
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 2, April 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Abstract— Human assisted search and rescue (SAR) robots are

increasingly being used in zones of natural disasters, industrial

accidents, and civil wars. Due to complex terrains, obstacles, and

uncertainties in time availability, there is a need for these robots

to have a certain level of autonomy to act independently for

approaching certain SAR tasks. One of these tasks is autonomous

navigation. Previous approaches to develop autonomous or semi-

autonomous SAR navigating robots use heuristics-based methods.

These algorithms, however, require environment-related prior

knowledge and enough sensing capabilities, which are hard to

maintain due to restrictions of size and weight in highly

unstructured environments such as collapsed buildings. This study

approaches the problem of autonomous navigation using a

modified version of the Deep Q-Network algorithm. Unlike the

classical usage of the entire game screen images to train the agent,

our approach uses only the images captured by the agent's low-

resolution camera to train the agent for navigating through an

arena avoiding obstacles and to reach a victim. This approach is a

much more relevant way of decision making in complex, uncertain

contexts; since in real-world SAR scenarios, it is almost impossible

to have the area's full information to be used by SAR teams. We

simulated a SAR scenario, which consists of an arena full of

randomly generated obstacles, a victim, and an autonomous SAR

robot. The simulation results show that the agent was able to reach

the victim in 56% of the evaluation episodes after 400 episodes of

training.

Index Terms— Deep Reinforcement Learning, Autonomous

Navigation, Autonomous Search and Rescue, Simulation.

MOHAMMED ABDEH, is with the Department of Computer Science and

Engineering, Sabancı University, Istabul, Turkey, (e-mail:

mohammadabdeh@sabanciuniv.edu)

https://orcid.org/0000-0002-5450-1316

FATIH ABUT, is with the Department of Computer Engineering, Çukurova
University, Adana, Turkey, (e-mail: fabut@cu.edu.tr).

https://orcid.org/0000-0001-5876-4116

M. FATIH AKAY, is with the Department of Computer Engineering,

Çukurova University, Adana, Turkey, (e-mail: mfakay@cu.edu.tr).

https://orcid.org/ 0000-0003-0780-0679

Manuscript received August 16, 2020; accepted Feb 05, 2021.
DOI: 10.17694/bajece.781162

I. INTRODUCTION

VERY YEAR, around 60.000 people die worldwide in

natural disasters. The majority of the deaths are caused by

building collapse in earthquakes [1]. Only a small fraction of

the victims of urban disasters might survive. Consider from [2,

3] that 80% of survivors of urban disasters are surface victims,

i.e., the people lying on the surface of the rubble or readily

visible. However, only 20% of survivors of urban disasters

come from the interior of the rubble, yet the interior is often

where the majority of victims are located.

 The complexity of the collapses and the need for a fast

response after the disaster requires multiple tasks to be done

simultaneously. One approach to solve this problem is the use

of robots that have a variety of capabilities such as unmanned

ground vehicles (UGVs) and unmanned aerial vehicles (UAVs)

to assess human search and rescue experts. In other words, the

number of human experts can be limited and does not serve the

need for controlling the robots along with fulfilling the other

critic tasks that require human interference and moral

understanding. Hence, there is a need for supplying these robots

with a certain level of autonomy to be able to navigate through

a SAR area and thus provide some tasks without the need for

human control. In [4], Murphy et al. describe the tasks that can

be addressed. Those tasks include (a) reaching small and

dangerous places (voids) that humans and dogs cannot reach,

(b) exploring the interior and exterior of the hot zone and

extending wireless communication ranges.

 Navigation is one of the fundamental tasks of mobile robots.

The algorithms used to approach this task are divided into two

sets [5]:

• Greedy heuristics-based algorithms that operate using

a map, which needs to be provided or extracted from

the environment. After generating such a map, the

central system performs the task of path planning,

which is finding the optimal or suboptimal path to

reach the target. Then the robots perform the

navigation through the specified path. Autonomous

mobile robots that use these techniques need to

localize themselves within the generated map at the

start of the planned trajectory, and then monitor their

motion along the path using sensors (e.g., wheel

Autonomous Navigation in Search and Rescue

Simulated Environment using Deep

Reinforcement Learning

Mohammed Abdeh, Fatih Abut, M. Fatih Akay 

E

92

http://dergipark.gov.tr/bajece
mailto:mohammadabdeh@sabanciuniv.edu
mailto:fabut@cu.edu.tr
mailto:mfakay@cu.edu.tr

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 2, April 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

encoders and inertial sensors) which are hard to be

maintained on board of a small mobile robot

navigating through small voids within rubbles.

• Algorithms that operate without the use of maps (e.g.,

DistBug); These algorithms are often used if a path

has to be traveled only once and therefore does not

necessarily have to be optimal. Although the Bug

family algorithms use limited sensors and

computation capabilities, they tend to rely on perfect

position estimations. In [6], McGuire et al. concluded

that the Bug algorithms performance is sensitive to

sensor-related noise, which makes them hard to

implement in real-world uncertain noisy cotexts.

In [7], the authors studied different search methods based on

greedy heuristics, and partially observable Markov Decision

Process (POMDP) to design the autonomous control of UAVs

to act in search and rescue contexts. Their evaluation results

showed the great potential of POMDP in SAR scenarios; they

also acknowledged that using these methods requires a high

computation power as the cost grows exponentially (i.e., the

curse of dimensionality) and that existed algorithms were not

sufficient yet to tackle real-world problems. With the rise of

deep learning and the expanding computational power,

researchers have been able to come up with algorithms that can

be used to tackle the curse of dimensionality more efficiently

and solve problems that were not intractable in the past, such as

playing Atari games at a superhuman level [8] and defeating a

9-dan Go player [9].

The main purpose of this study is to approach the problem of

autonomous navigation using a modified version of DQN by

relying only on the agent’s camera without the use of any

environment-related prior knowledge or any info gathered from

another source (e.g., human experts, other robots, maps). This

decentralized approach using only the agent’s limited vision-

based capabilities is a relevant strategy in deep voids where

wireless connections might be hard to maintain, and also in any

other situation where no enough outside information is

available in the process of decision making. The DQN

algorithm modified and used in this work is a valid method of

solving real-world problems that can be interpreted as a

POMDP.

The rest of the paper has the following structure. Section II

gives an overview of related works. Section III describes the

theoretical foundations of the utilized learning algorithms.

Section IV presents the simulation setup and evaluation

methodology. Section V presents the results and discussion.

Finally, Section VI outlines the paper along with future

directions.

II. RELATED WORKS

One of the applications of autonomous navigation is creating

3D visualizations of buildings and large-scale construction sites

using scanning technologies. The scanning process has been

often carried out using scanners handled by people [10] or

scanners on board of vehicles controlled by people [11]. In [12],

Kim et al. assisted the scanning process with UAVs that

generated an initial 3D map of the area, then based on this map,

the optimal scanning locations are estimated, and the optimal

navigation path is determined. After that, a robot equipped with

a laser scanning system is used to follow the path and obtain

high-resolution scans in the estimated locations. Although such

techniques are powerful in navigating through large

construction sites, they cannot be used to assess small UGVs

navigating through small-scale indoor environments. These

robots must perform navigation without any outside

assessments due to the limitation of wireless sensing

technologies.

The problem of autonomous navigation in search and rescue

contexts has been approached previously using heuristics-based

methods. A heuristic function ranks a set of options available at

one point and decides which one to choose according to the

ranking. These approaches require situation related prior

knowledge and a wide range of sensing abilities. In the EU

funded project ICARUS [13], several robots with different

structures and capabilities have been designed to assess SAR

experts. Small Unmanned Ground Vehicles (UGVs) used to

navigate through narrow voids were supplemented with a very

limited level of autonomy. This is caused by the use of heuristic

algorithms that require a massive amount of sensors and power,

which cannot be added to the vehicles due to the restrictions of

size and weight in highly unstructured environments, such as

collapsed buildings. A similar approach has been carried out in

the SHERPA project [14] in which the goal was to develop a

mix of ground and aerial robots to support SAR teams in real-

world hostile environments.

DQN was implemented in [15] to support a UAV with the

ability to navigate independently towards a specified goal in a

simulated environment. They evaluated their work by

comparing the success rate, and the average steps undertook by

the trained agent and a random decision-making agent. This

research resulted in an 8% success rate for the trained agent

compared to a 5% success rate for the random-action taking

agent. Although the algorithm showed some success as the

trained agent outperformed the random agent in terms of

success rate, it is clear that it can be further developed.

This study approaches autonomous navigation using a

modified version of the DQN algorithm relying only on the

agent's camera. Unlike the previous methods, this approach

does not require a map to be generated or any extra sensors to

monitor the agent's motion. While the recent implementation of

DQN in autonomous navigation [15] used the same proposed

CNN, the CNN (convolutional neural network) being used in

this work for training the agent to make decisions based on the

captured images has been designed with simplicity in mind to

suit the simulated scenario.

III. THEORETICAL BACKGROUND

A. Reinforcement Learning

RL is the machine learning paradigm concerned with training

agents to act autonomously to reach certain goals in an

environment. A typical reinforcement learning scenario

consists of the following components: an agent (the decision-

maker), an environment in which its state changes according to

the agent's actions. As the agent explores the environment, it

receives a reward for each action it makes. Hence by trial and

error, it learns to maximize this reward.

93

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 2, April 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Formally an RL scenario is modeled as a Markov Decision

Process (MDP) which consists of a tuple (𝑆, 𝐴, 𝑅, 𝑇, 𝛾) where

𝑆 is the set of states, 𝐴 is the set of actions, (alternatively 𝐴(𝑠):

the set of actions that can be taken at state 𝑠); R(s) is the reward

function, it returns the immediate reward;

 𝑇(𝑠, 𝑎, 𝑠′) ~ 𝑃(𝑠′|𝑠, 𝑎) is the probability that taking action 𝑎

will change the environment state from 𝑠 to 𝑠′; and finally, 𝛾 ϵ

[0,1] is the discount factor, which is how much we value future

reward over the immediate one.

The main problem of an MDP is to find the optimal policy 𝜋∗.

A policy 𝜋(𝑠) is a function that specifies the action that should

be taken at a certain state. Thus the optimal policy 𝜋∗ is the

policy that maximizes the expected long term reward (i.e., the

reward from all states):

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋 𝐸[∑𝑡=0
∞ 𝛾𝑡𝑅(𝑠𝑡)|𝜋]. (1)

Partially Observable Markov Decision Process (POMDP) is a

generalization of Markov Decision Process (MDP). POMDP

consists of a tuple(𝑆, 𝐴, 𝑂, 𝛺, 𝑅, 𝑇, 𝛾), where 𝑆 is the set of

states; A is the set of actions (or alternatively 𝐴(𝑠) is the set of

actions that can be taken at state 𝑠); 𝑂 is the set of observations;

Ω(𝑜, 𝑠′, 𝑎) ~ 𝑃(𝑜|𝑠′, 𝑎) is the probability of observing 𝑜 at

state 𝑠′ after taking action 𝑎; 𝑅(𝑠) is the reward function, it

returns the immediate reward; 𝑇(𝑠, 𝑎, 𝑠′) ~ 𝑃(𝑠′|𝑠, 𝑎) is the

probability that taking action 𝑎 will change the environment

state from 𝑠 to 𝑠′; and finally, 𝛾 ϵ [0,1] is the discount factor,

which is how much we value future reward over the immediate

one.

A POMDP scenario can be described as follows: at each time

frame the environment is in some state 𝑠 ∈ 𝑆, the agent takes

action 𝑎 ∈ 𝐴 which changes the environment state from 𝑠 to

𝑠′ according to the transaction probability T, after a step time,

the agent receives an observation 𝑜 from the environment

state 𝑠′. The observation depends on the current state 𝑠′ and the

previous action 𝑎 according to the probability Ω(𝑜, 𝑠′, 𝑎). The

goal of the agent is to find the optimal policy π* that maximizes

the expected long-term reward. As the states in POMDP are not

fully observable, the agents only receive partial information

about the environment. This generalization is more realistic

than MDP, and it can describe a variety of real-world problems.

Hence it is an appropriate framework to describe the simulated

scenario.

B. Q-Learning

Reinforcement learning methods fall into two categories; the

policy-based and value-based methods. The policy-based

methods aim at finding the optimal policy π* by starting with a

parameterized policy and updating its parameters using

gradient-based or gradient-free methods, on the other hand, the

value-based methods use a value function that determines the

expected long term reward of executing an action at a particular

state, and hence providing which action to undertake. One of

the most well-known value-based methods is Q-learning. It can

find the optimal policy in finite stationary and fully- observable

environments with discrete actions. The algorithm starts by

initializing a table called the Q-table with arbitrary Q-values. A

q-value is a value that corresponds to how well an action is at a

specific state. Then at each state, an action a is being selected,

and its corresponding Q-value is being calculated using the Q-

function:

𝑄𝑛𝑒𝑤(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 +

𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎)]
(2)

where Q(s, a) is the Q-value of executing an action 𝑎 at state

𝑠, 𝛼 ∈ (0,1] is the learning rate, and r is the immediate reward.

Although Q-learning can find the optimal policy in small finite

environments, it performs poorly on non-stationary partially

observable complex environments.

C. Deep Q-Network

With the rise of deep learning and particularly in [8], Mnih et

al. introduced the Deep Q-Network algorithm (DQN), which

gave birth to the field of deep reinforcement learning. DQN was

the first algorithm to reach a superhuman performance in

playing Atari games from pixels. Instead of using a table to

track the Q-values, they used a convolutional neural network as

a function approximator to predict Q-values from states. One of

the problems the RL algorithms have when using artificial

neural networks as function approximators is the problem of

instability. The DQN algorithm uses two separate models to

stabilize the learning; namely, the main model and the target

model, the main model's weights get copied to the target model

every c steps. The DQN also keeps a memory buffer termed

Experience Reply to store the transactions. At every training

step, the DQN uses the main model to predict the action to take,

and then the agent executes the action and observes a new state

together with the immediate reward. After adding the new

transaction to the experience replay, it takes random samples

from the experience reply and uses them as data to fit the main

model by minimizing the mean-square error (MSE) between the

main and target models. The training process is visualized in

Fig. 1.

Figure 1. Visualization of one training step

D. The ε-Greedy Policy

The ε-greedy policy is a method used to balance the exploration

and exploitation done by the agent; that is deciding at a certain

point whether it should take random actions to explore

unexplored space, or whether it should use the trained model's

action-value estimations to predict the best action. It keeps track

94

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 2, April 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

of a parameter ε, which represents the probability of choosing a

random action. Similar to the original DQN, in this work, ε

starts at 1 and decreases linearly throughout the training until it

reaches a fixed point.

IV. SIMULATION SETUP AND METHODOLOGY

The scenario was simulated using Webots [16], an open-

source robot simulator widely used for educational and

professional purposes. It includes a complete toolbox to design

environments, robots, and simulation experiments. It can

execute controllers written in compiled C/C++ and Java or

interpreted python and Matlab languages. In this study, the

agent controller was written in python to take advantage of the

required libraries (i.e., Numby, Tensorflow, and Keras).

An e-puck robot was used for its motion simplicity. It has two

motors, a left wheel motor and a right wheel one. It also has a

color camera with a maximum resolution of 640x480, eight

light sensors, and eight distance sensors. For this research, only

the camera and the motors have been used.

At the beginning of the simulation, a square arena is created.

The center of the arena is at the center of the coordination, and

the objects can be placed within [-1, 1] and [-1, 1] at X and Z

dimensions, respectively, whereas the Y dimension remains the

same. At every episode, the agents and obstacles are placed

randomly. The victim robot is randomly placed according to the

uniform distribution at a position within the upper left part of

the arena between [-1, -0.5] and [-1, -0.5] at X and Z

dimensions, respectively. Similarly, the agent is placed

randomly according to the uniform distribution at the downright

part of the arena between [0.5, 1] and [0.5, 1] at X and Z

dimensions, respectively. The obstacles (i.e., 20 boxes) are

positioned randomly according to the normal distribution of 0

mean and standard deviation of 0.5. The objects are positioned

in this manner to ensure that the obstacles will get in the agent’s

way. Fig. 2 shows a view of the arena at the beginning of an

episode.

In this work, DQN has been modified to ensure more success

in the simulated scenario. These modifications are as follows:

 The CNN that has been used in the original DQN has

performed poorly on the simulated scenario. The agent

at an early level of the training starts to memorize one

action regardless of the image fed into the network, and

hence it rarely reaches the victim robot. Instead, in this

work, a simpler CNN has been used. It showed much

better results. Fig. 3 shows the architecture of the

modified CNN, which is used to predict the best action

to be executed according to the image fed.

Figure 2. A bird view of the arena at the beginning of an episode. The

trained SAR agent is at the downright, and the victim is located up at

the left most of the image.

 The agent was trained for 400 training episodes executed

in 8 identical parts; within each part, 50 episodes were

executed. At each training part, the ε-greedy policy's ε

starts from 1 and decays until it reaches 0.1 after 25

episodes, which is half of a training part, as illustrated in

Fig. 4.

 While in the original DQN, a stack of 4 frames is being

fed into the CNN as one observation, for simplicity, we

use only one image. Fig. 5 shows an image captured by

the agent during training.

 The use of a simple distance-dependent reward function:

𝑟𝑒𝑤𝑎𝑟𝑑 = 100(𝑙𝑎𝑠𝑡𝑑 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑑) (3)

where 𝑙𝑎𝑠𝑡𝑑 is the distance between the agent and the victim at

the previous step, and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑑 is the distance between the

agent and the victim at the current step.

Figure 3. The architecture of the modified CNN used to train the

agent to predict actions.

95

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 2, April 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Figure 4. Linear change of ε throughout a single training part

Figure 5. An image captured using the agent’s camera. Images of this

type were used in training and testing.

V. RESULTS AND DISCUSSION

Several evaluation methods were used to test the suitability of

the original CNN architecture proposed in [8]. The original

CNN was designed to learn generalizing the learning process

over many distinct Atari games, while in our scenario, the agent

has to learn to interact in one environment. In other words, due

to the complexity of the model, the agent starts to memorize

behaviors at a very early level, and thus at one point, it starts to

take only one action regardless of the image captured. This

resulted in a bad performance in terms of navigating towards

the target.

Fig. 6 illustrates the number of steps taken by the agent to

reach the victim in a single episode by using the original CNN.

If the agent does not reach the victim during the episode, the

finishing step will be equal to the maximum number of steps

used (i.e., 1000). This is due to the low ε value 0.1 which limits

the agent exploration. The line shows that using the original

approach the agent was only able to reach the victim before the

episode 25 (i.e., the episode at which the randomness is

minimized), which demonstrates clearly that the agent is not

able to reach the victim when relying on the original complex

CNN and hence performs poorly in the simulated environment.

Figure 6. The finishing steps of the agent when trained using the

original CNN

Using our modified CNN proposed in the methods section,

the agent showed better results when evaluated in 1000 step

epochs. Fig. 7 illustrates the number of steps taken by the agent

to reach the victim in a single episode by using the modified

CNN. If the trained agent does not reach the victim during the

episode, the finishing step will be equal to the maximum

number of steps used (i.e., 1000). The line shows that using the

modified approach, the agent was able to reach the victim at

most of the episodes, while also reaching the victim in less

number of finishing steps on average after the episode 25. This,

in turn, clearly demonstrates that the agent is able to reach the

victim more efficiently relying only on the trained model using

the modified CNN.

Figure 7. The finishing steps of the agent when trained using the

modified CNN

The finishing step is going smaller along with the training.

Since the ε is decaying linearly, this shows that the agent is

performing better when it predicts the actions based on the

trained model. Table 1 shows the training results of the agent

during the different parts of the training.

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30 35 40 45 50

Ep
si

lo
n

 (
ε)

Training Episode

Epsilon (ε)

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50

Fi
n

is
h

in
g

St
ep

Training Episode
Original CNN with limit step 1000

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50

Fi
n

is
h

in
g

St
ep

Training Episode

 Modified CNN with limit step 1000

96

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 2, April 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Using the methods proposed above, the agent was trained on

an Intel Core (TM) i5-3230M CPU. Training 400 episodes

lasted appr. 21 hours and 7 minutes. The training episodes were

executed in 8 parts to ensure the stability of the simulation

physics engine (i.e., after training for more than 50 epochs, the

physics engine starts to produce some delay and the simulation

info file stored in the RAM reaches its limits).

After the training, the agent’s performance was evaluated

using the same evaluation method used in [15]. The trained

agent’s success rate and the number of steps it took to finish the

simulation were calculated and compared with a fully random-

action taken agent. Table 2 shows a comparison between the

evaluation results of this work and the previous study.

While the random agent was not able to reach the victim even

once, after 400 episodes of training, the agent was able to reach

a 56% success rate in 40 evaluation episodes. That means that

the e-puck robot was able to reach the victim in 56% of the

evaluation episodes. Moreover, it was able to reach the victim

in 21 steps at least in one episode, which is a great result giving

the complexity of the environment. The poor performance of

the random agent in our study shows the complexity of our

simulated scenario when compared with the simulation scenario

in [15]. Hence, this proves how well the trained agent

performed.

Compared with the results proposed in [15], this work has

reached significant improvements in terms of the difference

between the results of the random agent and the trained one.

This is due to the use of a simpler CNN that learns to navigate

through obstacles contained in similar settings, instead of the

use of the original CNN that generalize the learning over

many Atari games. Another factor is the used version of the ε-
greedy policy; that is partitioning the training into parts with an

ε that starts at each part from 1 and linearly decays until it

reaches a 0.1. With this method, the agent has been able to

explore the changing state of the environment across episodes

more efficiently.

VI. CONCLUSION AND FUTURE WORK

This paper presented a SAR simulation scenario, in which an

autonomous e-puck robot's main goal is to explore an area full

of randomly generated obstacles and yet to learn to navigate

through them to reach a certain victim without any use of

environment-related prior knowledge. The scenario and the

environment, in general, can be used to test the suitability and

the efficiency of different deep reinforcement learning methods

to solve autonomous SAR problems. A modified DQN

algorithm was implemented using some new approaches. These

approaches include (a) the use of modified CNN instead of the

original one, a distance-dependent reward function, and agent’s

low-resolution camera images to train the agent; (b) feeding one

frame to the CNN as an observation instead of a stack of four

images; and finally (c) training the agent in 8 parts; at each part,

the ε-greedy policy’s ε is decaying linearly from one until it

reaches 0.1 at the middle of the training part. Using these

methods, our modified DQN has shown great results compared

to previous work when evaluated using the same evaluation

methods and metrics, reaching a success rate of 56% at an

average step of 242.

Despite the work’s success, a variety of future works can be

conducted to increase efficiency and real-world interpretability.

The scenario can be further developed to become more realistic;

e.g., by placing a variety of obstacles, increasing the number of

obstacles and victims. A more complex CNN can be designed

to train the agent to navigate in the developed complex scenario.

The reward function can be optimized to depend on other

factors, such as the distance between the agent and the nearest

TABLE 1. THE TRAINING RESULTS OF THE AGENT DURING THE DIFFERENT PARTS OF THE TRAINING

Training Part (Episodes) Success Rate Minimum Steps

0 - 50 24% 42

51 - 100 40% 38

101 - 150 46% 65

151 - 200 52% 45

201 - 250 60% 50

251 - 300 50% 68

301 - 350 64% 65

351 - 400 46% 59
Note: The success rate shows the percentage of the successful episodes, in which the agent successfully reaches the victim, whereas the minimum steps

show the minimum step number at which the agent reached the victim.

TABLE 2. COMPARING THE VALIDATION RESULTS OF THE AGENTS WITH PREVIOUS WORK

Study

Agent
Average Steps Success Rate Minimum Steps

The results of

[15]’s approach

Random Agent 22.35 5% -

Trained Agent 258.54 8% -

The results of this

study

Random Agent 400 (the limit) 0% 400 (the limit)

Trained Agent

(400 episodes)
242.44 56% 21

97

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 2, April 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

obstacle. Finally, as the number of victims increases together

with the complexity of the environment, using a multi-agent

SAR team will be a relevant strategy. Agents should learn to

cooperate as a team to approach a common goal.

REFERENCES

[1] C. Kenny, Why Do People Die In Earthquakes? The Costs, Benefits,

And Institutions of Disaster Risk Reduction In Developing Countries.
Policy Research Working Paper 4823. The World Bank, 2009.

[2] “NFPA 1670, Standard on Operations and Training for Technical

Rescue Incidents - National Fire Protection Association”.
https://www.nfpa.org/codes-and-standards/all-codes-and-standards/-

list-of-codes-and-standards/detail?code=1670&tab=nextedition

(accessed Aug. 03, 2020).
[3] “Rescue: Technical Rescue Program Development Manual”, U.S.

Fire Administration and Federal EmergencymManagement Agency,

ISBN: 1482709600.
[4] R. R. Murphy et al., “Search and Rescue Robotics,” in Springer

Handbook of Robotics, 2008, pp. 1151–1173.

[5] T. Bräunl, “Localization and Navigation,” in Embedded Robotics,
Springer Berlin Heidelberg, 2008, pp. 241–269.

[6] K. N. McGuire, G. C. H. E. de Croon, and K. Tuyls, “A comparative

study of bug algorithms for robot navigation,” Rob. Auton. Syst., vol.
121, p. 103261, Nov. 2019.

[7] S. Waharte and N. Trigoni, “Supporting search and rescue operations

with UAVs,” in Proceedings - EST 2010 - 2010 International
Conference on Emerging Security Technologies, ROBOSEC 2010 -

Robots and Security, LAB-RS 2010 - Learning and Adaptive Behavior

in Robotic Systems, 2010, pp. 142–147.
[8] V. Mnih et al., “Human-level control through deep reinforcement

learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[9] D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[10] J. Xiao, A. Owens, and A. Torralba, “SUN3D: A database of big

spaces reconstructed using SfM and object labels,” in Proceedings of
the IEEE International Conference on Computer Vision, 2013, pp.

1625–1632.

[11] I. Toschi, P. Rodríguez-Gonzálvez, F. Remondino, S. Minto, S.
Orlandini, and A. Fuller, “Accuracy evaluation of a mobile mapping

system with advanced statistical methods,” in International Archives

of the Photogrammetry, Remote Sensing and Spatial Information
Sciences - ISPRS Archives, 2015, vol. 40, no. 5W4, pp. 245–253.

[12] P. Kim, J. Park, Y. K. Cho, and J. Kang, “UAV-assisted autonomous

mobile robot navigation for as-is 3D data collection and registration
in cluttered environments,” Autom. Constr., vol. 106, p. 102918, Oct.

2019.

[13] “ICARUS Project.”, European Union’s Horizon 2020 research and
innovation programme, https://icarus2020.eu/ (accessed Aug. 03,

2020).

[14] L. Marconi et al., “The SHERPA project: smart collaboration
between humans and ground-aerial robots for improving rescuing

activities in alpine environments,” 2012.

[15] J. G. C. Zuluaga, J. P. Leidig, C. Trefftz, and G. Wolffe, “Deep
Reinforcement Learning for Autonomous Search and Rescue,” in

Proceedings of the IEEE National Aerospace Electronics

Conference, NAECON, Dec. 2018, vol. 2018-July, pp. 521–524.
[16] O. Michel, “Cyberbotics Ltd. Webots TM : Professional Mobile

Robot Simulation,” 2004. Accessed: Aug. 03, 2020. [Online].
Available: http://www.cyberbotics.com.

BIOGRAPHIES

Mohammad ABDEH received B.Sc.

degree in Computer Engineering from

Çukurova University, Turkey, in 2020.

He had been awarded an undergraduate

scholarship from Turkey Scholarships in

2017. He is currently a M.Sc. student and

a Teaching Assistant at the Department of

Computer Science and Engineering at

Sabanci University, Istanbul, Turkey. His

research interests include artificial intelligence, reinforcement

learning, and autonomous search and rescue robotics.

Fatih ABUT received B.Sc. and M.Sc.

degrees in Computer Science from Bonn-

Rhein-Sieg University of Applied

Sciences, Germany, in 2008 and 2010,

respectively; and a Ph.D. degree in

Computer Engineering in the year 2017

from Çukurova University, Adana,

Turkey. He is currently an Assistant

Professor in the Department of Computer Engineering at

Çukurova University. His research interests include machine

learning and artificial intelligence, computer and wireless

communications, and IP network measurement and

characterization.

Mehmet Fatih AKAY received B.Eng. and

M.Eng. degrees in Electrical and

Electronics Engineering from Çukurova

University, Turkey, in 1999 and 2001,

respectively; and a Ph.D. degree in

Electrical and Computer Engineering in

the year 2005 from Drexel University,

Philadelphia, USA. He is currently a

Professor in the Department of Computer Engineering at

Çukurova University. His research interests include machine

learning and artificial intelligence, simulation, and modeling of

multiprocessors.

98

http://dergipark.gov.tr/bajece

