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Abstract 

 

Heavy metals are the most persistent and complex pollutants in nature. They not only reduce the quality of the atmosphere, 

water bodies and food crops, but also pose a threat to the health and well-being of animals and people. Metals are accumulated in 

the tissues of living organisms since contrary to most organic compounds; they are not subject to metabolic degradation. Cadmium 

(Cd) is one of the heavy metals as well as one of the most important pollutants that easily transported in plants, then distributed to 

all plant organs, and thus easily transferred to the food chain. So far, studies have not shown any positive effects of Cd on living 

organisms. Cd can be harmful on human health even in low concentrations, which can cause many serious illnesses and even deaths. 

In this article, a literature review has been made under the topics of the general properties of Cd, its distribution in nature, its sources 

and usage areas, the entryways of Cd into plants, its transportation as well as importance in plant metabolism; effects on plants as a 

heavy metal, the antagonistic-synergistic relationship of Cd with other elements, remediation methods can be applied in soils ex-

posed to Cd contamination, the passageways of Cd to nutrients, its entry into the body and its transportation, and finally the effects 

of Cd on humans and animals. 
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1. Introduction 

 

 Unplanned urbanization and industrialization depending 

on the rapid increase in the human population, increase the pol-

lution by heavy metals and cause deterioration of ecological bal-

ance (Ozturk et al., 2017). As a result of environmental pollution 

soil, water and air are also polluted and the level of pollution is 

becoming more dangerous on living things day by day (Akguc 

et al., 2010). Heavy metals are, one of the most critical factors 

causing environmental pollution (Yang et al., 2018; Karahan et 

al., 2020). 

The sustainability of human beings has always been de-

pendent on plant life as a source of food, raw materials and en-

ergy. Plants can easily uptake the nutrients they need to grow 

and complete their physiological periods from the soil through-

out their roots. These nutrients can be found in the soil in the 

form in which they are found in plants (Carfagna et al., 2013; 

Meena et al., 2020). The role of each nutrient in plant nutrition 

is different and thus, in agricultural practices they must be ap-

plied to the plants in a balanced way (Okcu et al., 2009; Elemike 

et al., 2019). 

The elements necessary for the growth and survival of 

plants are called “plant nutrients”. It is possible to find almost 

all elements that exist in nature in the analysis of plant tissue and 

organs (Hawkesford et al., 2016). However, 16 of these elements 

(C, H, O, N, P, S, K, B, Ca, Cl, Cu, Fe, Mg, Mn, Mo and Zn) are 

“essential nutrients” for all plants. Six of these elements (Al, Co, 

Na, Ni, Si and V) are “beneficial elements” that are considered 

necessary only in some plants or metabolic pathways (Ozyigit et 

al., 2018; Karahan et al., 2020).  

Metals such as Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se and 

Zn, which have relatively large atomic mass, exhibit their own 
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physical structure and have atomic weights are greater than 5 g 

cm-3 are called as “heavy metals”. More than sixty elements are 

considered as heavy metals, and these metals are located in a 

large part of the periodic table called “transition elements” 

(Salzer, 1999; Duffus, 2002; Yalcin et al., 2020). 

Some of the heavy metals are involved in metabolism by 

participating in the structure of vitamins, enzymes and hor-

mones, while others take part in absorption and digestion 

(Azevedo and Lea, 2005; Pohl et al., 2011). Heavy metals such 

as Cu, Fe, Mn, Mo, Ni and Zn are needed for living things up to 

a certain dose; these elements are called “micro or trace ele-

ments”. Contrarily, heavy metals such as As, Cd, Cr, Hg and Pb 

are not essential for living things and even small amounts of 

them can show toxic effects (Altay et al., 2013; Ozyigit et al., 

2018; Karahan et al., 2020). Heavy metals pose a great threat to 

plants, animals and humans when they are released in the envi-

ronment as they accumulate in organisms through the food 

chain, causing serious diseases and even death (Kumar et al., 

2019; Sevik et al., 2019; Karahan et al., 2020). Heavy metals can 

easily spread around, and affect the environment negatively 

even in Antarctica, where the life, as well as human habitat is 

limited (Corsolini, 2009). Therefore, the negative effects of 

heavy metals on living things should not be ignored (Baryla et 

al., 2001; Aissa and Kéloufi, 2012). The main factors that cause 

heavy metals to spread to the environment are industrial activi-

ties, motor vehicle exhausts, paints, use of metals as catalysts, 

mineral deposits and enterprises, volcanic activities, fertilizers 

and pesticides used in agriculture and urban wastes (Akguc et 

al., 2008; Osma et al., 2012; Ozyigit et al., 2016). 

Cd, which belongs to the 2B group of the periodic table, is 

one of the most toxic and dangerous heavy metals for living 

things. The importance of Cd as an industrial and environmental 

pollutant has become more evident in recent years (Mishra et al., 

2019). Cd can be found naturally (mobilizations of cadmium 

from the earth’s crust are volcanoes and weathering of rocks) or 

spread to the environment due to anthropogenic activities like 

agricultural and food wastes, animal wastes and manure, logging 

and other wood wastes, urban refuse, municipal sewage sludge, 

miscellaneous organic wastes, solid wastes, fertilizer metal man-

ufacturing, coal fly and bottom fly ash, wastage of commercial 

products and atmospheric fall-out (WHO, 2003; Akguc et al., 

2008; Sabiha-Javied et al., 2009; Osma et al., 2012; Ozyigit et 

al., 2016). These factors increase the importance of Cd as a pol-

lutant.  

 

2. Cadmium element 

 

The chemical symbol of cadmium is “Cd” with atomic 

number 48, atomic weight 112.41 g mol-1, density 8.7 g cm-3, 

boiling point 766.8°C and melting point 321°C as well as a sil-

ver-colored, soft, machinable heavy metal that cannot be found 

alone in nature. Among Cd salts, CdS, CdCl2 and CdSO2 are the 

best known. The chemical properties of Cd are similar to Zn in 

terms of plant uptake and metabolic functions. However, unlike 

Zn, an element has a toxic effect on plants, animals and humans 

(Garbisu and Alkorta, 2001). One of the ways it reaches the soil 

is synthetic fertilizers and pesticides. It can spread easily in na-

ture due to its water solubility feature. It is taken into biological 

systems by plants and sea creatures in the form of Cd+2 and has 

the property of accumulation (Kayhan, 2006; Tripathi et al., 

2020). 

Cd, which is frequently used for the benefit of humanity 

today, unfortunately, is an  important contaminant for the envir- 

onment and humans. Since their compounds are mostly in pow-

der and aerosol form, they are commonly taken by inhalation. 

International cancer research authorities divided chemicals into 

five groups according to their carcinogenic effects. Cd belongs 

to “Group 1” among “Carcinogenic Effective Substances in Hu-

man” due to its relationship with lung cancer. Since tin (Sn) 

metal was not found during the First and Second World War 

years, Cd was used as a substitute for Sn in food and canned 

containers. However, it has been noticed that Cd, which passes 

to acidic foods, causes poisoning, and therefore, it has been dis-

continued in a short time (WHO, 2019; Xu et al., 2019; Aslan, 

2020). Living things are often exposed to Cd directly through 

the respiratory tract or food chain. Depending on the route of 

exposure, concentration a duration, Cd can cause damage to the 

lung, liver, kidney, bone, testicle and placenta (Paustenbach et 

al., 2003; Prozialeck et al., 2006; Meravi and Prajapati, 2013). 

In plants exposed to toxic amounts of Cd, shrinkage of leaf 

surface area, yellowing (chlorosis), necrotic spot formation, leaf 

growth inhibition and leaf rolling are observed. However, the 

lack of Cd-based Fe and/or P deficiency or inhibition of Mn 

transport may be the reason for the chlorosis of the leaves (Koleli 

et al., 2004; Benavides et al., 2005; Lombardi and Sebastiani, 

2005). Cd causes a decrease in yield and quality in plant produc-

tion due to its inhibitory effects on plant photosynthesis rate, en-

zyme activity and ion uptake (Hassan et al., 2005; Siatka et al., 

2012). 

 

3. Distribution of cadmium  

 

Cd is on the list of priority hazardous substances of many 

environmental non-governmental organizations and the United 

States Environmental Protection Commission. Living things are 

often exposed to Cd directly through the respiratory tract or food 

chain. The World Health Organization limited the weekly toler-

able amount of Cd exposure to 50 μg and recommended it as 

0.007 mg kg-1 body weight (WHO, 2000). Industrial activities, 

sewage wastes, the addition of fertilizers to agricultural soils and 

atmospheric deposits cause Cd to pass into the soil. In addition, 

diesel-powered machinery, long-term purification sludge and 

garbage manure applications to agricultural areas and the use of 

pesticides cause entry of Cd into the soil (Sabiha-Javied et al., 

2009; Ozyigit et al., 2016; Tabelin et al., 2018). 

 

4. Cadmium applications, uses and resources  

 

It is thought that the annual exposure amount of Cd is 25-

30 thousand tons. Human plays a role in 13 thousand tons of this 

amount (Zalups and Ahmad, 2003; Sui et al., 2018). The indus-

tries where Cd is frequently used can be listed as follows: Pro-

duction of Ni-Cd batteries, refining of Cu, Pb and Zn ores, elec-

troplating and galvanizing applications in order to prevent cor-

rosion, adding to the composition as a preservative during the 

preparation of metal alloys, use as a stabilizer in plastic produc-

tion, glass industry, ceramic making and dye production (Jo-

vanovic et al., 2011; Akguc et al., 2008; Osma et al., 2012). 

Apart from these industrial areas given above, Cd is widely used 

in the production of household items, automobile and truck tires, 

photography, agricultural tools, aircraft parts, some industrial 

and hand tools, bolts, screws, screw nuts and nails (Awual et al., 

2018; Ishchenko, 2018; Akguc et al., 2008; Osma et al., 2012). 

Additionally, in many industries, Cd is released as a by-product 

of Cu, Pb and Zn extraction. The uptake of Cd by humans and 

animals is mostly through foods. All food ingredients contain 
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Cd, even in small amounts. Some of the foods which have high 

levels of Cd are liver and offal, shellfish, mussels, seaweed, 

mushrooms, cocoa powder. Smoking also causes a high amount 

of chronic Cd exposure. Hazardous waste zones, factories that 

release Cd through air, and the metal refining industry are also 

important areas of Cd exposure (Chiocchetti et al., 2017; Vi-

zuete et al., 2018; Aslan, 2020). 

 

5. Entry of Cd element to plants, transport and storage 

 

Metal transport from soil to plant roots occurs through dif-

fusion and convection. With the dissolution of metals in the soil, 

metal concentration increases and as a result, complex structures 

are formed. Even if these complex structures are not taken into 

the cell by plant roots, it has been determined that they increase 

the transports carried out by diffusion towards the plant root in 

an effective amount. There are many factors that affect metal 

accumulation in plants. Among these factors, the mobility of the 

elements in the soil, their absorption by the roots, their storage 

in the root cells, the transport of the structures through xylem to 

above-ground parts, and the spread of metals in these parts are 

the most prominent factors (Clemens et al., 2002; Song et al., 

2017).  

The metals taken from the soil are initially stored in the 

plant roots. These metals are then passed from the roots to the 

xylem sap and transported to the aboveground parts of the plant 

with the effect of respiration power (Ismael et al., 2019). Metals 

reaching to the leaf are spread to leaf cells through apoplast and 

symplast. The distribution of the elements transported to the leaf 

by the apoplast and symplast is due to the binding of the metals 

to the chelators in the tissues. Phytochelatin (PC) and metallothi-

oneins (MT) are the main chelators involved in the retention of 

metals (Filiz et al., 2019a). These chelators contain large 

amounts of cysteine sulfhydryl groups, which can bind to heavy 

metal ions and store them to form stable complexes (Prasad, 

2013; Dvorak et al., 2020).  

The process of heavy metal uptake and transport by plants 

includes the retention of metal ions by the roots, their entry to 

the roots and subsequent translocation to the aboveground or-

gans through mass flow and diffusion (Jabeen et al., 2009). 

Plants also have molecules that can eliminate or tolerate the neg-

ative effects of metals. Some of the well-known of these mole-

cules are phytochelatins, metallothioneins, organic acids, amino 

acids and metal chelators (Dučić and Polle, 2005; Ahmad et al., 

2019; Filiz et al., 2019a). The strongest metal binders in plants 

are phytochelatins, which eliminates the negative effects of 

heavy metals. It has been proven in many researches that phyto-

chelatin has a peptide structure and that Cd+2 is the strongest 

metal activator of phytochelatin synthase (Balzano et al., 2020). 

Metallothioneins are compounds with low molecular weight, 

heavy metal binding capacity, high content of cysteine groups 

and no aromatic amino acids (Ziller et al., 2017; Filiz et al., 

2019b). In addition, the amino and carboxyl groups of amino 

acids have the ability to bind metal ions. Organic acids such as 

malate, oxalate and citrate are involved in the reaction against 

the negative effects of metals (Tamás et al., 2018). 

Plants must initially transform the metals into a mobile 

form in order to absorb them from the soil. They reach this mo-

bile form by using many methods. For instance, plants can se-

crete into the rhizosphere to dissolve and chelate the metal pre-

sent in the soil through metal-chelating molecules. The heavy 

metal uptake of plants can be divided into three groups (Ayhan 

et al., 2006; Liang et al., 2019). 

1. Metal-chelating molecules can perform the siderophores 

function in plants via phytochelatins and metallothioneins (Na-

varrete et al., 2019). 

2. They can reduce the ionic metals by using metal reduc-

tases present in the structure of the plasma membrane (Shou et 

al., 2019; Terrón-Camero et al., 2019; Huang et al., 2020). 

3. They can acidify and dissolve heavy metals by throwing 

protons from the roots to the soil (Zandonadi et al., 2016). 

These three mechanisms can also be applied by mycorrhiza 

or root colonized bacteria. A plant can manage the negative ef-

fects of heavy metals by preventing the entry of them into the 

cell, and if it cannot prevent it, by detoxifying it in the cell. Stud-

ies have shown that cadmium is stored in vacuoles together with 

phytochelatins (Ashraf et al., 2019; Ahmad et al., 2019; Yama-

guchi et al., 2020). 

 

6. Effects of Cd on plants, its role in metabolism 

 

Compared to animals, plants can take higher amounts of 

Cd without harm. Plants are negatively affected if excessive 

amounts of Cd is taken (Gill et al., 2012). It causes many physi-

ological changes in the plant by changing nitrogen and carbohy-

drate metabolisms. 

Cd prevents photosynthesis, disrupts chlorophyll synthesis 

and causes stomatal closure. The most important reason why ex-

cessive Cd concentrations disrupt chlorophyll biosynthesis is the 

inhibition of the synthesis of protochlorophyll reductase, which 

is involved in chlorophyll biosynthesis and aminolevulinic acid 

(Per et al., 2017). In addition, like other heavy metals, Cd causes 

free radical formation, which is responsible for oxidative de-

struction of thylakoid membrane lipids (Rai et al., 2016). 

Many researches showing the effects of Cd in different or-

ganisms are exist. In a study investigating Cd toxicity in tomato 

plants reported that there was a linear relationship between the 

Cd concentration in the nutrient solution and the Cd in the root 

and shoots of the plants. Also, it was seen that the amount of Cd 

accumulated in roots of tomato is approximately 15 times more 

than its shoots as roots (Khan et al., 2019). In another study con-

ducted using Picea abies, the amount of Cd accumulation in the 

roots induced parallel with the increased Cd concentration in the 

growing medium (Ozcan and Baycu, 2005).  

A study conducted on bean seedlings (Phaseolus vulgaris 

L. cv. Strike), the effects of Cd, Cu, Hg and Pb on the quantities 

of total protein and abscisic acid (ABA) were investigated. Ob-

tained results demonstrated that higher heavy metal exposures 

of the seedlings increased ABA production. Additionally, the to-

tal protein contents (p<0.05 or p<0.01) decreased with heavy 

metals’ concentrations (Zengin and Munzuroglu, 2006). 

Recent studies have revealed that Ca has important protec-

tive effects against Cd stress in plants. Ca mediates to Cd uptake 

rate and physiological changes due to Cd uptake in plants. 

Hayakawa et al. (2011) showed the negative effects of Ca appli-

cation on Cd levels in Gamblea innovans leaves. The application 

of Ca at a low concentration caused a significant decrease in Cd 

uptake in the roots of rice (Kim et al., 2002). Similar reductions 

in Cd uptake were seen in soybean and wheat roots with the ap-

plication of 1-10 mM Ca (Yang and Juang, 2015). 

Reports on the effects of Cd toxicity in plants have shown 

changes in the uptake, transport and use of various elements and 

water in plants (Qin et al., 2020). The absorption of nitrate was 

reduced by the uptake of Cd, and relatedly the transport of nitrate 

from the roots to the stems was limited through the inhibition of 

nitrate reductase activity in the stems (Singh et al., 2019). Cd, 
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which induces an increase in lipid peroxidation, also causes 

some changes in the functions of membranes (Zahra et al., 2018) 

and by suppressing chlorophyll biosynthesis and effecting the 

activities of enzymes involved in CO2 fixation (Asati et al., 

2016; Sadeghipour, 2018). 

Some studies with Cd have shown that stress-dependent 

genomic changes cause variations in RAPD band profiles. For 

instance, Ozyigit et al. (2016) exposed Kalanchoe daigremonti-

ana clones to Cd in different concentrations and observed new 

band formations in RAPD band profiles in 50, 200 and 400 µM 

applications. In addition, a decrease in band intensities in RAPD 

band profiles at concentrations of 100 µM, and an increase in 

band intensities at concentrations of 50, 200 and 400 µM were 

observed.  

In another study, polymorphisms were observed in DNA 

profiles of Arabidopsis plant samples exposed to 4.0 and 5.0 mg 

L-1 Cd whereas polymorphisms were not obtained in DNA pro-

files 0.25 and 1.0 mg L-1 Cd (Wang et al., 2016).  

Aslam et al. (2014) used 10 RAPD primers in Capsicum 

annuum samples exposed to 5 different Cd concentrations (20, 

40, 60, 80 and 100 ppm) and a total of 184 (62 polymorphic and 

122 monomorphic) bands in DNA profiles were obtained. 

Recently, the highest levels of changes in RAPD profiles 

(lost and/or formed bands) after Cd application at different con-

centrations in heavy metal sensitive barley (Hordeum vulgare 

L.) genotypes were obtained in 225 μM Cd application by 

Cenkci and Dogan, 2015.  

 

7. Antagonistic-synergistic relationship of Cd with other el-

ements 

 

Due to its chemical similarities, there is an antagonism be-

tween Ca2+ and Cd2+ cations; therefore, when they co-exist, they 

compete with each other in the uptake process in plants. Perfus-

Barbeoch et al. (2002) stated that Cd can also enter plant cells 

through Ca channels. Ca has a protective function on the plasma 

membrane, and plays a significant role in controlling Cd accu-

mulation in plants. Ca regulates the negative membrane poten-

tial, ensuring the stability and integrity of the cell membrane. 

Thus, the application of Ca reduces the total negative charge on 

the plant cell membrane and causes a decrease in Cd accumula-

tion (Kinraide et al., 1998).  

Cd, which has a very high transition rate from soil to plant 

and is very mobile in the soil, can be uptaken by plants in very 

low concentrations, especially in Zn deficiency. The possibility 

of accumulation in the edible parts of the plant indicates that this 

metal has a great danger potential for the environment (Koleli 

and Kantar, 2006). 

Bioaccumulation of Cd strongly depends on the chemical 

properties of aquatic environments. Moreover, Cd accumulation 

occurs in a concentration-dependent manner, and some ions 

such as Mg2+ and Ca2+ have protective effects on aquatic organ-

isms against Cd toxicity (Deleebeeck et al., 2008; 2009). These 

ions compete with Cd ions and suppress their toxicity (Delee-

beeck et al., 2009; Schlekat et al., 2010).  

In addition, it has shown that Zn and Hg reduce the terato-

genic effect of Cd (McCarty, 2012). In the studies conducted on 

frogs, it has been determined that Zn prevents the toxic effects 

of Cd when they are used together (Othman et al., 2012). 

 

8. Remediation methods of Cd-contaminated soils 

 

Cd can be removed from soils by high-cost purification 

technologies or by a lower cost as well as an easily applicable 

method of phytoextraction (remediation of soils with plants, 

plants uptake heavy metals from the soil (Ozyigit and Dogan, 

2014; Li et al., 2017).  

In this technology, natural hyperaccumulator plant species 

are generally used. Some genera such as Thlaspi, Urtica, Che-

nopodium, Polygonum and Allyssim are capable of accumulating 

Cd, Cu, Pb, Ni and Zn and therefore, the cultivation of the mem-

bers of these genera is considered an indirect method for the 

treatment of contaminated soils. Moreover, chelating agents can 

be added to increase the solubility of metals with low solubility 

in the soil solution. It includes the uptake of pollutants by plant 

roots followed by accumulation in above-ground organs and the 

destruction of plants by harvesting (Ozyigit and Dogan, 2014). 

This technique can be used to remove actively taken micronutri-

ent elements like Cu and Zn and non-nutrient elements such as 

Cd, Ni and Pb. Phytoextraction technology can only be applied 

for areas where metal pollution is low or moderate since plant 

growth cannot be maintained in areas that are heavily contami-

nated (Padmavathiamma and Li, 2007; Goyal et al., 2020). 

The rhizofiltration method includes the uptake and reten-

tion of large amounts of nutrients or metal pollutants from liquid 

growth media by plant roots. Roots of many plant species grown 

in hydroponic environment such as Brassica juncea, Helianthus 

annuus and Phaseolus vulgaris can be used to remove toxic met-

als such as Cu, Cd, Cr, Ni, Pb, Zn and U from liquid solutions 

(Ozyigit and Dogan, 2014; Shakoor et al., 2017). 

 

9. Cd in foods 

 

Cd and its compounds are widely used in the production of 

dye (dyestuff and ink production), glass, textile, electricity, bat-

tery, fungicide, insecticide and synthetic polymers with metal 

alloys (Akguc et al., 2008; Osma et al., 2012; Ozyigit et al., 

2016). It has determined that the use of Cd in various industries 

causes an increased risk of food contamination of this toxic 

metal through soil, air and water and high levels of contamina-

tion in some foods was observed (Hezbullah et al., 2016). It has 

demonstrated that cereals, potatoes, leafy and rooted vegetables, 

fruits, liquid-solid oils, meat and dairy products can be contam-

inated with Cd. The use of Cd in galvanized zinc-coated pack-

aging together with Zn has shown that such packaging materials 

cause poisoning in foods with high acidity. It has been thought 

that organic acids in foods increase the solubility of Cd in the 

structure of the packaging wall (Filippini et al., 2018). In addi-

tion, Cd that passes to acidic foods can also cause poisoning 

(Mohammad et al., 2018; Aslan, 2020). 

 

10. Transport of Cd in human body 

 

Cd usually enters the body via oral, respiratory and skin 

routes. With the absorption of Cd entering the body, it binds to 

blood cells and albumin, and then it is carried in the blood. It is 

initially transported to the liver through blood and then trans-

ported from the liver to the kidneys by binding to globulins for 

detoxification (Zhang et al., 2019a). The Cd accumulated in the 

kidneys negatively affects the filtration process in the Bowman 

capsule. This causes many essential proteins and the necessary 

glucose to be excreted with urine (Bobillier et al., 2006). It is 

taken into the cell via carrier proteins in the membrane. While it 

is taken into the cell, it binds to the carrier proteins similar to 

essential metals such as Ca, Cu, Fe and Zn. As a result, there is 

a race between them in binding to receptors on the membrane. 
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Cd absorption has been reported to increase when people and 

animals are fed diets lacking in elements such as Ca, Cr, Fe and 

Zn are inadequate in terms of protein (Vahter et al., 2002; Ber-

geron and Jumarge, 2006). Cd, which is absorbed through alve-

oli, intestinal lumen and skin and passed into the bloodstream, 

are transported by binding to the proteins containing metallothi-

onein, albumin and thiol groups. They transport Cd to the cells 

through receptor-mediated endocytosis (Zalups and Ahmad, 

2003). Animal studies and in vitro researches reported that 

metallothionein also protects cells against the toxicity of Cd 

(Bobillier et al., 2006; Othman et al., 2012).  

 

11. Effects of Cd on animals and humans 

 

It is calculated that the atmosphere in the residential areas 

is polluted with an average of 0.001 g m-3 level of Cd. As a com-

pulsory consequence of this, it has been determined that people 

take 0.02 mg of Cd daily. It has been demonstrated that high 

inhalation of cadmium oxide (CdO) in the form of smoke causes 

lung edema and eventually has lethal effects. In cases of long-

term exposure to Cd, it is determined that some cancer types 

such as prostate cancer and especially lung cancer, can be seen 

(Person et al., 2013).  

Cd metal or its compounds have been shown to cause sar-

coma disease when they are injected intramuscularly or subcu-

taneously (Yongming et al., 2011). Some of the negative effects 

of Cd are on Ca metabolism and causes hypercalcemia (higher 

than normal Ca level in the blood). In experiments on the effects 

of Cd on bone and Ca metabolism, it was reported that the so-

dium-glucose transport system in cortical cells of kidneys was 

inhibited (Dongre et al., 2013). In addition, among the skincare 

products frequently used by women such as eyeliner, blush, lip-

stick contain Cd and can cause skin cancer (Duruibe et al., 2007; 

Pratinidhi et al., 2018). 

Cd metal or its compounds have been shown to cause sar-

coma disease when they are injected intramuscularly or subcu-

taneously (Yongming et al., 2011). Some of the negative effects 

of Cd are on Ca metabolism and causes hypercalcemia (higher 

than normal Ca level in the blood). In experiments on the effects 

of Cd on bone and Ca metabolism, it was reported that the so-

dium-glucose transport system in cortical cells of kidneys was 

inhibited (Dongre et al., 2013). In addition, among the skincare 

products frequently used by women such as eyeliner, blush, lip-

stick contain Cd and can cause skin cancer (Duruibe et al., 2007; 

Pratinidhi et al., 2018). 

Cd quickly converts to CdO in the air. Inorganic salts such 

as Cd (NO3)2, CdSO4 and CdCl2 are water-soluble. Acute effects 

in respiration are observed when the Cd concentration in the air 

exceeds the limit of 1 mg m-3. Due to the low excretion of Cd 

from the body and accumulation, its negative effects on health 

can be observed over time. Industrially, Cd poisoning occurs 

with alloy compounds used during welding, electrochemical 

coatings, dyes containing Cd and batteries with Cd (Aslan, 

2020). 

The earliest finding of Cd nephrotoxicity, which is com-

mon in workers exposed to Cd, is tubular dysfunction in the form 

of low molecular weight proteinuria. However, the degree of 

proteinuria varies over time. It has been suggested that Cd-in-

duced tubular proteinuria is irreversible in many workers for at 

least a couple of years (Fay et al., 2018; Chen et al., 2020).  

Cd can cause DNA breaks and lipid peroxidation. Studies 

have shown that Cd toxicity causes apoptosis in proximal tubule 

cells (Wang et al., 2017). One of the important nephrotoxic ef-

fects of Cd is that it causes interstitial fibrosis as a result of tub-

ular cell necrosis and inflammation (Fujiki et al., 2019). Since 

Cd shows the highest concentration of liver after the kidneys, 

thus determination of its hepatotoxic effects is also very im-

portant (Cao et al., 2017). 

It was reported that no Cd-related liver enzyme elevation 

or low serum albumin was detected in the case of environmental 

Cd exposure (Lavryshyn and Gutyj, 2019; Yaseen, 2019). One 

of the early signs of Cd toxicity in the liver is impaired mito-

chondrial function (Okoye et al., 2019). The toxic effect of Cd 

on mitochondria is related to the increased glutathione and de-

creased glutathione peroxidase activity by Cd in liver cells rather 

than increased permeability of mitochondrial inner membrane 

(Abarikwu et al., 2017). 

Cd is accumulated within the cell lysosomes, disrupting the 

integrity of the lysosomal membrane. The release of lysosomal 

proteases and phospholipases initiates a series of events that 

cause hepatocyte cytotoxicity (Wang et al., 2019). Acute expo-

sure to gas mixtures containing high concentrations of Cd can 

cause fatal acute chemical pneumonia. However, the effects of 

chronic Cd exposure on the respiratory system seem to be more 

important. Smoking in the community is the most important rea-

son for continuous and low-dose Cd exposure (Oztoprak et al., 

2020; Tao et al., 2020).  

Chronically uptake of Cd with either smoking or by respir-

atory tract in occupational risk group workers causes harmful 

effects on the respiratory system. The severity and time of oc-

currence of this damage depend on the concentration and dura-

tion of Cd exposure and it is usually seen over the years. It has 

been reported that chronic inflammation in the nose, pharynx 

and larynx can be developed in workers of Cd industry (Has-

sanin et al., 2017; Prokopowicz et al., 2019). Chronic obstructive 

pulmonary disease (COPD) is common in workers exposed to 

Cd and smokers. In these patients, the presence of emphysema 

has been demonstrated both clinically and radiologically 

(Sundblad et al., 2016).  

It has been suggested that Cd-mediated apoptosis is sensi-

tive to Clara cells and type II cells, and this apoptotic effect is 

associated with the increase in the p53 and Bax genes (Lee et al., 

2016). Ca metabolism disorders and bone diseases caused by Cd 

exposure are seen in the Japanese community, where there is a 

regular environmental exposure. The main features of Itai-itai 

disease are osteomalacia, which tend to painful bone fractures, 

osteoporosis and kidney tubular dysfunction. Cd can be effective 

on bones by disrupting calcium phosphate and vitamin D metab-

olism. Bone metabolism disorders have been reported in work-

ers exposed to Cd. Osteomalacia due to Cd can be seen in these 

individuals. Chronic Cd exposure has been shown to reduce 

bone mass and increase the incidence of bone fractures (Nishijo 

et al., 2017a; Browar et al., 2018; Reyes-Hinojosa et al., 2019). 

In histological studies, it was found that the application of 

chronic Cd caused dilatation in the Havers canals in the bones, 

the expansion of the pericellular area and the hyperplastic bone 

marrow into the metaphyseal cortical bone. Studies have shown 

that chronic exposure to Cd causes an increased risk of osteopo-

rosis and osteoporosis-related bone fractures in both sexes, es-

pecially in older women (Ohta et al., 2000; Nishijo et al., 2017b; 

Huang et al., 2019).  

In addition to the kidney and liver, Cd is also stored in the 

heart. However, compared to kidney and liver, the Cd concen-

tration in the heart tissue is relatively lower. It has been shown 

in studies that Cd, causes metabolic and structural disorders in 

the heart and plays a role in the etiology of hypertension even in 
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low concentrations (Asagba ve Obi, 2004; Bobillier et al., 2006). 

This model of hypertension is created by applying cadmium 

chloride (CdCl2) (1 mg kg-1 per day, i.p.) regularly for 2 weeks. 

The mechanism of the development of hypertension with the ap-

plication of CdCl2 is explained by the fact that Cd metal mimics 

the effect of Ca ion with partial agonist effect and its direct con-

tractionary effect on the vascular smooth muscle (Rathod et al., 

1997; Resitoglu et al., 2016). 

As a result of many experimental studies, it has been shown 

that the application of Cd salts in late pregnancy causes placental 

damage as Cd has teratogenic effects such as exencephaly and 

hydrocephalus in early pregnancy. In animal embryo cultures, 

Cd has been reported to cause reopening of the closed neural 

tube (Santoyo-Sánchez et al., 2018; Geng and Wang, 2019; 

Kmecick et al., 2019). The human placenta is also sensitive to 

toxic Cd activity (Erboga and Kanter, 2016; Zhang et al., 2016; 

Geng and Wang, 2019). 

Cd can damage the fetus by affecting the metabolism of 

other elements such as Cu, Fe, Se and Zn. Smoking is also re-

sponsible for Cd toxicity during pregnancy. The incidence of 

low birth weight has increased in infants of smoker mothers, and 

there is an increase in placental mass. However, Cd was not 

found in breast milk in smoking mothers (Bobillier et al., 2006; 

Moynihan et al., 2017; Ali et al., 2018). 

As a result of exposure to Cd for a long time, structural and 

functional disorders occur, especially in the male and female re-

productive system (Zhang et al., 2019b). Mammal testicles are 

very sensitive to Cd as it causes a decrease in sperm motility and 

spermatogenesis index (Acosta et al., 2016; Nna et al., 2017). 

Testicular necrosis caused by Cd can cause permanent infertil-

ity. Although the molecular effects of Cd on male infertility are 

controversial, it has been suggested that chronic Cd application 

causes a decrease in fertility by joining sperm chromatin (Imafi-

don et al., 2016; Habib et al., 2019). In recent experimental stud-

ies on female rats, the application of Cd to ovulation has been 

shown to inhibit ovulation (Gautam and Chaube, 2018; Yang et 

al., 2019). In addition, Cd has been reported to prevent the accu- 

mulation of follicle-stimulating hormone (FSH) and cAMP-in- 

duced progesterone in ovarian granulosa cells (Massanyi et al., 

2005; Li et al., 2019). 

 

12. Conclusion 

 

Currently, the use of synthetic fertilizers in agriculture, the 

consumption of agricultural products grown in areas contami-

nated with Cd, the use of contaminated drinking water and the 

inclusion of fishery products in the diet have made our contact 

with Cd inevitable. In addition, the consumption of organs such 

as liver and kidneys of grazing animals in contaminated areas 

and the consumption of contaminated plant foods, being in en-

vironments with high Cd concentrations for a long time and 

smoking are the leading factors in the contamination with Cd. 

As mentioned above, prolonged exposure to Cd causes oxidative 

damage in blood and liver tissues as well as histopathological 

changes, especially in kidney, brain and testicular tissues. As can 

be seen from the literature, Cd-related diseases are recently dis-

covered and not well-known before. Thus, it is important to cre-

ate Cd awareness. Conscious choices are crucial in protecting 

mental and physical health as well as the health of relationships 

and communication between individuals. One of the measures is 

to monitor and reduce the Cd level existed in airborne dust par-

ticles in residential areas; creating habitats with minimal dust 

particles and combating dust is also a serious measure against 

Cd exposure. Important Cd sources that can contaminate soil and 

water should be determined and measures should be taken in or-

der to prevent contamination. Furthermore, it is necessary to 

measure the amount of Cd in food and water regularly and avoid 

consuming contaminated foods. To sum up, information and 

awareness-raising studies about the toxic effects of Cd and other 

heavy metals should be made a part of education at every level. 

The government should inform the public in cooperation with 

local governments for this. 
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