
Avrupa Bilim ve Teknoloji Dergisi

Sayı 21, S. 268-274, Ocak 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

No. 21, pp. 268-274, January 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 268

An Automated Bug Triaging Approach using Deep Learning: A

Replication Study

Eray Tüzün*, Emre Doğan2, Alperen Çetin3

1* Bilkent Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Ankara Türkiye (ORCID: 0000-0002-5550-7816)), eraytuzun@cs.bilkent.edu.tr
2 Bilkent Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Ankara, Türkiye (ORCID: 0000-0002-2558-7624), emre.dogan@bilkent.edu.tr

3 Bilkent Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Ankara, Türkiye (ORCID: 0000-0001-9879-8599), alperen.cetin@bilkent.edu.tr

(First received 30 September 2020 and in final form 12 January 2021)

(DOI: 10.31590/ejosat.781341)

ATIF/REFERENCE: Tüzün E., Doğan E., Çetin A. (2021). An Automated Bug Triaging Approach using Deep Learning: A Replication

Study. European Journal of Science and Technology, (21), 268-274.

Abstract

Bug management is the process to identify and fix bugs. In the bug management process, after a bug is identified, it needs to triaged.

Bug triaging is the process of prioritizing bugs and assigning an appropriate developer for a given bug. The main task in bug triaging is

to predict the most appropriate developer to fix a software bug from a given bug report. This problem can be defined as a classification

problem in which textual bug attributes (bug title, description etc.) are inputs and the available developer (class label) is the output.

Since manual bug triaging is a time consuming process, there have been several bug triaging algorithms to automate this process. One

of the latest successful algorithms to address this problem is the Deep Triage. It employs Deep Bidirectional Recurrent Neural Network

with Attention (DBRNN-A) approach for this classification task.

In this study, we implement an improved version of the DeepTriage. To improve the performance of the model, three contributions are

made to the original implementation: (1) Using GRU instead of LSTM to fasten the training process by using a larger batch size with

the same memory usage, (2) Using a corpus combining the data from different datasets to create a more generalized model, (3) Adding

extra dense layers before the multiclass classification to improve the results. After running the experiments, we achieved the state of

the art results in Mozilla Firefox dataset, an accuracy of 46.6%. In the Chromium dataset, we get a higher accuracy (44.0%) than the

original accuracy from the paper (42.7%). The resulting model and its source code is made publicly available for future research in this

area.

Keywords: recurrent neural networks, long short term memory, gated recurrent unit, bug triaging.

Derin Öğrenme ile Otomatik Hata Triyajlama: Bir Replikasyon

Çalışması

Öz

Hata yönetimi hataları belirleme ve çözme sürecidir. Hata yönetimi sürecinde, bir hatanın belirlendikten sonra triyajlanması gerekir.

Hata triyajlama süreci hatanın önceliklendirilmesi ve hatanın uygun bir geliştiriciye atanması şeklinde gerçekleşir. Bu sürecin asıl kısmı

verilen bir hata raporunu çözmek için en uygun geliştiriciyi tahmin edebilmektir. Bu hata raporlarının metinsel kısımlarının (hata başlığı,

hata tanımı) girdi olduğu ve önerilecek olan geliştiricilerin de çıktı olduğu bir sınıflandırma problem olarak tanımlanabilir. Otomatik

olarak yapılmayan hata triyajlama zaman alan bir süreç olduğundan, hata triyajlamayı otomatik hale getirmek üzerine birçok algoritma

* Corresponding Author: eraytuzun@cs.bilkent.edu.tr

http://dergipark.gov.tr/ejosat
mailto:eraytuzun@cs.bilkent.edu.trx
mailto:emre.dogan@bilkent.edu.tr
mailto:alperen.cetin@bilkent.edu.trx

European Journal of Science and Technology

e-ISSN: 2148-2683 269

bulunmaktadır. Geçtiğimiz yıllarda bu problem üzerinde çalışan en son başarılı modellerden biri de Deep Triage’dır. Bu model

sınıflandırma için derin, iki yönlü ve dikkatli tekrarlayan sinir ağı (DBRNN-A) kullanmaktadır.

Bu çalışmada literatürdeki başarılı bir hata triyajlama yöntemi olan Deep Triage’ın geliştirilmiş bir versiyonunu gerçekleştirilmiştir.

Makalede önceden önerilen modelin performansını artırmak için original çalışmaya üç katkıda bulunduk: (1) Aynı bellek miktarıyla

daha büyük veri grupları kullanarak eğitme zamanını düşürmek için LSTM yerine GRU kullanma, (2) Daha genel bir model oluşturmak

için farklı veri setlerinin birleşmesinden oluşan bir sözlük kullanma ve (3) Sonuçları iyileştirmek için çok sınıflı sınıflandırmadan önce

ilave sinir ağı katmanları koyma. Gerçekleştirdiğimiz deneylerin sonucunda Mozilla Firefox veri setinde %46.6 doğruluk ile original

çalışmayla aynı sonuçları elde ettik. Chromium ver setinde ise orijinal çalışmadan (%42.7) daha yüksek bir doğruluk (%44.0) elde ettik.

Bu konu hakkındaki ilerideki çalışmalar için geliştirilmiş model ve kaynak kodu paylaşılmıştır.

Anahtar Kelimeler: tekrarlayan sinir ağı, uzun kısa süreli bellek, kapılı tekrarlayan birim, hata triyajlama

1. Introduction

In a software project, it is an important task to assign an

appropriate developer who could potentially provide a fix for a

given bug report from both developer’s and organization’s

perspectives. A significant amount of time is spent by software

developers to understand, identify and fix the bug. A poor

developer assignment for a bug report might reduce the overall

efficiency of the process. On the other hand, from the

organization’s perspective, bug fixing time is important as the

corresponding bug might block the working of a product/service

and cost a large amount of money. For all these reasons, assigning

the most appropriate developer for a bug report, one of the

primary tasks of bug triaging process, is an important and active

research area.

Bug triaging process is simply a classification problem in

which bug title and bug description are taken as input, mapping

them to one of the available developers. There are already some

studies employing different machine learning algorithms to solve

this problem in the literature. The major difficulty faced in these

studies is that the input data (e.g. bug title and description) is in

text format and hard to represent. Mani et al. (Mani, Sankaran, &

Aralikatte, 2019) brought a new approach to represent bug reports

by extracting features with an attention based deep bidirectional

recurrent neural network (DBRNN-A) model that learns syntactic

and semantic features from long word sequences in an

unsupervised manner. In this study, we replicate their study and

make 3 contributions to improve the original model: (1) Using

Gated Recurrent Unit (GRU) instead of Long-Short Term

Memory (LSTM) to fasten the training process by using fewer

parameters, (2) Using a combined corpus from all datasets to

improve the learning process, and (3) Changing the dense layer

structure of to improve classification results.

The rest of the paper is organized as follows. Section II gives

a brief information on the background. Section III gives details

about the dataset, our approach and the implementation details. In

Section IV, our contributions are discussed. Finally, section V and

VI states final results and conclusion.

2. Background

2.1. Bug Triage

The term of bug triage is the process of going through a list

of bugs to find bugs that need assistance, escalation, or follow-up

(“QA: Quality assurance at Mozilla - Mozilla | MDN,” n.d.).

There are different types of bugs and each of them needs to be

treated differently. The goal of triaging is to evaluate, prioritize

and assign the resolution of bugs to the developers.

One of the most time-consuming parts of this process is to

find the best developer for a given bug. A critical bug might cause

the company to lose a large amount of money. So, it is an

important task to assign the bug to the best developer who can

solve the bug in the shortest amount of time and in a way that it

will not cause other bugs in the future. In the earlier times, this

task was completed in a manual manner. A developer was

responsible for assigning the bugs to the most suitable of other

developers. This method is still applied in small companies. But

as the size of developers and bugs increase, it becomes harder to

find the best match. This problem arises the necessity of

automating this process. In the following subsection, the methods

of automated bug triaging will be discussed.

2.2. Automated Bug Triaging Studies

There are several studies on automating the triage process.

Most of these studies propose a machine learning based approach.

They train their model by the data collected from open source and

proprietary software projects. Cubranic et al. (Cubranic &

Murphy, 2004) and Anvik et al. (Anvik, Hiew, & Murphy, 2006)

proposed a Naïve Bayessian classifier approach to apply text

classification on bug reports in order to predict the relevant

developers. Jeong et al. (Jeong, Kim, & Zimmermann, 2009)

proposed a bug tossing graph approach based on Markov chains

from the knowledge of reassigning. Xuan et al. (Xuan, Jiang, Ren,

Yan, & Luo, 2010) proposed a semi-supervised text classification

model for bug triaging. Different from the previous studies, Deep

Triage (Mani et al., 2019) extracts a novel bug report

representation from bug reports by using an Attention Based Deep

Bidirectional Recurrent Neural Network (DBRNN-A). These

extracted features are used as input to multi-class classifier in

order to predict the best developer.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 270

Figure 1. The flow diagram of the overall proposed algorithm highlighting the important steps (Mani et al., 2019)

3. Our Approach

3.1. Dataset

 Our dataset consists of bug reports from three open-source

systems: Google Chromium, Mozilla Core and Mozilla Firefox.

The details of data collecting process are mentioned in the paper

(Mani et al., 2019). The authors provide the dataset available

online. In total, there are 383,104 bug reports from Google

Chromium, 314,388 bug reports from Mozilla Core, and 162,307

bug reports from Mozilla Firefox. All datasets have attributes id,

issue id, issue title, reported time, owner, description and status.

Chromium dataset has another attribute type and the other Mozilla

datasets have another attribute resolution. In DBRNN-A model,

only owner, title, description and status attributes are used. We

shared dataset links and brief explanation about dataset contents

in the GitHub repository.†

3.2. Preprocessing

The bug report datasets having title, description, reported

time, status and owner are shared online by the authors (Mani et

al., 2019) in JSON format. Before using the text in title and

description fields of the bug reports, some parts of them should

be removed. First, URLs, stack traces and the hex codes are

removed, and all characters are changed to lower case. After

that, words are tokenized, then all punctuation and None words

are deleted. The same process is followed for both open bug

reports data and closed bug reports data. Second step in Figure 1

is the preprocessing step.

3.3. Word Embedding

Simple approaches like bag-of-words and n-grams are not

sufficient to represent the features of bug reports. The problem

with bag-of-words approach is that it loses the ordering of words

† https://anonymous.4open.science/r/c1f33d60-67e9-480f-a3c9-

8b9a0982a85c/

in the contextual manner and the semantic similarity between

synonymous words. On the other hand, n-grams model offers a

better bug report representation but it fails to deal with high

dimensionality and sparse data (Hindle, Barr, Su, Gabel, &

Devanbu, 2012). Since these two representations are not good

enough to represent a bug report, the authors (Mani et al., 2019)

came up with a new approach to represent bug reports, Word2Vec

embedding (Mikolov, Chen, Corrado, & Dean, 2013), such that

disadvantages of bag of words and n-gram representations will be

prevented. At the end, the final vocabulary is created from a set

of unique words that occurred for at least k-times in open bug

reports data by using Word2Vec, and the owner information is

acquired from the owner label in the closed bug reports. Third step

in Figure 1 is the word embedding step.

3.4. Model Description

DBRNN-A (Mani et al., 2019) works in the following way:

First, the model learns feature representation of bug reports from

untriaged bugs in an unsupervised manner by using long short-

term memory (LSTM) cells. Then, attention mechanism is used,

because all words in the content may not be useful in the

classification task. Also, bidirectional RNN considers the words

in both forward and backward directions and concatenates both

representations. By representing the triaged bugs using the

embeddings of untriaged bugs, then training DBRNN-A model

with triaged bugs, the model learns how to extract features. At the

end, a softmax classifier is used for classification using these

features. Overall structure of the whole model can be seen in

Figure 1. Also, detailed structure of DBRNN-A is shown in

Figure 2.

https://anonymous.4open.science/r/c1f33d60-67e9-480f-a3c9-8b9a0982a85c/
https://anonymous.4open.science/r/c1f33d60-67e9-480f-a3c9-8b9a0982a85c/

European Journal of Science and Technology

e-ISSN: 2148-2683 271

Figure 2. Detailed explanation of the working of a deep bidirectional Recurrent Neural Network (RNN) with LSTM units. (from Mani

et al., 2019)

3.5. Implementation Details

The starting point of our implementation is the source code‡

shared by the original paper (Mani et al., 2019). In the shared

source code, there was no information about the versions of the

Python libraries used. Also, there was no repository including all

the source code files, the website shares the source code as

snippets. Therefore, we replicated the results step by step and

refactored some parts. In the following, we explain the details of

our implementation.

In preprocessing, cleaning unnecessary parts are handled by

using standard Python RegEx library§, and Stanford NLTK** 3.4

is used for word tokenization. In word embedding, vocabulary is

created by using Word2Vec from Gensim††
 3.7.1. The

implementation of the model is done in Keras‡‡ 2.2.4 with the

backend Tensorflow§§
 1.13.1. When it comes to the soft attention

layer in DBRNN-A, we had a problem with the soft attention

layer***
 used in DeepTriage . Then, we implemented a similar soft

attention layer with the help of a discussion††† from

StackOverflow. Finally, we had a working version of the model

in pure Keras. Also, the original implementation was in Python 2,

but we used Python 3 in all the steps explained above. All the

work we have done is shared in our GitHub‡‡‡
 repository.

4. Improvements on Deep Triage

After achieving similar results with the paper (Mani et al.,

2019), we tried some additions and changes to improve the

DeepTriage method in the scope of this study. Since the accuracy

results for each chronological cross validation step are shared in

the paper, we use the same validation method in our experiments

to be able to compare our results. Figure 3 shows the logic behind

chronological cross validation.

Figure 3. Chronological Cross Validation

4.1. Using GRU instead of LSTM

In the original study (Mani et al., 2019), the architecture

consists of LSTM units. It is known that the GRU (Gated

Recurrent Unit) can result with a faster training process as it has

less parameters than the LSTM unit. The GRU unit can take

advantage of all hidden states without any control, unlike the

LSTM. To observe the speeding factor of the GRU unit, the same

architecture is implemented by GRU units. Although the

chronological cross validation results are slightly different from

the LSTM implementation, the final average result is exactly the

same. More detailed results are available in Table 1.

‡ http://bugtriage.mybluemix.net/#code
§ https://docs.python.org/3/library/re.html
** http://www.nltk.org/index.html
†† https://radimrehurek.com/project/gensim/
‡‡ https://keras.io/
§§ https://www.tensorflow.org/

https://gist.github.com/braingineer/27c6f26755794f6544d83dec

2dd27bbb

††† https://stackoverflow.com/questions/42918446/how-to-add-

an-attentionmechanism-in-keras
‡‡‡ https://anonymous.4open.science/r/c1f33d60-67e9-480f-

a3c9-8b9a0982a85c/

http://bugtriage.mybluemix.net/#code
https://docs.python.org/3/library/re.html
http://www.nltk.org/index.html
https://radimrehurek.com/project/gensim/
https://keras.io/
https://www.tensorflow.org/
https://gist.github.com/braingineer/27c6f26755794f6544d83dec2dd27bbb
https://gist.github.com/braingineer/27c6f26755794f6544d83dec2dd27bbb
https://stackoverflow.com/questions/42918446/how-to-add-an-attentionmechanism-in-keras
https://stackoverflow.com/questions/42918446/how-to-add-an-attentionmechanism-in-keras
https://anonymous.4open.science/r/c1f33d60-67e9-480f-a3c9-8b9a0982a85c/
https://anonymous.4open.science/r/c1f33d60-67e9-480f-a3c9-8b9a0982a85c/

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 272

Table 1. CHRONOLOGICAL CROSS VALIDATION TOP-10 ACCURACIES (IN PERCENT) FOR EXPERIMENTS ON GOOGLE CHROMIUM DATASET

WITH 20 MINIMUM TRAIN SAMPLES PER CLASS.

 CV#1 CV#2 CV#3 CV#4 CV#5 CV#6 CV#7 CV#8 CV#9 CV#10 Average

Deep Triage (Mani et al.,

2019)
36.7 37.4 41.1 42.5 41.8 42.6 44.7 46.8 46.5 47.0 42.7

Our LSTM implementation 33.4 40.0 41.9 37.3 38.8 41.0 41.3 44.5 47.0 51.0 41.6

Our GRU Implementation 32.4 40.5 41.9 38.0 38.8 41.6 42.6 44.3 45.8 50.0 41.6

Our LSTM implementation

with merged corpus
33.7 41.3 44.3 39.1 40.3 43.1 43.2 47.0 48.9 53.0 43.4

Table 2. CHRONOLOGICAL CROSS VALIDATION TOP-10 ACCURACIES FOR EXPERIMENTS ON MOZILLA FIREFOX DATASET WITH 20 MINIMUM

TRAIN SAMPLES PER CLASS

 CV#1 CV#2 CV#3 CV#4 CV#5 CV#6 CV#7 CV#8 CV#9 CV#10 Average

Deep Triage (Mani et al.,

2019)
38.9 37.4 39.5 43.9 45.0 47.1 50.5 53.3 54.3 55.8 46.6

Our Imp. with a single

dense layer (1000)
38.7 37.6 45.0 43.4 43.0 39.2 50.5 49.0 48.2 46.4 44.1

Our Imp. with double

dense layer(20y+10y)
37.5 39.6 48.1 43.9 44.6 40.0 52.3 49.8 47.1 46.7 44.9

Our Imp. with double

dense layer(1000+1000)
38.7 36.3 44.4 43.5 44.9 37.3 51.7 51.5 49.6 49.7 44.8

Table 3. CHRONOLOGICAL CROSS VALIDATION TOP-10 ACCURACIES FOR THE MODELS FROM THE PAPER AND OUR BEST MODEL ON

MOZILLA FIREFOX DATASET WITH 20 MINIMUM TRAIN SAMPLES PER CLASS.

 CV#1 CV#2 CV#3 CV#4 CV#5 CV#6 CV#7 CV#8 CV#9 CV#10 Average

BOW + MNB [4] 22.0 22.8 23.6 26.3 29.2 32.3 34.4 36.4 38.6 38.4 30.4

BOW + Cosine [4] 18.4 21.9 25.1 27.5 29.1 31.4 33.8 35.9 36.7 38.3 29.8

BOW + SVM [4] 18.7 16.9 15.4 18.2 20.6 19.1 20.3 21.8 22.7 21.9 19.6

BOW + Softmax [4] 16.5 13.3 13.2 13.8 11.6 12.1 12.3 12.3 12.5 12.9 13.1

DBRNN-A + Softmax [4] 38.9 37.4 39.5 43.9 45.0 47.1 50.5 53.5 54.3 55.8 46.6

Our Implementation 39.1 34.0 46.4 46.1 49.2 44.1 54.1 52.2 51.7 48.9 46.6

Table 4. CHRONOLOGICAL CROSS VALIDATION TOP-10 ACCURACIES FOR THE MODELS FROM THE PAPER AND OUR BEST MODEL ON

GOOGLE CHROMIUM DATASET WITH 20 MINIMUM TRAIN SAMPLES PER CLASS

 CV#1 CV#2 CV#3 CV#4 CV#5 CV#6 CV#7 CV#8 CV#9 CV#10 Average

BOW + MNB [4] 22.9 26.2 27.2 24.2 24.6 27.6 28.2 28.9 31.8 36.0 27.8

BOW + Cosine [4] 19.3 20.9 22.2 19.4 20.0 22.3 22.3 22.9 23.1 23.0 21.5

BOW + SVM [4] 12.2 12.0 11.9 11.9 11.6 11.5 11.3 11.6 11.6 11.6 11.7

BOW + Softmax [4] 11.9 11.8 11.4 11.3 11.2 11.1 11.0 11.8 11.3 11.7 11.5

DBRNN-A + Softmax [4] 36.7 37.4 41.1 42.5 41.8 42.6 44.7 46.8 46.5 47.0 42.7

Our Implementation 34.7 42.4 43.9 39.8 40.5 43.9 44.1 47.1 49.5 53.6 44.0

4.2. Merging all Dataset Corpora

In this section, we conduct experiments to apply transfer

learning between different datasets. For example, a model trained

with Google Chromium dataset would be tested with Mozilla

Firefox dataset. But the main problem with this approach is that

class labels of different datasets can be completely different as the

developers of different projects are not exactly the same. The

illustration of this issue is available Figure 4.

To prevent such a situation, we employ a different approach

for transfer learning. Instead of using only one dataset, we created

the word2vec model by using all three datasets: Chromium,

Mozilla Core and Mozilla Firefox. The results of the model

trained with a merged (i.e. combined) corpus is given in Table 1.

It is remarkable that the accuracy results are enhanced by a factor

of 2% when trained by the combined corpus.

European Journal of Science and Technology

e-ISSN: 2148-2683 273

Figure 4. Illustration of the problem with transfer learning

between datasets.

4.3. Changing Dense Layer Structure

Our datasets are created from large open-source projects.

These projects consist of a large number of developers (.e.g. 1031

developers for Chromium). So, the number of class labels is large

for the classification task. In the original paper, the authors use a

single dense layer of size 1000 before softmax classifier. When

considering the large number of class labels, it may be considered

that a single dense layer cannot be enough to represent the features

of all labels. As a solution, we propose 2 different setups:

 Double dense layers of size: 20y + 10y (where y is equal

to the number of class labels)

 Double dense layers of size: 1000 + 1000

By increasing the number of dense layers and the size of these

layers, we achieved slightly better accuracy results compared with

the paper implementation. Results for different dense layer

configurations can be seen in Table 2.

5. Results

After our experiments, we decided to implement a model with

GRU as RNN units, merged corpus and two dense layers with

1000 nodes. In our best model, we use the hyperparameters given

in Table 5. Figure 6 shows train and validation loss for CV#10 of

Mozilla Firefox dataset with 20 minimum train samples per class.

Validation accuracy for CV#10 is 48.9%, accuracy values for

other CVs are given in Table 3.

Figure 5. Loss values for CV#10 of Mozilla Firefox dataset with

20 minimum train samples per class. Accuracy values are given

in Table 3.

Figure 6. Loss values of Mozilla Firefox dataset with 20

minimum train samples per class for 82% train, 9% validation

and 9% test splits. Top-10 test accuracy is 42.2%.

Figure 7. Loss values of Google Chromium dataset with 20

minimum train samples per class for 82% train, 9% validation

and 9% test splits. Top-10 test accuracy is 50.5%.

Table 5. HYPERPARAMETERS FOR OUR FINAL MODEL.

ONLY EXCEPTION IS THAT WE USE 32 AS BATCH SIZE

FOR MOZILLA FIREFOX DATASET.

 Value

Learning Rate for Adam

Optimizer
0.0001

Patience for Early

Stopping
3

Batch Size 1024

Number of RNN Units 1024

Max Sentence Length 50

Embedding size for

Word2Vec

200

Minimum Word

Frequency for Word2Vec

5

Context Window for

Word2Vec

5

To evaluate our model with a completely different test data,

we used Mozilla Firefox and Google Chromium datasets with 20

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 274

minimum training samples per class. We split them into three

partitions: 82% train, 9% validation and 9% test. The loss graphs

of Mozilla Firefox and Google Chromium are in Figure 6 and

Figure 7 respectively. Top-10 test accuracy of Mozilla Firefox

dataset is 42.2%, and top-10 accuracy of Google Chromium

dataset is 50.5%.

6. Conclusions and Recommendations

Since manual bug triaging is a time-consuming process, there

have been several bug triaging algorithms to automate this

process. One of the latest successful algorithms to address this

problem is the Deep Triage. In this study, we implemented the

automated bug triaging model proposed by Mani et al. (Mani et

al., 2019) and enhance the results. Consequently, we introduced

the following three contributions to the original study and manage

to achieve slightly better results:

 Using GRUs instead of LSTM units: As the GRU has less

parameters, training larger batch sizes is possible with

the same memory usage. Batch size can be larger up to

roughly 50% because GRU has two gates while LSTM

has three gates. Since we showed that using GRU does

not affect the accuracy, the training process can be

fastened significantly without a loss in the accuracy

results.

 Combining different datasets to create the corpus:

Because each software project consists of different

developers and it is not possible to transfer the

knowledge acquired from a dataset (no mapping for

developers) to another dataset.

Therefore, we created a combined corpus from different

datasets in order to take advantage of bug reports from

different projects. The models trained by the combined

corpus achieve a better accuracy with 2% improvement.

 Changing Dense Layer Structure: To represent more

than 1000 class labels, we increased the number of dense

layers and nodes within these layers. With this change,

we achieved slightly better results.

In our future work, we are planning to test the enhanced

algorithm with different datasets (both industrial and open-source

datasets) and provide a comparative analysis with other bug

triaging approaches.

References

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who should fix this

bug? In Proceedings - International Conference on Software

Engineering (Vol. 2006, pp. 361–370). New York, New York,

USA: IEEE Computer Society.

https://doi.org/10.1145/1134285.1134336

Cubranic, D., & Murphy, G. C. (2004). Automatic bug triage

using text categorization. 16th Int. Conference on Software

Engineering and Knowledge Engineering, 92–97. Retrieved

from http://www.eclipse.org.

Hindle, A., Barr, E. T., Su, Z., Gabel, M., & Devanbu, P. (2012).

On the naturalness of software. In Proceedings - International

Conference on Software Engineering (pp. 837–847).

https://doi.org/10.1109/ICSE.2012.6227135

Jeong, G., Kim, S., & Zimmermann, T. (2009). Improving bug

triage with bug tossing graphs. In ESEC-FSE’09 -

Proceedings of the Joint 12th European Software

Engineering Conference and 17th ACM SIGSOFT

Symposium on the Foundations of Software Engineering (pp.

111–120). https://doi.org/10.1145/1595696.1595715

Mani, S., Sankaran, A., & Aralikatte, R. (2019). Deeptriage:

Exploring the effectiveness of deep learning for bug triaging.

In Proceedings of the ACM India Joint International

Conference on Data Science and Management of Data (pp.

171–179). https://doi.org/10.1145/3297001.3297023

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient

estimation of word representations in vector space. In 1st

International Conference on Learning Representations, ICLR

2013 - Workshop Track Proceedings. International

Conference on Learning Representations, ICLR. Retrieved

from http://ronan.collobert.com/senna/

QA: Quality assurance at Mozilla - Mozilla | MDN. (n.d.).

Retrieved September 6, 2020, from

https://developer.mozilla.org/en-US/docs/Mozilla/QA

Xuan, J., Jiang, H., Ren, Z., Yan, J., & Luo, Z. (2010). Automatic

bug triage using semi-supervised text classification. In SEKE

2010 - Proceedings of the 22nd International Conference on

Software Engineering and Knowledge Engineering (pp. 209–

214). Retrieved from http://arxiv.org/abs/1704.04769

