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Abstract 

Bug management is the process to identify and fix bugs. In the bug management process, after a bug is identified, it needs to triaged. 

Bug triaging is the process of prioritizing bugs and assigning an appropriate developer for a given bug. The main task in bug triaging is 

to predict the most appropriate developer to fix a software bug from a given bug report. This problem can be defined as a classification 

problem in which textual bug attributes (bug title, description etc.) are inputs and the available developer (class label) is the output.  

Since manual bug triaging is a time consuming process, there have been several bug triaging algorithms to automate this process. One 

of the latest successful algorithms to address this problem is the Deep Triage. It employs Deep Bidirectional Recurrent Neural Network 

with Attention (DBRNN-A) approach for this classification task. 

 

In this study, we implement an improved version of the DeepTriage. To improve the performance of the model, three contributions are 

made to the original implementation: (1) Using GRU instead of LSTM to fasten the training process by using a larger batch size with 

the same memory usage, (2) Using a corpus combining the data from different datasets to create a more generalized model, (3) Adding 

extra dense layers before the multiclass classification to improve the results. After running the experiments, we achieved the state of 

the art results in Mozilla Firefox dataset, an accuracy of 46.6%. In the Chromium dataset, we get a higher accuracy (44.0%) than the 

original accuracy from the paper (42.7%). The resulting model and its source code is made publicly available for future research in this 

area. 

 

Keywords: recurrent neural networks, long short term memory, gated recurrent unit, bug triaging. 

Derin Öğrenme ile Otomatik Hata Triyajlama: Bir Replikasyon 

Çalışması 

Öz 

Hata yönetimi hataları belirleme ve çözme sürecidir. Hata yönetimi sürecinde, bir hatanın belirlendikten sonra triyajlanması gerekir. 

Hata triyajlama süreci hatanın önceliklendirilmesi ve hatanın uygun bir geliştiriciye atanması şeklinde gerçekleşir. Bu sürecin asıl kısmı 

verilen bir hata raporunu çözmek için en uygun geliştiriciyi tahmin edebilmektir. Bu hata raporlarının metinsel kısımlarının (hata başlığı, 

hata tanımı) girdi olduğu ve  önerilecek olan geliştiricilerin de çıktı olduğu bir sınıflandırma problem olarak tanımlanabilir. Otomatik 

olarak yapılmayan hata triyajlama zaman alan bir süreç olduğundan, hata triyajlamayı otomatik hale getirmek üzerine birçok algoritma 
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bulunmaktadır. Geçtiğimiz yıllarda bu problem üzerinde çalışan en son başarılı modellerden biri de Deep Triage’dır. Bu model 

sınıflandırma için derin, iki yönlü ve dikkatli tekrarlayan sinir ağı (DBRNN-A) kullanmaktadır. 

 

Bu çalışmada literatürdeki başarılı bir hata triyajlama yöntemi olan Deep Triage’ın geliştirilmiş bir versiyonunu gerçekleştirilmiştir. 

Makalede önceden önerilen modelin performansını artırmak için original çalışmaya üç katkıda bulunduk: (1) Aynı bellek miktarıyla 

daha büyük veri grupları kullanarak eğitme zamanını düşürmek için LSTM yerine GRU kullanma, (2) Daha genel bir model oluşturmak 

için farklı veri setlerinin birleşmesinden oluşan bir sözlük kullanma ve (3) Sonuçları iyileştirmek için çok sınıflı sınıflandırmadan önce 

ilave sinir ağı katmanları koyma. Gerçekleştirdiğimiz deneylerin sonucunda Mozilla Firefox veri setinde %46.6 doğruluk ile original 

çalışmayla aynı sonuçları elde ettik. Chromium ver setinde ise orijinal çalışmadan (%42.7) daha yüksek bir doğruluk (%44.0) elde ettik. 

Bu konu hakkındaki ilerideki çalışmalar için geliştirilmiş model ve kaynak kodu paylaşılmıştır. 

 

 

Anahtar Kelimeler: tekrarlayan sinir ağı, uzun kısa süreli bellek, kapılı tekrarlayan birim, hata triyajlama 

 

 

1. Introduction 

In a software project, it is an important task to assign an 

appropriate developer who could potentially provide a fix for a 

given bug report from both developer’s and organization’s 

perspectives. A significant amount of time is spent by software 

developers to understand, identify and fix the bug. A poor 

developer assignment for a bug report might reduce the overall 

efficiency of the process. On the other hand, from the 

organization’s perspective, bug fixing time is important as the 

corresponding bug might block the working of a product/service 

and cost a large amount of money. For all these reasons, assigning 

the most appropriate developer for a bug report, one of the 

primary tasks of bug triaging process, is an important and active 

research area. 

Bug triaging process is simply a classification problem in 

which bug title and bug description are taken as input, mapping 

them to one of the available developers. There are already some 

studies employing different machine learning algorithms to solve 

this problem in the literature. The major difficulty faced in these 

studies is that the input data (e.g. bug title and description) is in 

text format and hard to represent. Mani et al. (Mani, Sankaran, & 

Aralikatte, 2019) brought a new approach to represent bug reports 

by extracting features with an attention based deep bidirectional 

recurrent neural network (DBRNN-A) model that learns syntactic 

and semantic features from long word sequences in an 

unsupervised manner. In this study, we replicate their study and 

make 3 contributions to improve the original model: (1) Using 

Gated Recurrent Unit (GRU) instead of Long-Short Term 

Memory (LSTM) to fasten the training process by using fewer 

parameters, (2) Using a combined corpus from all datasets to 

improve the learning process, and (3) Changing the dense layer 

structure of to improve classification results. 

The rest of the paper is organized as follows. Section II gives 

a brief information on the background. Section III gives details 

about the dataset, our approach and the implementation details. In 

Section IV, our contributions are discussed. Finally, section V and 

VI states final results and conclusion. 

 

 

2. Background 

2.1. Bug Triage 

The term of bug triage is the process of going through a list 

of bugs to find bugs that need assistance, escalation, or follow-up 

(“QA: Quality assurance at Mozilla - Mozilla | MDN,” n.d.). 

There are different types of bugs and each of them needs to be 

treated differently. The goal of triaging is to evaluate, prioritize 

and assign the resolution of bugs to the developers.  

One of the most time-consuming parts of this process is to 

find the best developer for a given bug. A critical bug might cause 

the company to lose a large amount of money. So, it is an 

important task to assign the bug to the best developer who can 

solve the bug in the shortest amount of time and in a way that it 

will not cause other bugs in the future. In the earlier times, this 

task was completed in a manual manner. A developer was 

responsible for assigning the bugs to the most suitable of other 

developers. This method is still applied in small companies. But 

as the size of developers and bugs increase, it becomes harder to 

find the best match. This problem arises the necessity of 

automating this process. In the following subsection, the methods 

of automated bug triaging will be discussed. 

2.2. Automated Bug Triaging Studies 

There are several studies on automating the triage process. 

Most of these studies propose a machine learning based approach. 

They train their model by the data collected from open source and 

proprietary software projects. Cubranic et al. (Cubranic & 

Murphy, 2004) and Anvik et al. (Anvik, Hiew, & Murphy, 2006) 

proposed a Naïve Bayessian classifier approach to apply text 

classification on bug reports in order to predict the relevant 

developers. Jeong et al. (Jeong, Kim, & Zimmermann, 2009) 

proposed a bug tossing graph approach based on Markov chains 

from the knowledge of reassigning. Xuan et al. (Xuan, Jiang, Ren, 

Yan, & Luo, 2010) proposed a semi-supervised text classification 

model for bug triaging. Different from the previous studies, Deep 

Triage (Mani et al., 2019) extracts a novel bug report 

representation from bug reports by using an Attention Based Deep 

Bidirectional Recurrent Neural Network (DBRNN-A). These 

extracted features are used as input to multi-class classifier in 

order to predict the best developer. 
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Figure 1. The flow diagram of the overall proposed algorithm highlighting the important steps (Mani et al., 2019) 

3. Our Approach 

3.1. Dataset 

 Our dataset consists of bug reports from three open-source 

systems: Google Chromium, Mozilla Core and Mozilla Firefox. 

The details of data collecting process are mentioned in the paper 

(Mani et al., 2019). The authors provide the dataset available 

online. In total, there are 383,104 bug reports from Google 

Chromium, 314,388 bug reports from Mozilla Core, and 162,307 

bug reports from Mozilla Firefox. All datasets have attributes id, 

issue id, issue title, reported time, owner, description and status. 

Chromium dataset has another attribute type and the other Mozilla 

datasets have another attribute resolution. In DBRNN-A model, 

only owner, title, description and status attributes are used. We 

shared dataset links and brief explanation about dataset contents 

in the GitHub repository.† 

3.2. Preprocessing 

The bug report datasets having title, description, reported 

time, status and owner are shared online by the authors (Mani et 

al., 2019) in JSON format. Before using the text in title and 

description fields of the bug reports, some parts of them should 

be removed. First, URLs, stack traces and the hex codes are 

removed, and all characters are changed to lower case. After 

that, words are tokenized, then all punctuation and None words 

are deleted. The same process is followed for both open bug 

reports data and closed bug reports data. Second step in Figure 1 

is the preprocessing step. 

 

3.3. Word Embedding 

Simple approaches like bag-of-words and n-grams are not 

sufficient to represent the features of bug reports. The problem 

with bag-of-words approach is that it loses the ordering of words 

                                                           
† https://anonymous.4open.science/r/c1f33d60-67e9-480f-a3c9-

8b9a0982a85c/ 

in the contextual manner and the semantic similarity between 

synonymous words. On the other hand, n-grams model offers a 

better bug report representation but it fails to deal with high 

dimensionality and sparse data (Hindle, Barr, Su, Gabel, & 

Devanbu, 2012).  Since these two representations are not good 

enough to represent a bug report, the authors (Mani et al., 2019) 

came up with a new approach to represent bug reports, Word2Vec 

embedding (Mikolov, Chen, Corrado, & Dean, 2013), such that 

disadvantages of bag of words and n-gram representations will be 

prevented. At the end, the final vocabulary is created from a set 

of unique words that occurred for at least k-times in open bug 

reports data by using Word2Vec, and the owner information is 

acquired from the owner label in the closed bug reports. Third step 

in Figure 1 is the word embedding step. 

 

3.4. Model Description 

DBRNN-A (Mani et al., 2019) works in the following way: 

First, the model learns feature representation of bug reports from 

untriaged bugs in an unsupervised manner by using long short-

term memory (LSTM) cells. Then, attention mechanism is used, 

because all words in the content may not be useful in the 

classification task. Also, bidirectional RNN considers the words 

in both forward and backward directions and concatenates both 

representations. By representing the triaged bugs using the 

embeddings of untriaged bugs, then training DBRNN-A model 

with triaged bugs, the model learns how to extract features. At the 

end, a softmax classifier is used for classification using these 

features. Overall structure of the whole model can be seen in 

Figure 1. Also, detailed structure of DBRNN-A is shown in 

Figure 2. 

 

 

https://anonymous.4open.science/r/c1f33d60-67e9-480f-a3c9-8b9a0982a85c/
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Figure 2. Detailed explanation of the working of a deep bidirectional Recurrent Neural Network (RNN) with LSTM units. (from Mani 

et al., 2019) 

3.5. Implementation Details 

The starting point of our implementation is the source code‡ 

shared by the original paper (Mani et al., 2019). In the shared 

source code, there was no information about the versions of the 

Python libraries used. Also, there was no repository including all 

the source code files, the website shares the source code as 

snippets. Therefore, we replicated the results step by step and 

refactored some parts. In the following, we explain the details of 

our implementation. 

In preprocessing, cleaning unnecessary parts are handled by 

using standard Python RegEx library§, and Stanford NLTK** 3.4 

is used for word tokenization. In word embedding, vocabulary is 

created by using Word2Vec from Gensim††
 3.7.1. The 

implementation of the model is done in Keras‡‡ 2.2.4 with the 

backend Tensorflow§§
 1.13.1. When it comes to the soft attention 

layer in DBRNN-A, we had a problem with the soft attention 

layer***
 used in DeepTriage . Then, we implemented a similar soft 

attention layer with the help of a discussion††† from 

StackOverflow. Finally, we had a working version of the model 

in pure Keras. Also, the original implementation was in Python 2, 

but we used Python 3 in all the steps explained above. All the 

work we have done is shared in our GitHub‡‡‡
 repository. 

4. Improvements on Deep Triage 

After achieving similar results with the paper (Mani et al., 

2019), we tried some additions and changes to improve the 

DeepTriage method in the scope of this study. Since the accuracy 

results for each chronological cross validation step are shared in 

the paper, we use the same validation method in our experiments 

to be able to compare our results. Figure 3 shows the logic behind 

chronological cross validation. 

 

Figure 3. Chronological Cross Validation 

4.1. Using GRU instead of LSTM 

In the original study (Mani et al., 2019), the architecture 

consists of LSTM units. It is known that the GRU (Gated 

Recurrent Unit) can result with a faster training process as it has 

less parameters than the LSTM unit. The GRU unit can take 

advantage of all hidden states without any control, unlike the 

LSTM. To observe the speeding factor of the GRU unit, the same 

architecture is implemented by GRU units. Although the 

chronological cross validation results are slightly different from 

the LSTM implementation, the final average result is exactly the 

same. More detailed results are available in Table 1. 

 

 

 

                                                           
‡ http://bugtriage.mybluemix.net/#code  
§ https://docs.python.org/3/library/re.html  
** http://www.nltk.org/index.html  
†† https://radimrehurek.com/project/gensim/  
‡‡ https://keras.io/  
§§ https://www.tensorflow.org/  

*** 

https://gist.github.com/braingineer/27c6f26755794f6544d83dec

2dd27bbb  

††† https://stackoverflow.com/questions/42918446/how-to-add-

an-attentionmechanism-in-keras 
‡‡‡ https://anonymous.4open.science/r/c1f33d60-67e9-480f-

a3c9-8b9a0982a85c/  
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Table 1. CHRONOLOGICAL CROSS VALIDATION TOP-10 ACCURACIES (IN PERCENT) FOR EXPERIMENTS ON GOOGLE CHROMIUM DATASET 

WITH 20 MINIMUM TRAIN SAMPLES PER CLASS. 

 CV#1 CV#2  CV#3 CV#4 CV#5 CV#6 CV#7 CV#8 CV#9 CV#10 Average 

Deep Triage (Mani et al., 

2019) 
36.7 37.4 41.1 42.5 41.8 42.6 44.7 46.8 46.5 47.0 42.7 

Our LSTM implementation 33.4 40.0 41.9 37.3 38.8 41.0 41.3 44.5 47.0 51.0 41.6 

Our GRU Implementation 32.4 40.5 41.9 38.0 38.8 41.6 42.6 44.3 45.8 50.0 41.6 

Our LSTM implementation 

with merged corpus 
33.7 41.3 44.3 39.1 40.3 43.1 43.2 47.0 48.9 53.0 43.4 

 

Table 2. CHRONOLOGICAL CROSS VALIDATION TOP-10 ACCURACIES FOR EXPERIMENTS ON MOZILLA FIREFOX DATASET WITH 20 MINIMUM 

TRAIN SAMPLES PER CLASS 

 CV#1 CV#2  CV#3 CV#4 CV#5 CV#6 CV#7 CV#8 CV#9 CV#10 Average 

Deep Triage (Mani et al., 

2019) 
38.9 37.4 39.5 43.9 45.0 47.1 50.5 53.3 54.3 55.8 46.6 

Our Imp. with a single 

dense layer (1000) 
38.7 37.6 45.0 43.4 43.0 39.2 50.5 49.0 48.2 46.4 44.1 

Our Imp. with double 

dense layer(20y+10y) 
37.5 39.6 48.1 43.9 44.6 40.0 52.3 49.8 47.1 46.7 44.9 

Our Imp. with double 

dense layer(1000+1000) 
38.7 36.3 44.4 43.5 44.9 37.3 51.7 51.5 49.6 49.7 44.8 

 

Table 3. CHRONOLOGICAL CROSS VALIDATION TOP-10 ACCURACIES FOR THE MODELS FROM THE PAPER AND OUR BEST MODEL ON 

MOZILLA FIREFOX DATASET WITH 20 MINIMUM TRAIN SAMPLES PER CLASS. 

 CV#1 CV#2  CV#3 CV#4 CV#5 CV#6 CV#7 CV#8 CV#9 CV#10 Average 

BOW + MNB [4] 22.0 22.8 23.6 26.3 29.2 32.3 34.4 36.4 38.6 38.4 30.4 

BOW + Cosine [4] 18.4 21.9 25.1 27.5 29.1 31.4 33.8 35.9 36.7 38.3 29.8 

BOW + SVM [4] 18.7 16.9 15.4 18.2 20.6 19.1 20.3 21.8 22.7 21.9 19.6 

BOW + Softmax [4] 16.5 13.3 13.2 13.8 11.6 12.1 12.3 12.3 12.5 12.9 13.1 

DBRNN-A + Softmax [4] 38.9 37.4 39.5 43.9 45.0 47.1 50.5 53.5 54.3 55.8 46.6 

Our Implementation 39.1 34.0 46.4 46.1 49.2 44.1 54.1 52.2 51.7 48.9 46.6 

 

Table 4. CHRONOLOGICAL CROSS VALIDATION TOP-10 ACCURACIES FOR THE MODELS FROM THE PAPER AND OUR BEST MODEL ON 

GOOGLE CHROMIUM DATASET WITH 20 MINIMUM TRAIN SAMPLES PER CLASS 

 CV#1 CV#2  CV#3 CV#4 CV#5 CV#6 CV#7 CV#8 CV#9 CV#10 Average 

BOW + MNB [4] 22.9 26.2 27.2 24.2 24.6 27.6 28.2 28.9 31.8 36.0 27.8 

BOW + Cosine [4] 19.3 20.9 22.2 19.4 20.0 22.3 22.3 22.9 23.1 23.0 21.5 

BOW + SVM [4] 12.2 12.0 11.9 11.9 11.6 11.5 11.3 11.6 11.6 11.6 11.7 

BOW + Softmax [4] 11.9 11.8 11.4 11.3 11.2 11.1 11.0 11.8 11.3 11.7 11.5 

DBRNN-A + Softmax [4] 36.7 37.4 41.1 42.5 41.8 42.6 44.7 46.8 46.5 47.0 42.7 

Our Implementation 34.7 42.4 43.9 39.8 40.5 43.9 44.1 47.1 49.5 53.6 44.0 

4.2. Merging all Dataset Corpora 

In this section, we conduct experiments to apply transfer 

learning between different datasets. For example, a model trained 

with Google Chromium dataset would be tested with Mozilla 

Firefox dataset. But the main problem with this approach is that 

class labels of different datasets can be completely different as the 

developers of different projects are not exactly the same. The 

illustration of this issue is available Figure 4. 

To prevent such a situation, we employ a different approach 

for transfer learning. Instead of using only one dataset, we created 

the word2vec model by using all three datasets: Chromium, 

Mozilla Core and Mozilla Firefox. The results of the model 

trained with a merged (i.e. combined) corpus is given in Table 1. 

It is remarkable that the accuracy results are enhanced by a factor 

of 2% when trained by the combined corpus. 
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Figure 4. Illustration of the problem with transfer learning 

between datasets. 

4.3. Changing Dense Layer Structure 

Our datasets are created from large open-source projects. 

These projects consist of a large number of developers (.e.g. 1031 

developers for Chromium). So, the number of class labels is large 

for the classification task. In the original paper, the authors use a 

single dense layer of size 1000 before softmax classifier. When 

considering the large number of class labels, it may be considered 

that a single dense layer cannot be enough to represent the features 

of all labels. As a solution, we propose 2 different setups: 

 Double dense layers of size: 20y + 10y (where y is equal 

to the number of class labels) 

 Double dense layers of size: 1000 + 1000 

 

By increasing the number of dense layers and the size of these 

layers, we achieved slightly better accuracy results compared with 

the paper implementation. Results for different dense layer 

configurations can be seen in Table 2. 

5. Results 

After our experiments, we decided to implement a model with 

GRU as RNN units, merged corpus and two dense layers with 

1000 nodes. In our best model, we use the hyperparameters given 

in Table 5. Figure 6 shows train and validation loss for CV#10 of 

Mozilla Firefox dataset with 20 minimum train samples per class. 

Validation accuracy for CV#10 is 48.9%, accuracy values for 

other CVs are given in Table 3.  

 

 

Figure 5. Loss values for CV#10 of Mozilla Firefox dataset with 

20 minimum train samples per class. Accuracy values are given 

in Table 3. 

 

 

Figure 6. Loss values of Mozilla Firefox dataset with 20 

minimum train samples per class for 82% train, 9% validation 

and 9% test splits. Top-10 test accuracy is 42.2%. 

 

Figure 7. Loss values of Google Chromium dataset with 20 

minimum train samples per class for 82% train, 9% validation 

and 9% test splits. Top-10 test accuracy is 50.5%. 

 
Table 5. HYPERPARAMETERS FOR OUR FINAL MODEL. 

ONLY EXCEPTION IS THAT WE USE 32 AS BATCH SIZE 

FOR MOZILLA FIREFOX DATASET. 

 Value 

Learning Rate for Adam 

Optimizer 
0.0001 

Patience for Early 

Stopping 
3 

Batch Size 1024 

Number of RNN Units 1024 

Max Sentence Length 50 

Embedding size for 

Word2Vec  

200 

Minimum Word 

Frequency for Word2Vec  

5 

Context Window for 

Word2Vec  

5 

 

To evaluate our model with a completely different test data, 

we used Mozilla Firefox and Google Chromium datasets with 20 
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minimum training samples per class. We split them into three 

partitions: 82% train, 9% validation and 9% test. The loss graphs 

of Mozilla Firefox and Google Chromium are in Figure 6 and 

Figure 7 respectively. Top-10 test accuracy of Mozilla Firefox 

dataset is 42.2%, and top-10 accuracy of Google Chromium 

dataset is 50.5%. 

6. Conclusions and Recommendations 

Since manual bug triaging is a time-consuming process, there 

have been several bug triaging algorithms to automate this 

process. One of the latest successful algorithms to address this 

problem is the Deep Triage. In this study, we implemented the 

automated bug triaging model proposed by Mani et al. (Mani et 

al., 2019) and enhance the results. Consequently, we introduced 

the following three contributions to the original study and manage 

to achieve slightly better results: 

 Using GRUs instead of LSTM units: As the GRU has less 

parameters, training larger batch sizes is possible with 

the same memory usage. Batch size can be larger up to 

roughly 50% because GRU has two gates while LSTM 

has three gates. Since we showed that using GRU does 

not affect the accuracy, the training process can be 

fastened significantly without a loss in the accuracy 

results. 

 Combining different datasets to create the corpus: 

Because each software project consists of different 

developers and it is not possible to transfer the 

knowledge acquired from a dataset (no mapping for 

developers) to another dataset. 

Therefore, we created a combined corpus from different 

datasets in order to take advantage of bug reports from 

different projects. The models trained by the combined 

corpus achieve a better accuracy with 2% improvement. 

 Changing Dense Layer Structure: To represent more 

than 1000 class labels, we increased the number of dense 

layers and nodes within these layers. With this change, 

we achieved slightly better results. 

In our future work, we are planning to test the enhanced 

algorithm with different datasets (both industrial and open-source 

datasets) and provide a comparative analysis with other bug 

triaging approaches.  
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