$, it follows

$$
||A_{m,n,j}||_r \leq \frac{C_r}{n^2} m^2 r^m + r^j \cdot \frac{C_r}{n^2} (m-j)^2 r^{m-j} + r^{m-j} \cdot \frac{C_r}{n^2} j^2 r^j
$$

$$
\leq \frac{3C_r}{n^2} \cdot m^2 r^m,
$$

which combined with Theorem [2.1](#page-1-1) proves the corollary. \Box

In what follows, it is natural to ask for the limit

$$
\lim_{n\to\infty} n^2[\mathcal{J}_n(fg)(z) - \mathcal{J}_n(f)(z)\mathcal{J}_n(g)(z)].
$$

By simple calculation, we have (see the indications for the relation after the proof of Corollary [2.1\)](#page-2-0)

$$
n^{2}[\mathcal{J}_{n}(fg)(z) - \mathcal{J}_{n}(f)(z)\mathcal{J}_{n}(g)(z)]
$$

\n
$$
= n^{2} \left\{ \mathcal{J}_{n}(fg)(z) - f(z)g(z) + \frac{3z^{2}}{2n^{2}}(f(z)g(z))'' + \frac{3z}{2n^{2}}(f(z)g(z))' - g(z) \left[\mathcal{J}_{n}(f)(z) - f(z) + \frac{3z^{2}}{2n^{2}}f''(z) + \frac{3z}{2n^{2}}f'(z) \right] - \mathcal{J}_{n}(f)(z) \left[\mathcal{J}_{n}(g)(z) - g(z) + \frac{3z^{2}}{2n^{2}}g''(z) + \frac{3z}{2n^{2}}g'(z) \right] + \left(\frac{3z^{2}}{2n^{2}}g''(z) + \frac{3z}{2n^{2}}g'(z) \right) [\mathcal{J}_{n}(f)(z) - f(z)] - \frac{3z^{2}}{n^{2}}f'(z)g'(z) \right\}.
$$

Taking into account the estimate in $[2,$ Theorem 3.1.12, p. 196], applied successively there for $f \cdot q$, f and q, passing to the limit it easily follows

$$
\lim_{n \to \infty} n^2 [\mathcal{J}_n(fg)(z) - \mathcal{J}_n(f)(z) \mathcal{J}_n(g)(z)] = -3z^2 f'(z)g'(z).
$$

This suggests us to prove the following Grüss-Voronovskaya-type estimate.

Theorem 4.4. *Suppose that* $1 \leq r < R$ *and* $f, g : \mathbb{D}_R \to \mathbb{C}$ *are analytic in* \mathbb{D}_R *. Then, for all* $|z| \leq r$ *, there exists a constant* $C(r, f, g) > 0$ *depending on* r, f, g *, such that*

$$
\left|\mathcal{J}_n(fg)(z) - \mathcal{J}_n(f)(z)\mathcal{J}_n(g)(z) + \frac{3z^2}{n^2}f'(z)g'(z)\right| \le \frac{C(r, f, g)}{n^3}, n \in \mathbb{N}.
$$

Proof. Firstly, note that we have the decomposition formula

$$
\mathcal{J}_n(fg)(z) - \mathcal{J}_n(f)(z)\mathcal{J}_n(g)(z) + \frac{3z^2}{n^2}f'(z)g'(z)
$$
\n
$$
= \left[\mathcal{J}_n(fg)(z) - (fg)(z) + \frac{3z^2}{2n^2}(f(z)g(z))'' + \frac{3z}{2n^2}(f(z)g(z))' \right]
$$
\n
$$
-f(z)\left[\mathcal{J}_n(g)(z) - g(z) + \frac{3z^2}{2n^2}g''(z) + \frac{3z}{2n^2}g'(z) \right]
$$
\n
$$
-g(z)\left[\mathcal{J}_n(f)(z) - f(z) + \frac{3z^2}{2n^2}f''(z) + \frac{3z}{2n^2}f'(z) \right]
$$
\n
$$
+ [g(z) - \mathcal{J}_n(g)(z)] \cdot [\mathcal{J}_n(f)(z) - f(z)].
$$

Passing to modulus with $|z| \leq r$ and taking into account the estimates in [\[2,](#page-12-4) Theorem 3.1.12, p. 196] and the estimate in the proof of Corollary [4.7,](#page-9-1) we get

$$
\left| \mathcal{J}_n(fg)(z) - \mathcal{J}_n(f)(z)\mathcal{J}_n(g)(z) + \frac{3z^2}{n^2}f'(z)g'(z) \right|
$$

\n
$$
\leq \left| \mathcal{J}_n(fg)(z) - (fg)(z) + \frac{3z^2}{2n^2}(f(z)g(z))'' + \frac{3z}{2n^2}(f(z)g(z))' \right|
$$

\n
$$
+ |f(z)| \left| \mathcal{J}_n(g)(z) - g(z) + \frac{3z^2}{2n^2}g''(z) + \frac{3z}{2n^2}g'(z) \right|
$$

\n
$$
+ |g(z)| \left| \mathcal{J}_n(f)(z) - f(z) + \frac{3z^2}{2n^2}f''(z) + \frac{3z}{2n^2}f'(z) \right|
$$

\n
$$
+ |g(z) - \mathcal{J}_n(g)(z)| \cdot |\mathcal{J}_n(f)(z) - f(z)|
$$

\n
$$
\leq \frac{C_1(r, f, g)}{n^3} + ||f||_r \cdot \frac{C_2(r, g)}{n^3} + ||g||_r \cdot \frac{C_3(r, f)}{n^3} + \frac{C_4(r, g)}{n^2} \cdot \frac{C_5(r, f)}{n^2}
$$

\n
$$
\leq \frac{C(r, f, g)}{n^3}
$$

for all $n \in \mathbb{N}$ and $|z| \leq r$, with $C(r, f, g) > 0$ independent of n and depending on r, f, g .

In what follows, the above theorem is used to obtain a lower estimate in the Grüss-type inequality.

Corollary 4.8. *Suppose that* $1 \leq r < R$ *and* $f, g : \mathbb{D}_R \to \mathbb{C}$ *are analytic in* \mathbb{D}_R *. Then there exists an* $n_0 \in \mathbb{N}$, depending only on r, f and g, such that

$$
\|\mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g)\|_r \ge \frac{1}{n^2} \cdot \frac{\|3e_2f' \cdot g'\|_r}{2}, \quad n \in \mathbb{N}, n \ge n_0.
$$

Proof. We can write

$$
\mathcal{J}_n(fg)(z) - \mathcal{J}_n(f)(z)\mathcal{J}_n(g)(z)
$$

=
$$
\frac{1}{n^2} \left\{-3z^2 f'(z)g'(z) + \frac{1}{n^2} \left[n^4 \left(\mathcal{J}_n(fg)(z) - \mathcal{J}_n(f)(z)\mathcal{J}_n(g)(z) + \frac{3z^2}{n^2} f'(z)g'(z) \right) \right] \right\}.
$$

Applying to the above identity, the obvious inequality

 $||F + G||_r \ge |||F||_r - ||G||_r| \ge ||F||_r - ||G||_r,$

and denoting $e_2(z) = z^2$, we obtain

$$
\|\mathcal{J}_n(fg)-\mathcal{J}_n(f)\mathcal{J}_n(g)\|_r\geq \frac{1}{n^2}\left\{\|3e_2f'g'\|_r-\frac{1}{n^2}\left[n^4\left\|\mathcal{J}_n(fg)-\mathcal{J}_n(f)\mathcal{J}_n(g)+\frac{3e_2}{n^2}f'g'\right\|_r\right]\right\}.
$$

Since f and g are not constant functions, we easily get $||3e_2f'g'||_r > 0$. Taking into account that by Theorem [4.4,](#page-11-0) we get

$$
n^3 \left\| \mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g) + \frac{3e_2}{n^2}f'g' \right\|_r \le C(r, f, g)
$$

and that $\frac{1}{n} \to 0$, there exists an index n_0 (depending only on r, f, g), such that for all $n \ge n_0$, we have

$$
||3e_2f'g'||_r - \frac{1}{n} \left[n^3 \left\| \mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g) + \frac{3e_2}{n^2} f'g' \right\|_r \right] \ge \frac{||3e_2f'g'||_r}{2} > 0,
$$

which for all $n \geq n_0$ implies

$$
\|\mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g)\|_r \ge \frac{1}{n^2} \cdot \frac{\|3e_2 f'g'\|_r}{2}
$$

.

The corollary is proved. \Box

As an immediate consequence of Corollary [4.7](#page-9-1) and Corollary [4.8,](#page-11-1) we obtain the following exact estimate.

Corollary 4.9. Suppose that $1 \leq r < R$ and $f, g : \mathbb{D}_R \to \mathbb{C}$ are analytic in \mathbb{D}_R . If f and g are not *constant functions, then there exists* $n_0 \in \mathbb{N}$ *depending only on* r, f and g, such that we have

$$
\|\mathcal{J}_n(fg) - \mathcal{J}_n(f)\mathcal{J}_n(g)\|_r \sim \frac{1}{n^2}, \quad n \in \mathbb{N}, n \ge n_0,
$$

where the constants in the equivalence are independent of n *but depend on* r, f, g*.*

Acknowledgement. The authors thank the referees for their very good remarks.

REFERENCES

- [1] A. M. Acu, H. Gonska and I. Ra¸sa: *Grüss-type and Ostrovski-type inequalities in approximation theory.* Ukrainian Mathematical Journal **63** (2011), No. 6, 843-864.
- [2] S. G. Gal: *Approximation by Complex Bernstein and Convolution Type Operators*. World Scientific Publ. Co., New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai, 2009.
- [3] I. Gavrea, B. Gavrea: *Ostrowski type inequalities from a linear functional point of view*. JIPAM. J. Inequal. Pure Appl. Math. **1** (2000), Article 11.
- [4] S. G. Gal, H. Gonska: *Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables*. Jaen J. Approx. **7 (1)**(2015), 97-122.
- [5] H. Gonska, I. Ra¸sa and M. Rusu: *Ceby ˘ sev-Grüss-type inequalities revisited ˘* . Mathematica Slovaca **63** (2013), No. 5, 1007-1024.

[6] W. Rudin: *Principles of Mathematical Analysis*. McGraw-Hill, Inc., New York, 1976.

SORIN G. GAL UNIVERSITY OF ORADEA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE STR. UNIVERSITATII NR. 1, 410087, ORADEA, ROMANIA ORCID: 0000-0002-5743-3144 *E-mail address*: galso@uoradea.ro

IONUT T. IANCU UNIVERSITY OF ORADEA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE STR. UNIVERSITATII NR. 1, 410087, ORADEA, ROMANIA ORCID: 0000-0002-7625-5144 *E-mail address*: ionutz.tudor.iancu@gmail.com