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2020 Mathematics Subject Classification: 30C45.

1. INTRODUCTION

Let A denote the class of functions of the form:

(1.1) f (z) = z +

∞∑
n=2

anz
n,

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, by S we shall denote
the class of all functions in A which are univalent in U. It is well known that every function
f ∈ S has an inverse f−1, defined by

f−1 (f (z)) = z (z ∈ U)

and

f
(
f−1 (w)

)
= w

(
|w| < r0 (f) ; r0 (f) ≥ 1

4

)
,

where

(1.2) f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a2

2 − 5a2a3 + a4

)
w4 + ... .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U. Let Σ
denote the class of bi-univalent functions in U given by (1.1). For a brief history and interesting
examples in the class Σ (see [26]).

For functions f ∈ A, Sălăgean [27] (see also [4] and [28]) defined the linear operator
Dm : A → A (m ∈ N0 = N ∪ {0}, N = {1, 2, 3, ...}) as follows:

D0f(z) = f(z) ,

D1f (z) = Df(z) = z f ′ (z) = z +

∞∑
n=2

nanz
n
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and (in general)

(1.3) Dmf(z) = D
(
Dm−1f(z)

)
= z +

∞∑
n=2

nmanz
n.

From (1.3), we can easily deduce that

(1.4) Dm+1f(z) = z (Dmf(z))
′
.

Let Pλk (α) be the class of analytic functions p (z) in U normalized by p (0) = 1 and satisfying

(1.5)
∫ 2π

0

∣∣∣∣∣<
{
eiλp (z)

}
− α cosλ

1− α

∣∣∣∣∣ dθ ≤ kπ cosλ,

where z = reiθ, 0 ≤ r < 1, |λ| < π
2 , 0 ≤ α < 1 and k ≥ 2. The class Pλk (α) was introduced and

studied by Moulis [16] (see also Aouf [3] and Noor et al. [21]). We note that
(i) P0

k (0) = Pk, is the class of functions have their real parts bounded in the mean on U, intro-
duced by Robertson [25] and studied Pinchuk [24];
(ii) Pλk (0) = Pλk , is the class of functions introduced by Robertson [25] and he derived a varia-
tional formula for functions in this class;
(iii) P0

k (α) = Pk (α), is the class of functions introduced by Padmanabhan and Parvatham [23]
(see also Umarani and Aouf [31]);
(iv) P0

2 (α) = P (α), is the class of functions with positive real part of order α, 0 ≤ α < 1;
(v) P0

2 (0) = P , is the class of functions having positive real part for z ∈ U.
Using Salăgeăn operator Dm and the class Pk, we now introduce the following subclass of

Bi-Bazilevic̃ analytic functions of the class Σ as follows:

Definition 1.1. A function f ∈ Σ is said to be in the class BmΣ (γ, δ, b; k) if it satisfies the following
subordination condition:

(1.6) 1 +
1

b

[
(1− γ)

(
Dmf (z)

z

)δ
+ γ
Dm+1f (z)

Dmf (z)

(
Dmf (z)

z

)δ
− 1

]
∈ Pk

and

(1.7) 1 +
1

b

[
(1− γ)

(
Dmg (w)

w

)δ
+ γ
Dm+1g (w)

Dmg (w)

(
Dmg (w)

w

)δ
− 1

]
∈ Pk,

where g = f−1, b ∈ C∗ = C\ {0} , γ, δ ∈ C,m ∈ N0, k ≥ 2 and all powers are understood as principle
values.

Taking additional choices of m, γ, δ, k and b, the class BmΣ (γ, δ, b; k) reduces to the following
subclasses of Σ:

(i) B0
Σ (γ, δ, 1; k) = BΣ (γ, δ; k)

=

{
f ∈ Σ : (1− γ)

(
f (z)

z

)δ
+ γ

zf
′
(z)

f (z)

(
f (z)

z

)δ
∈ Pk

and (1− γ)

(
g (w)

w

)δ
+ γ

wg
′
(w)

g (w)

(
g (w)

w

)δ
∈ Pk

}
;
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(ii) B0
Σ (γ, δ, 1− η; 2) = BΣ (γ, δ, η) (0 ≤ η < 1) (see [15] for f ∈ A)(see also [29])

=

{
f ∈ Σ : <

{
(1− γ)

(
f (z)

z

)δ
+ γ

zf
′
(z)

f (z)

(
f (z)

z

)δ}
> η

and <

{
(1− γ)

(
g (w)

w

)δ
+ γ

wg
′
(w)

g (w)

(
g (w)

w

)δ}
> η

}
;

(iii) B0
Σ (γ, 1, 1; k) = BΣ (γ; k)

=

{
f ∈ Σ : (1− γ)

f (z)

z
+ γf

′
(z) ∈ Pk and (1− γ)

g (w)

w
+ γg

′
(w) ∈ Pk

}
;

(iv) B0
Σ (γ, 1, 1− η; 2) = BΣ (γ, η) (0 ≤ η < 1) (see [10] for f ∈ A)

=

{
f ∈ Σ : <

{
(1− γ)

f (z)

z
+ γf

′
(z)

}
> η and <

{
(1− γ)

g (w)

w
+ γg

′
(w)

}
> η

}
;

(v) B0
Σ (1, δ, 1− η; 2) = BΣ (δ, η) (0 ≤ η < 1) (see [22] for f ∈ A)

=

{
f ∈ Σ : <

{
zf
′
(z)

f (z)

(
f (z)

z

)δ}
> η and <

{
wg
′
(w)

g (w)

(
g (w)

w

)δ}
> η

}
;

(vi) B0
Σ (1, 0, b; k) = SΣ (b; k) (see Nasr and Aouf [20] for f ∈ A)

=

{
f ∈ Σ : 1 +

1

b

(
zf
′
(z)

f(z)
− 1

)
∈ Pk and 1 +

1

b

(
wg
′
(w)

g(w)
− 1

)
∈ Pk

}
;

(vii) B0
Σ (1, 0, b; 2) = SΣ (b) (see Nasr and Aouf [19] for f ∈ A) (see also [5])

=

{
f ∈ Σ : <

{
1 +

1

b

(
zf
′
(z)

f(z)
− 1

)}
> 0 and <

{
1 +

1

b

(
wg
′
(w)

g(w)
− 1

)}
> 0

}
;

(viii) B1
Σ (1, 0, b; k) = CΣ (b; k) (see Nasr and Aouf [20] for f ∈ A)

=

{
f ∈ Σ : 1 +

1

b

zf
′′

(z)

f ′(z)
∈ Pk and 1 +

1

b

wg
′′

(w)

g′(w)
∈ Pk

}
;

(ix) B1
Σ (1, 0, b; 2) = CΣ (b) (see Nasr and Aouf [18] for f ∈ A) (see also [5])

=

{
f ∈ Σ : <

{
1 +

1

b

zf
′′

(z)

f ′(z)

}
> 0 and <

{
1 +

1

b

wg
′′

(w)

g′(w)

}
> 0

}
;

(x) B0
Σ (1, 0, 1; k) = SΣ (k) (see Pinchuk [24] for f ∈ A)

=

{
f ∈ Σ :

zf
′
(z)

f(z)
∈ Pk and

wg
′
(w)

g(w)
∈ Pk

}
;
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(xi) B1
Σ (1, 0, 1; k) = CΣ (k) (see Pinchuk [24] for f ∈ A)

=

{
f ∈ Σ : 1 +

zf
′′

(z)

f ′(z)
∈ Pk and 1 +

wg
′′

(w)

g′(w)
∈ Pk

}
;

(xii) B0
Σ (1, 0, 1− η; 2) = SΣ (η) (0 ≤ η < 1) (see [9] and [30])

=

{
f ∈ Σ : <

(
zf
′
(z)

f(z)

)
> η and <

(
wg
′
(w)

g(w)

)
> η

}
;

(xiii) B1
Σ (1, 0, 1− η; 2) = CΣ (η) (0 ≤ η < 1) (see [9] and [30])

=

{
f ∈ Σ : <

(
1 +

zf
′′

(z)

f ′(z)

)
> η and <

(
1 +

wg
′′

(w)

g′(w)

)
> η

}
;

(xiv) B0
Σ

(
γ, δ, (1− α) e−iλ cosλ; k

)
= BΣ (γ, δ, α, λ; k)

(
|λ| < π

2
, 0 ≤ α < 1

)
=

f ∈ Σ :
eiλ

[
(1−γ)( f(z)z )

δ
+γ

zf
′
(z)

f(z) ( f(z)z )
δ
]
−α cosλ−i sinλ

(1−α) cosλ ∈ Pk

and
eiλ

[
(1−γ)( g(w)

w )
δ
+γ

wg
′
(w)

g(w) ( g(w)
w )

δ
]
−α cosλ−i sinλ

(1−α) cosλ ∈ Pk


or

=

{
f ∈ Σ : (1− γ)

(
f (z)

z

)δ
+ γ

zf
′
(z)

f (z)

(
f (z)

z

)δ
∈ Pλk (α)

and (1− γ)

(
g (w)

w

)δ
+ γ

wg
′
(w)

g (w)

(
g (w)

w

)δ
∈ Pλk (α)

}
;

(xv) B0
Σ

(
1, 0, be−iλ cosλ; 2

)
= SλΣ (b)

(
|λ| < π

2
, b ∈ C∗

)
(see Al-Oboudi and Haidan [2] for f ∈ A)

=

{
f ∈ Σ : <

{
1 +

eiλ

b cosλ

(
zf
′
(z)

f(z)
− 1

)}
> 0

and <

{
1 +

eiλ

b cosλ

(
wg
′
(w)

g(w)
− 1

)}
> 0

}
;

(xvi) B1
Σ

(
1, 0, be−iλ cosλ; 2

)
= CλΣ (b)

(
|λ| < π

2
, b ∈ C∗

)
(see Al-Oboudi and Haidan [2] for f ∈ A)

=

{
f ∈ Σ : <

{
1 +

eiλ

b cosλ

(
zf
′′

(z)

f ′ (z)

)}
> 0

and <

{
1 +

eiλ

b cosλ

(
wg
′′

(w)

g′ (w)

)}
> 0

}
;
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(xvii) B0
Σ

(
1, 0, (1− α) e−iλ cosλ; k

)
= Sλα (k)

(
|λ| < π

2
, 0 ≤ α < 1

)

=

f ∈ Σ :

eiλ
zf
′
(z)

f (z)
− α cosλ− i sinλ

(1− α) cosλ
∈ Pk

and
eiλ

wg
′
(w)

g (w)
− α cosλ− i sinλ

(1− α) cosλ
∈ Pk


or

=

{
f ∈ Σ :

zf
′
(z)

f (z)
∈ Pλk (α) and

wg
′
(w)

g (w)
∈ Pλk (α)

}
;

(xviii) B1
Σ

(
1, 0, (1− α) e−iλ cosλ; k

)
= Cλα (k)

(
|λ| < π

2
, 0 ≤ α < 1

)

=

f ∈ Σ :

eiλ

(
1 +

zf
′′

(z)

f ′ (z)

)
− α cosλ− i sinλ

(1− α) cosλ
∈ Pk

and

eiλ

(
1 +

wg
′′

(w)

g′ (w)

)
− α cosλ− i sinλ

(1− α) cosλ
∈ Pk


or

=

{
f ∈ Σ : 1 +

zf
′′

(z)

f ′ (z)
∈ Pλk (α) and 1 +

wg
′′

(w)

g′ (w)
∈ Pλk (α)

}
.

In order to establish our main results, we need the following lemma:

Lemma 1.1. [3, Theorem 5 with p = 1] If p(z) = 1 +
∞∑
n=1

cnz
n ∈ Pλk (α) in U, then

(1.8) |cn| ≤ (1− α) k cosλ (n ∈ N) .

The result is sharp. Equality is attained for the odd coefficients and even coefficients, respectively, for the
functions

p1 (z) = 1 + (1− α) cosλ e−iλ
[(

k + 2

4

)(
1− z
1 + z

)
−
(
k − 2

4

)(
1 + z

1− z

)
− 1

]
,

p2 (z) = 1 + (1− α) cosλ e−iλ
[(

k + 2

4

)(
1− z2

1 + z2

)
−
(
k − 2

4

)(
1 + z2

1− z2

)
− 1

]
.

Remark 1.1. For λ = α = 0 in Lemma 1.1, we obtain the result obtained by Goswami et al. [11] for
the class Pk.
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Lewin [13] defined the class of bi-univalent functions and obtained the bound for the sec-
ond coefficient. Brannan and Taha [9] considered certain subclasses of bi-univalent functions,
similar to the familiar subclasses of univalent functions consisting of strongly starlike, starlike
and convex functions. They introduced the concept of bi-starlike functions and the bi-convex
functions, and obtained estimates for the initial coefficients. Recently, Srivastava et al. [26],
Ali et al. [1], Frasin and Aouf [10], Goyal and Goswami [12] and many others (see [6], [7], [8],
[14], [17] and [32]) have introduced and investigated subclasses of bi-univalent functions and
obtained non-sharp bounds for the initial coefficients.

In the present paper, we estimates on the coefficients for second and third coefficients for the
functions in the subclass BmΣ (γ, δ, b; k) and its special subclasses.

2. MAIN RESULTS

Unless otherwise mentioned, we assume throughout this paper that g = f−1, b ∈ C∗, γ,
δ ∈ C, k ≥ 2,m ∈ N0 and all powers are understood as principle values.

Theorem 2.1. Let f(z) given by (1.1) belongs to the class BmΣ (γ, δ, b; k) with δ 6= 1− 3m

22m−1 , δ 6= −γ
and δ 6= −2γ, then

(2.9) |a2| ≤ min

{√
|b| k

|(δ − 1) 22m−1 + 3m| |δ + 2γ|
,
|b| k

2m |δ + γ|

}
and

(2.10) |a3| ≤
|b| k

3m |δ + 2γ|
min

{
1 + 3m

|(δ−1)22m−1+3m| ; 1 + |δ+2γ||1−δ||b|k
2|δ+γ|2 ;

1 + |δ+2γ||δ−1||b|k
2|δ+γ|2 + 3m|δ+2γ||b|k

22m−1|δ+γ|2

}
.

Proof. If f ∈ BmΣ (γ, δ, b; k), according to the Definition 1.1, we have

(2.11) 1 +
1

b

[
(1− γ)

(
Dmf (z)

z

)δ
+ γ
Dm+1f (z)

Dmf(z)

(
Dmf (z)

z

)δ
− 1

]
= p (z)

and

(2.12) 1 +
1

b

[
(1− γ)

(
Dmg (w)

w

)δ
+ γ
Dm+1g (w)

Dmg(w)

(
Dmg (w)

w

)δ
− 1

]
= q (w) ,

where p (z) , q (w) ∈ Pk and g = f−1. Using the fact that the functions p (z) and q (w) have the
following Taylor expansions

(2.13) p (z) = 1 + p1z + p2z
2 + ...

and

(2.14) q (w) = 1 + q1w + q2w
2 + ... .

Since

1 +
1

b

[
(1− γ)

(
Dmf (z)

z

)δ
+ γ
Dm+1f (z)

Dmf(z)

(
Dmf (z)

z

)δ
− 1

]

(2.15) = 1 +

(
δ + γ

b

)
2ma2z +

(
δ + 2γ

b

)[
3ma3 +

δ − 1

2
22ma2

2

]
z2 + ...
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and according to (1.2), we have

1 +
1

b

[
(1− γ)

(
Dmg (w)

w

)δ
+ γ
Dm+1g (w)

Dmg(w)

(
Dmg (w)

w

)δ
− 1

]

(2.16) = 1−
(
δ + γ

b

)
2ma2w +

(
δ + 2γ

b

)[(
2a2

2 − a3

)
3m +

δ − 1

2
22ma2

2

]
w2 + ...

from (2.13) and (2.14), combined with (2.15) and (2.16), it follows that

p1 =

(
δ + γ

b

)
2ma2,(2.17)

p2 =

(
δ + 2γ

b

)[
3ma3 +

δ − 1

2
22ma2

2

]
,(2.18)

q1 = −
(
δ + γ

b

)
2ma2,(2.19)

q2 =

(
δ + 2γ

b

)[(
2a2

2 − a3

)
3m +

δ − 1

2
22ma2

2

]
.(2.20)

Now, from (2.18) and (2.20), we deduce that

(2.21) a2
2 =

b (p2 + q2)

[(δ − 1) 22m + (2) 3m] (δ + 2γ)

and

(2.22) a3 − a2
2 =

b (p2 − q2)

2 (δ + 2γ) 3m
.

Using (2.21) in (2.22), we obtain

(2.23) a3 =
b

δ + 2γ

[
p2 − q2

(2) 3m
+

p2 + q2

(δ − 1) 22m + (2) 3m

]
.

From (2.17) and (2.18), we get

(2.24) a3 =
b

3m (δ + 2γ)

[
p2 +

(δ + 2γ) (1− δ) p2
1b

2 (δ + γ)
2

]
,

while from (2.19) and (2.20), we deduce that

(2.25) a3 =
b

3m (δ + 2γ)

[
−q2 +

(δ + 2γ) (δ − 1) bq2
1

2 (δ + γ)
2 +

2 (δ + 2γ) 3mbq2
1

22m (δ + γ)
2

]
.

Combining (2.17) and (2.21) for the computation of the upper-bound of |a2|, and (2.23), (2.24)
and (2.25) for the computation of |a3|, by using Lemma 1.1 (with α = λ = 0), we easily find the
estimates of Theorem 2.1. This completes the proof of Theorem 2.1. �

Taking m = 0 and b = 1 in Theorem 2.1, we obtain the following result for the functions
belonging to the class BΣ (γ, δ; k).

Corollary 2.1. Let f(z) given by (1.1) belongs to the class BΣ (γ, δ; k) with δ 6= −1, δ 6= −γ and
δ 6= −2γ, then

|a2| ≤ min

{√
2k

|δ + 1| |δ + 2γ|
,

k

|δ + γ|

}
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and

|a3| ≤
k

|δ + 2γ|
min

{
1 +

2

|δ + 1|
; 1 +

|δ + 2γ| |1− δ| k
2 |δ + γ|2

; 1 +
|δ + 2γ| |δ + 3| k

2 |δ + γ|2

}
.

Taking m = 0, b = 1−η (0 ≤ η < 1) and k = 2 in Theorem 2.1, we obtain the following result
for the functions belonging to the class BΣ (γ, δ, η).

Corollary 2.2. Let f(z) given by (1.1) belongs to the class BΣ (γ, δ, η) with 0 ≤ η < 1, δ 6= −1,
δ 6= −γ and δ 6= −2γ, then

|a2| ≤ min

{√
4 (1− η)

|δ + 1| |δ + 2γ|
,

2 (1− η)

|δ + γ|

}
and

|a3| ≤
2 (1− η)

|δ + 2γ|
min

{
1 +

2

|δ + 1|
; 1 +

|δ + 2γ| |1− δ| (1− η)

|δ + γ|2
; 1 +

|δ + 2γ| |δ + 3| (1− η)

|δ + γ|2

}
.

Taking m = 0, δ = 1, b = 1−η (0 ≤ η < 1) and k = 2 in Theorem 2.1, we obtain the following
corollary which improves the result of Frasin and Aouf [10, Theorem 3.2].

Corollary 2.3. Let f(z) given by (1.1) belongs to the class BΣ (γ, η) with 0 ≤ η < 1, γ 6= −1 and
γ 6= − 1

2 , then

|a2| ≤ min

{√
2 (1− η)

|2γ + 1|
,

2 (1− η)

|γ + 1|

}
and

|a3| ≤
2 (1− η)

|2γ + 1|
min

{
2, 1 +

4 |2γ + 1| (1− η)

|γ + 1|2

}
.

Takingm = 0, γ = 1, b = 1−η (0 ≤ η < 1) and k = 2 in Theorem 2.1, we obtain the following
result for the functions belonging to the class BΣ (δ, η).

Corollary 2.4. Let f(z) given by (1.1) belongs to the class BΣ (δ, η) with δ 6= −1 and δ 6= −2, then

|a2| ≤ min

{√
4 (1− η)

|δ + 1| |δ + 2|
,

2 (1− η)

|δ + 1|

}
and

|a3| ≤
2 (1− η)

|δ + 2|
min

{
1 +

2

|δ + 1|
; 1 +

|δ + 2| |1− δ| (1− η)

|δ + 1|2
; 1 +

|δ + 2| |δ + 3| (1− η)

|δ + 1|2

}
.

Taking δ = m = 0, γ = 1 and k = 2 in Theorem 2.1, we obtain the following result for the
functions belonging to the class SΣ (b) .

Corollary 2.5. Let f(z) given by (1.1) belongs to the class SΣ (b), then

|a2| ≤ min
{√

2 |b|, 2 |b|
}

and
|a3| ≤ |b|min {3, 1 + 2 |b|} .

Taking δ = 0,m = 1, γ = 1 and k = 2 in Theorem 2.1, we obtain the following result for the
functions belonging to the class CΣ (b).
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Corollary 2.6. Let f(z) given by (1.1) belongs to the class CΣ (b), then

|a2| ≤ min
{√
|b|, |b|

}
and

|a3| ≤
|b|
3

min {4, 1 + 2 |b|} .

Taking m = 0 and b = (1− α) e−iλ cosλ
(
|λ| < π

2
, 0 ≤ α < 1

)
in Theorem 2.1, we obtain the

following result for the functions belonging to the class BΣ (γ, δ, α, λ; k).

Corollary 2.7. Let f(z) given by (1.1) belongs to the class BΣ (γ, δ, α, λ; k) with δ 6= −1, δ 6= −γ and
δ 6= −2γ, then

|a2| ≤ min

{√
2k (1− α) cosλ

|δ + 1| |δ + 2γ|
,
k (1− α) cosλ

|δ + γ|

}
and

|a3| ≤
k (1− α) cosλ

|δ + 2γ|
min

{
1 + 2

|δ+1| ; 1 + |δ+2γ||(1−δ)|k(1−α) cosλ

2|δ+γ|2 ;

1 + |δ+2γ||δ+5|k(1−α) cosλ

2|δ+γ|2

}
.

Taking m = δ = 0, γ = 1, k = 2 and b→ be−iλ cosλ
(
|λ| < π

2
, 0 ≤ α < 1

)
in Theorem 2.1, we

obtain the following result for the functions belonging to the class SλΣ (b).

Corollary 2.8. Let f(z) given by (1.1) belongs to the class SλΣ (b), then

|a2| ≤ min
{√

2 |b| cosλ, 2 |b| cosλ
}

and
|a3| ≤ |b| cosλ min {3, 1 + 2 |b| cosλ} .

Taking m = γ = 1, δ = 0, k = 2 and b→ be−iλ cosλ
(
|λ| < π

2
, 0 ≤ α < 1

)
in Theorem 2.1, we

obtain the following result for the functions belonging to the class CλΣ (b).

Corollary 2.9. Let f(z) given by (1.1) belongs to the class CλΣ (b), then

|a2| ≤ min
{√
|b| cosλ, |b| cosλ

}
and

|a3| ≤
|b| cosλ

3
min {4, 1 + 2 |b| cosλ} .

Taking δ = m = 0, γ = 1 and b = (1− α) e−iλ cosλ
(
|λ| < π

2
, 0 ≤ α < 1

)
in Theorem 2.1, we

obtain the following result for the functions belonging to the class Sλα (k) .

Corollary 2.10. Let f(z) given by (1.1) belongs to the class Sλα (k)
(
|λ| < π

2
, 0 ≤ α < 1

)
, then

|a2| ≤ min
{√

k (1− α) cosλ, k (1− α) cosλ
}

and
|a3| ≤

k (1− α) cosλ

2
min {3, 1 + k (1− α) cosλ} .

Taking δ = 0, γ = m = 1 and b = (1− α) e−iλ cosλ
(
|λ| < π

2
, 0 ≤ α < 1

)
in Theorem 2.1, we

obtain the following result for the functions belonging to the class Cλα (k) .
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Corollary 2.11. Let f(z) given by (1.1) belongs to the class Cλα (k)
(
|λ| < π

2
, 0 ≤ α < 1

)
, then

|a2| ≤ min

{√
k (1− α) cosλ

2
,
k (1− α) cosλ

2

}
and

|a3| ≤
k (1− α) cosλ

6
min {4, 1 + k (1− α) cosλ} .
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