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ABSTRACT

We prove vanishing theorems for the kernel of the Sampson Laplacian, acting on symmetric tensors
on a Riemannian manifold and estimate its first eigenvalue on negatively pinched Riemannian
manifolds. Some applications of these results to conformal Killing tensors are presented.
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1. Introduction

Let (M, g) be a Riemannian manifold. We regard it as a connected C∞-manifold M of dimension n ≥ 2
endowed with a metric tensor g and the Levi-Civita connection ∇. Let TM := T (0,1)M (resp., T ∗M := T (1,0)M )
be its tangent (resp. cotangent) bundle where T (p,q)M = (⊗pT ∗M)⊗ (⊗qTM). Let SpM (resp. ΛrM ) be a
subbundle of T (p,0)M , consisting of covariant symmetric p-tensors (resp. differential r-forms) on M . Denote
the vector spaces of their C∞-sections by C∞(T (p,q)M), C∞(SpM) and C∞(ΛrM), respectively.

The Lichnerowicz-type Laplacian has the form (see [17, 24])

∆LT = ∆̄T + t<p(T ) (1.1)

for any t ∈ R and T ∈ C∞(⊗pT ∗M). In (1.1), ∆̄ is the Bochner (rough) Laplacian and<p is the Weitzenböck curvature
operator, which in a known way depends linearly on the Riemann curvature tensor and the Ricci tensor of
(M, g). In addition, the Weitzenböck curvature operator of ∆L satisfies the following identities (see [20, p. 315])

g(<p(T ), T ′) = g(T, <p(T ′))

and
traceg <p(T ) = <p−2(tracegT ) (1.2)

for any T, T ′ ∈ C∞(⊗pT ∗M). In particular, for t = 1, (1.1) yields the formula ∆L = ∆̄ + <p of the ordinary
Lichnerowicz Laplacian (see [20]; [1, pp. 53–54]). We recall that the formula

∆H ω = ∆̄ω + <p(ω)

for an arbitrary p-form ω ∈ C∞(ΛpM) determines the well known Hodge Laplacian (see [1, p. 35]; [25, pp. 335;
347]). At the same time, the Sampson Laplacian ∆S acting on C∞-sections of the vector bundle SpM has the
following Weitzenböck decomposition (see [24, 28, 33]):

∆S ϕ = ∆̄ϕ−<p(ϕ) (1.3)

for any ϕ ∈ C∞(SpM). Therefore, the differential operator ∆S is also an example of the Lichnerowicz-type
Laplacian for the special case when t = −1 and T ∈ C∞(SpM).
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Formulas of the type (1.1) are particularly important in the study of interactions between the geometry
and topology of Riemannian manifolds. In fact, there exists a method, due to Bochner, of proving vanishing
theorems for the null space of a Laplace operator admitting the Weitzenböck decomposition and furthermore of
estimating its lowest eigenvalue (see [1, pp. 52–53]; [25, pp. 333–364]). This method mainly applies to compact
manifolds. As an application of the Bochner technique, we recall the following theorem in [41]: If (M, g) is a
closed (i.e., compact and without boundary) Riemannian manifold with positive (resp. negative) curvature

operator of the second kind,
◦
R : S2

0M → S2
0M , then it does not admit the Hodge Laplacian ∆H with the

non-degenerate null space, hence the Betti numbers b1(M) = . . . = bn−1(M) = 0 (resp. the Tachibana numbers
t1(M) = . . . = tn−1(M) = 0, that we conclude from [35]).

Remark 1.1. The Riemann curvature tensor Rm induces an algebraic curvature operator
◦
R : S2

0M → S2
0M (see,

for example, [19]). The symmetries of Rm imply that
◦
R is a selfadjoint operator, with respect to the point-wise

inner product on S2
0M . That is why, the eigenvalues of

◦
R are all real numbers at each point x ∈M . Thus,

we say
◦
R is positive semidefinite (resp. positive-definite), or simply

◦
R ≥ 0 (resp.

◦
R > 0), if all the eigenvalues

of
◦
R are nonnegative (resp. positive). The properties and applications of

◦
R were studied in [1, pp. 51–52];

[5, 6, 19, 23, 24, 41], etc.

In the present paper, we prove the vanishing theorem for the kernel ker ∆S of the Laplacian ∆S on a closed
Riemannian manifold (M, g) with negatively pinched sectional curvature. We find an estimate of its lower
eigenvalue depending on the sign of the sectional curvature of (M, g). In addition, we give some applications
of the above results.

In conclusion, recall that the Sampson Laplacian ∆S is of fundamental importance in mathematical physics
(e.g., [11, 26, 45]). Note also that the operator ∆S acting on symmetric covariant 2-tensor fields appears in many
problems in Riemannian geometry including Ricci flow (e.g., [3, 9, 16, 21]; [1, pp. 64; 133] and [7, pp. 109–110]).
This article continues our study of the Sampson Laplacian, which we carried out in [24].

2. The Sampson Laplacian and its Weitzenböck curvature operator

Here, we define the differential operator δ∗ : C∞(SpM)→ C∞(Sp+1M) of degree one by the formula
δ∗ϕ = (p+ 1)Sym(∇ϕ) for an arbitrary ϕ ∈ C∞(SpM) and the standard point-wise symmetry operator Sym :
T ∗M ⊗ SpM → Sp+1M . Let δ : C∞(Sp+1M)→ C∞(SpM) be the adjoint operator for δ∗ (see [1, pp. 35, 434]).
Then, in accordance with [28], we define the Laplacian

∆S = δ δ∗ − δ∗δ.

By [28], ∆S admits the Weitzenböck decomposition (1.3). In addition, from (1.2) we conclude that <p : SpM →
SpM is a symmetric endomorphism. More properties of the operator ∆S can be found in the following papers:
[24, 30, 31, 32, 33, 42].

Let Sp
0M be a vector bundle of traceless symmetric p-tensor on M , which is defined by the condition

traceg ϕ = 0, where traceg ϕ =
∑

i ϕ(ei, ei, X3, . . . , Xp) for any ϕ ∈ C∞(SpM) and an orthonormal basis
{e1, . . . , en} of TxM at an arbitrary point x ∈M . Then from (1.2) and (1.3) we conclude that the following
proposition is true.

Theorem 2.1. The Sampson Laplacian ∆S maps the vector space C∞(Sp
0M) into itself.

Using (1.3), we define the Weitzenböck quadratic form Qp : SpM × SpM → R by the equality

Qp(ϕ) = g (<p(ϕ), ϕ) = Rij ϕ
i i2...ipϕj

i2...ip
+ (p− 1)Rijkl ϕ

i l i3...ipϕjk
i3...ip

(2.1)

(see also [34]) for local components ϕi1,...,ip , Rij and Rijkl of an arbitrary ϕx ∈ Sp
0 (T ∗M), the Ricci tensor Ric

and the Riemann curvature tensor Rm, respectively, and for any ϕ ∈ SpM .
Next we prove two propositions on the quadratic form (2.1).
In the paper, we consider positive numbers δ > ε > 0.

Theorem 2.2. Let ∆S : C∞(S2
0M)→ C∞(S2

0M) be the Sampson Laplacian acting on C∞-sections of the bundle S2
0M

of traceless symmetric 2-tensors on an n-dimensional (n ≥ 2) closed Riemannian manifold with negative sectional
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curvature. If −δ and − ε are the minimum and maximum of the sectional curvature, then its Weitzenböck quadratic
form Q2(ϕ) satisfies the inequalities

−n δ ‖ϕ‖2 ≤ Q2(ϕ) ≤ −n ε ‖ϕ ‖2

for any ϕ ∈ C∞(S2
0M).

Proof. First, we consider (2.1) for p = 2. Thus, for any point x ∈M and any ϕ ∈ C∞(S2
0M) there exists an

orthonormal eigen-frame e1, . . . , en of TxM such that ϕx(ei, ej) = µi δij , where δij is the Kronecker delta, and
the following holds (see [1, p. 436]; [3, p. 388]):

Q2(ϕ) = g (<2(ϕx), ϕx) = 2
∑

i<j
sec(ei ∧ ej)(µi − µj)

2.

Here, sec (ei ∧ ej) = R ( ei, ej , ei, ej) is the sectional curvature sec σx of (M, g) in the direction of the tangent two-
plane section σx = span { ei, ej} of TxM at x ∈M . If, in addition, there is a point x ∈M , where the sectional
curvature of (M, g) satisfies the inequalities

−δ ≤ sec(x) ≤ −ε

for all 2-planes π(x) ⊂ TxM and some constants δ > ε > 0, then from

Rij ϕ
i kϕj

k +Rijkl ϕ
i lϕjk = 2

∑
i<j

sec (ei ∧ ej) (µi − µj)
2

we obtain the double inequalities (see [27])

− n δ ‖ϕx‖2 ≤ Rij ϕ
i kϕj

k +Rijkl ϕ
i lϕjk ≤ −n ε ‖ϕx‖2, (2.2)

where ‖ϕx‖2 = ϕij ϕij for the local components ϕij . In this case, from (2.2) we conclude that the quadratic form
Q2(ϕx) is negative definite for all nonzero ϕx ∈ S2

0(T ∗xM). In particular, the equality Q2(ϕx) = 0 holds if and
only if ϕx = 0.

Suppose that (M, g) is compact with negative sectional curvature and denote by −δ and −ε the minimum
and maximum of its sectional curvature of (M, g). Then from (2.1) we conclude that the Weitzenböck quadratic
form satisfies the inequalities

−n δ‖ϕ‖2 ≤ Q2(ϕ) ≤ −n ε‖ϕ‖2

for any ϕ ∈ C∞
(
S2
0M
)
.

Next we will consider the case when p ≥ 3. At the same time, let x ∈M be a point where the sectional
curvature of (M, g) satisfies the inequalities

−δ ≤ sec π(x) ≤ −ε < 0

for all 2-plans π(x) ⊂ TxM . We rewrite the double inequalities (2.2) in the form

−n δ‖ϕx‖2 −Rij ϕ
i kϕj

k ≤ Rijkl ϕ
i lϕjk ≤ −n ε‖ϕx‖2 −Rij ϕ

i kϕj
k,

where by [4, p. 81–82] the following inequalities hold:

− (n− 1) δ ‖ϕx‖2 ≤ Rij ϕ
ikϕj

k ≤ − (n− 1) ε ‖ϕx‖2. (2.3)

Then from (2.2) and (2.3) we obtain the following double inequalities:

(−n δ + (n− 1) ε) ‖ϕx‖2 ≤ Rijkl ϕ
i lϕjk ≤ (−n ε + (n− 1) δ) ‖ϕx‖2.

From the above we conclude that the following inequalities are satisfied:

(p− 1)(−n δ + (n− 1) ε)‖ϕx‖2 ≤ (p− 1)Rijkl ϕ
i li3...ipϕjk

i3...ip
≤ (p− 1)(−n ε+ (n− 1) δ)‖ϕx‖2 (2.4)

(see [4, p. 82]; [13, p. 91]) for local components ϕi1...ip of ϕx ∈ Sp
0 (T ∗M) and ‖ϕx‖2 = ϕi1 ...ipϕ i1 ...ip . In turn,

from (2.3) we deduce (see [4, p. 82]; [13, p. 90])

− (n− 1) δ‖ϕx‖2 ≤ Rij ϕ
ii2...ipϕj

i2...ip
≤ −(n− 1) ε‖ϕx‖2. (2.5)
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From (2.4) and (2.5) we obtain

((n− 1)(p− 1)ε− ((p− 1)n+ (n− 1))δ)‖ϕx‖2

≤ Rijϕ
i i2...ipϕj

i2...ip
+(p− 1)Rijkl ϕ

i l i3...ipϕjk
i3...ip

≤ ((n− 1)(p− 1)δ − ((p− 1)n+ (n− 1))ε) ‖ϕx‖2.

Suppose now that (M, g) is a closed Riemannian manifold with negative sectional curvature. Denote by−δ and
− ε the minimum and maximum of the sectional curvatures of (M, g). Based on the above result, we obtain the
following.

Theorem 2.3. Let ∆S : C∞(Sp
0M)→ C∞(Sp

0M) be the Sampson Laplacian acting on C∞-sections of the bundle
Sp
0M of traceless symmetric p-tensors (p ≥ 3) on an n-dimensional (n ≥ 2) closed Riemannian manifold (M, g) with

negative sectional curvature. If −δ and − ε are the minimum and maximum of the sectional curvature of (M, g), then its
Weitzenböck quadratic form satisfies the inequalities

((n− 1) (p− 1) ε− (np− 1) δ) ‖ϕx‖2 ≤ Qp(ϕ) ≤ ((n− 1) (p− 1) δ − (np− 1) ε ) ‖ϕx‖2

for any ϕ ∈ C∞(Sp
0M).

Corollary 2.1. Let (M, g) be an n-dimensional (n ≥ 2) closed Riemannian manifold with negative sectional curvature

and −δ and − ε are the minimum and maximum of the sectional curvature, then its curvature operator
◦
R : S2

0(M)→
S2
0(M) satisfies the inequalities

(−n δ + (n− 1) ε) ‖ϕ‖2 ≤ g
( o

R(ϕ), ϕ
)
≤ (−n ε+ (n− 1) δ) ‖ϕ‖2

for any ϕ ∈ C∞(S2
0M).

The inequality
(n− 1)(p− 1) δ < (np− 1) ε (2.6)

implies the condition Qp(ϕx) < 0 for an any nonzero ϕx ∈ Sp
0 (T ∗xM) at an arbitrary x ∈M . Side by side, the

inequalities ε < δ < 0 and (2.6) can be rewritten in the following form:

1 < δ/ε <
np− 1

(n− 1)(p− 1)
= 1 +

1

n− 1
+

1

p− 1
.

In this case, the sectional curvature of the manifold (M, g) satisfies the inequalities

−
(
1 +

1

n− 1
+

1

p− 1

)
< −δ

ε
≤ sec

δ
≤ −1.

We can normalize the metric g on the manifold M so that the above double inequalities become

−
(
1 +

1

n− 1
+

1

p− 1

)
< sec ≤ −1. (2.7)

Then the following corollary holds.

Corollary 2.2. Let ∆S : C∞(Sp
0M)→ C∞(Sp

0M) be the Sampson Laplacian acting on C∞-sections of the bundle Sp
0M

of traceless symmetric p-tensors (p ≥ 3) on an n-dimensional (n ≥ 2) closed Riemannian manifold (M, g) with negatively
pinched sectional curvature such that (2.7) hold. Then its Weitzenböck quadratic form Qp(ϕ) is negative definite for any
p ≥ 2 and ϕ ∈ Sp

0M .

On the other hand, the inequalities ε < δ and (2.6) can be rewritten in the equivalent form

1− n+ p− 2

np− 1
<
ε

δ
< 1.

Then the sectional curvature of our manifold (M, g) satisfies the inequalities

−1 ≤ sec

δ
≤ −ε

δ
< −1 +

n+ p− 2

np− 1
.
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We can normalize the metric g on the manifold (M, g) such that the above inequalities become

−1 ≤ sec ≤ −ε < −1 +
n+ p− 2

np− 1
.

Recall that a Riemannian manifold (M, g), whose sectional curvature satisfies the inequalities

− 1 ≤ sec ≤ −ε, (2.8)

is said to be negatively ε-pinched.

Remark 2.1. More properties of Riemannian manifolds with negatively pinched sectional curvatures can be
found, e.g., in [6, 15, 43, 44]. We know from [6, p. 313] that if (M, g) is a locally symmetric manifold with
non-constant negative sectional curvature, then its sectional curvature is 1/4-pinched. In our case, we have the
pinched sectional curvature with [−1,−ε] ⊂ [−1,−1/4] such that

−1 ≤ sec ≤ −ε < −1 +
n+ p− 2

np− 1
< −1

4
.

Thus, there are no negative definite Weitzenböck quadratic forms Qp of ∆S on a Riemannian manifold with
negatively 1/4-pinched sectional curvature (see [30, 31, 32]).

On the other hand, M. Gromov and W. Thurston have proved a theorem on negatively ε-pinched Riemannian
manifold (see [14]). Namely, for any integer n ≥ 4 and ε ∈ (0, 1), there exists a compact Riemannian manifold
(M, g) of dimension n such that the sectional curvatures of (M, g) lie in the interval [−1, −ε], but (M, g) does
not admit a metric of constant negative sectional curvature (see [14]). Using this proposition, we obtain the
following

Corollary 2.3. There exist closed n-dimensional (n ≥ 4) Riemannian manifolds (M, g) with negatively pinched sectional
curvature, different from compact hyperbolic spaces and such that the Weitzenböck quadratic forms Qp(ϕ) of their
Sampson Laplacians ∆S : C∞(Sp

0M)→ C∞(Sp
0M) are negative definite for any p ≥ 2.

3. Vanishing and spectral theorems for Sampson Laplacian

Let ∆S : C∞(Sp
0M)→ C∞(Sp

0M) be the Sampson Laplacian acting on C∞-sections of the bundle Sp
0M of

traceless symmetric p-tensors (p ≥ 3) on an n-dimensional (n ≥ 2) compact Riemannian manifold (M, g). Then
in accordance with the general theory (e.g., [8]), a real number λ (p), for which there is a symmetric p-tensor
ϕ ∈ C∞(Sp

0M) (not identically zero) such that ∆S ϕ = λ (p) ϕ, is called an eigenvalue of the Sampson Laplacian
∆S : C∞(Sp

0M)→ C∞(Sp
0M), and the corresponding symmetric p-tensor ϕ ∈ C∞(Sp

0M) is called an eigentensor
of the Sampson Laplacian ∆S corresponding to λ (p). All nonzero eigentensors corresponding to a fixed
eigenvalue λ (p) form a vector subspace of Sp

0M called the eigenspace of the Sampson Laplacian corresponding
to its eigenvalue λ (p).

Using the general theory of elliptic operators on a closed Riemannian manifold (M, g), it can be proved that
∆S has a discrete spectrum, denoted by Spec(p)∆S , consisting of real eigenvalues of finite multiplicity, which
accumulate only at infinity (see also [8]). Moreover, an arbitrary eigenspace of ∆S is finite-dimensional and
the eigentensors corresponding to distinct eigenvalues are orthogonal. In general, the Sampson Laplacian ∆S

is not positive definite and, at the same time, its principal symbol has the form

σ(∆S) (θ, x)ϕx = −g(θ, θ)ϕx

for θ ∈ T ∗xM − {0} and ϕx ∈ Sp
0 (T ∗xM) at any x ∈M , but its spectrum satisfies the condition Spec(p)∆S ⊆

[−C, ∞) for some constant C (see [12, p. 54]). In this case, we have

Spec(p)∆S =
{
− λ (p)

1 ≤ . . . ≤ −λ (p)
r ≤ 0 < λ

(p)
r+1 ≤ λ

(p)
r+2 ≤ . . .→∞

}
.

Next, we find the conditions for which the spectrum of ∆S consists of positive numbers.
By direct calculations, we obtain from (1.1) the Bochner-Weitzenböck formula

1

2
∆g ‖ϕ‖2 = −g

(
∆̄ϕ, ϕ

)
+ ‖∇ϕ‖2 = −g(∆S ϕ, ϕ) + ‖∇ϕ‖2 −Qp(ϕ) (3.1)
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for an arbitrary ϕ ∈ C∞(SpM) and the Beltrami Laplacian ∆g = div ◦ grad, which is defined on C∞-functions.
Let (M, g) be a closed manifold with negative sectional curvature such that (2.8) hold. From (3.1) we deduce
the integral equation ∫

M

(
‖∇ϕ ‖2 − Qp(ϕ)

)
dg = 0 (3.2)

forQp(ϕ) = g (<p(ϕ), ϕ) and an arbitrary ϕ ∈ ker ∆L. Firstly, we consider the case when p = 2. In this case, from
Theorem 2.2 we know that

Qp(ϕ) ≤ −n ε ‖ϕ ‖2 < 0

for an arbitrary nonzero ϕ ∈ C∞(S2
0M). Then from this inequality and (3.2) we conclude that ϕ ≡ 0, thus, the

kernel of ∆L is trivial. As a result, we obtain the following vanishing theorem.

Theorem 3.1. Let ∆S : C∞(S2
0M)→ C∞(S2

0M) be the Sampson Laplacian acting on C∞-sections of the bundle S2
0M

of traceless symmetric 2-tensors on an n-dimensional (n ≥ 2) closed Riemannian manifold (M, g) with strictly negative
sectional curvature, then ker ∆S is trivial.

On the other hand, from (3.1) we deduce the integral inequality∫
M

g (∆S ϕ, ϕ) dg ≥ −
∫
M

Q2(ϕ) dg (3.3)

for any ϕ ∈ C∞(S2
0M). In addition, if we suppose that a symmetric 2-tensor ϕ ∈ C∞(S2

0M) be an eigentensor of
the Sampson Laplacian ∆S corresponding to λ(2), then we can rewrite (3.3) in the following form:

λ(2)
∫
M

‖ϕ ‖2 dg ≥ n ε
∫
M

‖ϕ ‖2 dg. (3.4)

From (3.4) we conclude that λ(2) ≥ n ε > 0. In this case, we have the following

Theorem 3.2. Let (M, g) be an n-dimensional (n ≥ 2) closed Riemannian manifold with negative sectional curvature.
If − ε is the maximum value of its sectional curvature for some positive number ε, then Spec(2)∆S ⊂ [n ε,∞) for the
Sampson Laplacian ∆S : C∞(S2

0M)→ C∞(S2
0M).

Secondary, consider the case when p ≥ 3. Furthermore, suppose that the inequalities (2.8) are satisfied at any
point x ∈M . In this case, from Theorem 2.3 conclude that if −δ and − ε satisfy the inequality

(n− 1)(p− 1) δ − (np− 1) ε < 0,

then Q (ϕ) < 0 for any ϕ ∈ C∞(Sp
0M). From the last inequality and the integral equation (3.2) we obtain ϕ ≡ 0.

Then the following vanishing theorem is true.

Theorem 3.3. Let ∆S : C∞(Sp
0M)→ C∞(Sp

0M) be the Sampson Laplacian acting on C∞-sections of the bundle Sp
0M

of traceless symmetric p-tensors (p ≥ 3) on an n-dimensional (n ≥ 2) closed Riemannian manifold (M, g) with negative
sectional curvature. If −δ and −ε are the minimum and maximum of the sectional curvature such that (2.6) are satisfied,
then the kernel of ∆S is trivial.

Taking into account the above and Corollary 2.2, we obtain the following

Corollary 3.1. Let ∆S : C∞(Sp
0M)→ C∞(Sp

0M) be the Sampson Laplacian acting on C∞-sections of the bundle Sp
0M

of traceless symmetric p-tensors (p ≥ 3) on an n-dimensional (n ≥ 2) closed Riemannian manifold (M, g) with negatively
pinched sectional curvature such that (2.7) are satisfied. Then the kernel of ∆S is trivial.

In addition, taking into account the above and Corollary 2.3, we can formulate the following statement of
existence a trivial kernel of the Sampson Laplacian ∆S .

Corollary 3.2. There exist closed n-dimensional (n ≥ 4) Riemannian manifolds (M, g) with negatively pinched
sectional curvature, different from compact hyperbolic spaces and such that the kernels of their Sampson Laplacians
∆S : C∞(Sp

0M)→ C∞(Sp
0M) are trivial.
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On the other hand, if we suppose that a symmetric p-tensor ϕ ∈ C∞(Sp
0M) is an eigentensor of ∆S

corresponding to λ (p), then we can rewrite (3.2) in the following form:

λ (p)

∫
M

‖ϕ ‖2 dg ≥ ( (n− 1) (p− 1) ε− (np− 1) δ )

∫
M

‖ϕ ‖2 dg. (3.5)

In turn, from (3.5) we conclude that

λ (p) ≥ (n− 1) (p− 1) ε− (np− 1) δ.

In addition, if
(n− 1)(p− 1) ε > (np− 1) δ (3.6)

for any p ≥ 3 and n ≥ 2 then from (3.5) we conclude that λ (p) > 0. As a result, we obtain the following

Theorem 3.4. Let ∆S : C∞(Sp
0M)→ C∞(Sp

0M) be the Sampson Laplacian acting on C∞-sections of the bundle Sp
0M

of traceless symmetric p-tensors (p ≥ 3) on an n-dimensional (n ≥ 2) closed Riemannian manifold (M, g) with negative
sectional curvature. If −δ and −ε are the minimum and maximum of the sectional curvature of (M, g), then

Spec(p)∆S ⊂ [(n− 1)(p− 1) ε− (np− 1) δ, ∞).

In addition, if (3.6) are satisfied, then the spectrum of ∆S consists of positive numbers.

4. Applications to the theory of conformal Killing tensors

Here, we give some applications of the above results. First, we will consider conformal Killing p-forms.
Namely, conformal Killing p-forms (or, conformal Killing-Yano p-tensors) have been defined on n-dimensional
Riemannian manifolds (1 ≤ p ≤ n− 1) by S. Tachibana and T. Kashiwada (see [18, 40]) as a natural
generalization of conformal Killing vector fields. Since then, these forms were extensively studied by many
geometers. These studies were motivated by existence of various applications of conformal Killing p-forms
(e.g., [2, 37]).

The vector space of conformal Killing p-forms on an n-dimensional closed Riemannian manifold (M, g) has
a finite dimension tp(M) named the Tachibana number (e.g., [22, 29, 35]). The numbers t1(M), . . . , tn−1(M)
are conformal scalar invariants of (M, g) and satisfy the duality theorem: tp(M) = tn−p(M). The theorem is
an analog of the well-known Poincaré duality theorem for the Betti numbers of a closed (M, g). Moreover,
we proved in [35] that a) there exist closed Riemannian manifolds with nonzero Tachibana numbers
t1(M), . . . , tn−1(M), b) Tachibana numbers t1(M), . . . , tn−1(M) are zero for a closed n-dimensional (n ≥ 2)
Riemannian manifold (M, g) with negative curvature operator

◦
R : S2

0M → S2
0M defined on the vector bundle

S2
0M . Based on Corollary 2.1, we conclude that if

−1 ≤ sec < −1 + 1/n

then the curvature operator
o

R is negative definite. Therefore, the following theorem holds.

Theorem 4.1. If (M, g) is an n-dimensional (n ≥ 2) closed Riemannian manifold with negatively pinched sectional
curvature such that

−1 ≤ sec ≤ −1 + 1/n,

then its Tachibana numbers t1(M), . . . , tn−1(M) are equal to zero.

Remark 4.1. The above theorem is a generalization of the following theorem from [43]: Let (M, g) be a closed
Riemannian manifold with negatively pinched sectional curvature such that

−1 ≤ sec ≤ −ε.

If the dimension ofM is n = 2m (resp., n = 2m+ 1) and ε > 1/4 (resp., ε > 2(m− 1)/(8m− 5)), then there are no
conformal Killing 2-forms on the manifold. In this case, t2(M) = tn−2(M) = 0. In addition, the above theorem
complements our theorem in [27] on the Tachibana numbers of compact Einstein manifolds. For results on
conformally Killing forms on complete non-compact Riemannian manifolds, see [38].
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Based on the main theorem from [14], we obtain the following.

Corollary 4.1. There exist closed n-dimensional (n ≥ 4) Riemannian manifolds (M, g) with negatively pinched sectional
curvature, different from compact hyperbolic spaces and such that their Tachibana numbers t1(M), . . . , tn−1(M) are equal
to zero.

Next, we consider a conformal Killing symmetric p-tensor (p ≥ 2) that is a symmetric trace-free p-tensor
ϕ ∈ C∞(Sp

0M) satisfying the following condition: the trace-free part of δ∗ϕ equals to zero, which is equivalent
to the following equation (see [10]; [39, p. 559])

1

p+ 1
δ∗ϕ = − p

n+ 2 (p− 1)
g ◦ δ ϕ. (4.1)

In local coordinates, (4.2) can be rewritten in the following form (see also [10]):

∇(i0 ϕ i1i2...ip) = − p

n+ 2 (p− 1)
g(i0i1 δ ϕ i2...ip),

where we write φ(i0i1...ip) for symmetric part of a tensor φi0i1...ip . Using the definition of the Sampson Laplacian
and based on the formula (4.1), we obtain∫

M

g (∆S ϕ, ϕ) dg =
1

(p+ 1)

∫
M

‖δ∗ ϕ‖2 dg −
1

(p− 1)

∫
M

‖δ ϕ‖2 dg

= − n− 2(p− 2)

n+ 2 (p− 1)

∫
M

‖δ ϕ‖2 dg.

In this case, for any conformal Killing tensor ϕ ∈ C∞(Sp
0M) we defive the integral formula

n− 2(p− 2)

n+ 2 (p− 1)

∫
M

‖δ ϕ‖2 dg +

∫
M

(
‖∇ϕ‖2 −Qp(ϕ)

)
dg = 0. (4.2)

Using (4.2) and based on Corollary 2.1, we obtain the following proposition.

Corollary 4.2. There exist closed n-dimensional (n ≥ 4) Riemannian manifolds (M, g) with negatively pinched sectional
curvature and different from compact hyperbolic spaces, which have no nonzero symmetric conformal Killing p-tensors
for any p ≥ 2.

Remark 4.2. This corollary completes the vanishing theorem in [36] on conformally Killing symmetric tensors of
order 2 on a compact Riemannian manifold and its generalization in the case of conformally Killing symmetric
tensors of order p ≥ 2 from [9, 16].
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