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Abstract 

In the present study, a nonlocal finite element formulation of free longitudinal vibration is derived for 
functionally graded nano-sized rods. Size dependency is considered via Eringen’s nonlocal elasticity theory. 
Material properties, Young’s modulus and mass density, of the nano-sized rod change in the thickness direction 
according to the power-law. For the examined FG nanorod finite element, the axial displacement is specified 
with a linear function. The stiffness and mass matrices of functionally graded nano-sized rod are found by means 
of interpolation functions. Functionally graded nanorod is considered with clamped-free boundary condition 
and its longitudinal vibration analysis is performed. 

Keywords: Nonlocal elasticity theory, Functionally graded materials, Nanorod, Finite element method, 
Vibration 

1. Introduction 

One of the popular structures of recent times is functionally graded (FG) composite materials. 
The difference of these materials which are usually a combination of metal and ceramic from 
traditional laminated composites is that the smooth changing of material properties. In 
functionally graded materials, the material properties like Young’s modulus, density, shear 
modulus etc. change according to a certain rule continuously along at least one direction. 
Thanks to this smooth property changing, functionally graded materials have been precious 
for many applications such as biomedical, chemistry, electronics, optics, aircraft, space 
vehicles and biology etc. [1,2]. In addition, functionally graded structures have attracted 
considerable attention in models of nano/micro mechanics. The studies on functionally graded 
nano/micro structures such as FG nanoplate [3-7], FG nanobeam [8-14], FG nanorod [14-18] 
have been presented by researchers in recent years. 
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In addition to the analytical solution [19,20], many other methods like discrete singular 
convolution method [21,22], polynomial differential quadrature method [23], finite difference 
method, finite element method [24] etc. have been used by researchers to solve a problem. In 
this study, a finite element formulation for free longitudinal vibration behavior of functionally 
graded nanorod is presented. Small-scale effect of the functionally graded nanorod is 
discussed based on the nonlocal elasticity theory. The nonlocal elasticity theory has an 
additional small-scale parameter (nonlocal parameter) and thanks to this nonlocal parameter 
the small-scale effects occurring in nano/micro-sized structures can be evaluated. The 
nonlocal elasticity theory has become a frequently performed theory in nanomechanics and 
micromechanics, as it allows the consideration of small-scale effects. In addition, articles 
using finite element method to examine the behavior of size-dependent 
microstructures/nanostructures such as vibration [25-30], buckling [29-32] and bending [29-
30, 33-35] are also found in the literature. 

 
a) Type - I 

 
b) Type - II 

 
Fig. 1. Functionally graded nanorods with various boundary conditions 
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2. Functionally Graded Rod 

FG nanorods with various boundary conditions like free-free, clamped-clamped and clamped-
free are illustrated in Figure 1. L, b and h represent the length, width and thickness of the FG 
rod, respectively. Type I (Fig. 1a) and Type II (Fig. 1b) represent the FG nanorods whose 
material properties vary continuously in the axial direction and thickness direction, 
respectively. The material properties such as Young’s modulus, density etc. change of the rod 
according to a power-law. If the changing of material properties of the rod is assumed in the 
thickness direction, the effective material properties of rod can be defined as [11, 13] 

 
 1( ) ( )

2

k

c m m
zP z P P P
h
⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (1) 

 
 

Where, P represents the effective material property, while k represents the non-negative 
materials,  ceramic and metalindicate the  mand  cThe subscripts  law exponent.-power

directions,  z, y, xin the  rodare the displacements of the FG  3uand  2u, 1u respectively.
respectively, and may be written as follow 
 

 1 2 3( , , ) ( , ), ( , , ) 0, ( , , ) 0u x z t u x t u x z t u x z t= = = 
 

(2) 

u, and t denote the axial displacement of any point on the neutral axis and time, respectively. 
Stress (σ ) and normal force (N) expressions for the FG rod are written as follows 

 
 ( )xx xxE zσ ε= (3) 
 ( )xx

A

N z dAσ= ∫ (4) 

 
Here, ε  and A are strain and cross-section area, respectively. The equations of motions of FG 
nano-sized rod can be obtained by means of the Hamilton’s principle [36] 
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Where U, K and W are the strain energy, kinetic energy and work done by external forces, 
respectively. The external loads can be encountered as elastic foundation, axial compressive 
force, thermal loading etc. However, there are no external forces in this vibration problem of 
FG nanorod and so W is set to zero.  The first variations of the strain energy and kinetic 
energy are given as follows 
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Here, I0 is expressed as 
 

 
0 ( ) ,

A

I z dAρ= ∫     (8) 
 
By substituting equations (6) - (7) into equation (5) and after some mathematical 
arrangements, we obtain the equation of motion of the rod as follows 
 

 2

0 2: N uu I
x t

δ
∂ ∂

=
∂ ∂

 (9) 

3. Size-Dependent Finite Element Formulation 
 

The nonlocal constitutive formulation is [37] 
 

 ( )2 2
01 ij ijkl kle a Cσ ε⎡ ⎤− ∇ =⎣ ⎦ (10) 

Where σij is the stress tensor, Cijkl is the fourth-order Young’s modulus tensor, εkl is the strain 
tensor, e0a is the nonlocal parameter. The Equation (10) can be rewritten as 
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Integrating Eq. (11) over the cross-section area, we obtain the axial force-strain relation as Eq. 
(12) 
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Here, A1 is expressed as 
 

 
1 ( ) ,

A

A E z dA= ∫     (13) 

 
Differentiating Equation (9) with respect to x, then substituting into Equation (12) we obtain 
Equation (14).  
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By substituting Equation (14) into Equation (9), the equation of the motion of FG nanorod is 
obtained as 
 

2 4 2
2

1 0 0 02 2 2 2( ) 0u u uA e a I I
x x t t
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+ − =
∂ ∂ ∂ ∂

 (15) 

 
 
In this study, a rod finite element is considered has two nodes. ϕ is the interpolation (or shape) 
functions matrix of a rod finite element and expressed as below 
 

 [ ] 1 x x
L L

φ ⎡ ⎤= −⎢ ⎥⎣ ⎦
 (16) 

The stiffness matrix, classical mass and nonlocal mass matrices are obtained using Eqs. (15) - 
(16) as follows 
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In the above Equations, superscript T represents the transpose operator. The subscripts cl and 
nl are used to indicate the classical and nonlocal theories, respectively. The frequencies of FG 
nano-sized rod are found as follows 
 

 ( )2 0n nl clK M Mω− + = (20) 
 
Here ωn and the subscript n indicate the circular frequency and mode number.  
 

4. Numerical Results 

In this section, comparison studies and numerical examples are performed. Comparison 
studies are presented by Xu et al. [38] and Numanoğlu et al. [39]. Table 1 is presented to 
compare the validity of the method and to show the compatibility with each other. 
Comparisons of non-dimensional frequencies for the first four modes of clamped-free 
homogeneous nanorods are shown in Table 1. Also, this Table demonstrates the effect of the 
number of finite element (N) on convergence.  As can be seen, the number of finite elements 
is an important issue for the convergence of frequency values. The appropriate number of 
elements should be chosen to ensure desired convergence. As can be seen, low number of 
finite elements provides the desired convergence for low modes. However, it may be 
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necessary to increase the number of finite elements as the mode number increase. 
Dimensionless parameters used in the comparison studies are defined as follows 

 
 

0/ , /n nL E e a Lω ω ρ µ= = (21) 

 
Table 1. Comparison of dimensionless frequencies of homogeneous nanorod 

   
µ  

    

nω  Xu et al. [38] 
Numanoğlu et 
al. 
        [39] 

Present 
study 
   (N=200) 

Present study 
    (N=100) 

Present 
study 
    (N=50) 

 Present study 
      (N=20) 

   
0.0 

    
n=1 1.57080 1.57080   1.5708   1.5708 1.5709 1.5712 

 
n=2 4.71239 4.71239 4.7125 4.7128 4.7141 4.7233 
n=3 7.85398 7.85398 7.8545 7.8560 7.8621 7.9045 
n=4 10.99557 10.99557 10.9970 11.0011 11.0177 11.1345 

   
0.1 n=1 1.55177 1.55177  1.5518   1.5518 1.5518 1.5522 

 
n=2 4.26279 4.26279 4.2629 4.2631 4.2641 4.2709 
n=3 6.17668 6.17668 6.1769 6.1777 6.1806 6.2012 
n=4 7.39805 7.39805 7.3985 7.3997 7.4048 7.4399 

   
0.2 n=1 1.49858 1.49858   1.4986   1.4986 1.4986 1.4989 

 
n=2 3.42933 3.42933 3.4294 3.4295 3.4300 3.4335 
n=3 4.21782 4.21782 4.2179 4.2181 4.2191 4.2256 
n=4 4.55152 4.55152 4.5516 4.5519 4.5531 4.5612 

 

In this section, effects of power-law exponent and the nonlocal parameter on the free vibration 
response of functionally graded nanorod are investigated. In the numerical calculations, the 
number of finite elements for FG nanorod is chosen as 200. Functionally graded nanorod is 
considered composed of aluminum and alumina and with clamped-free boundary condition. 
The top and bottom surfaces of the nanorod are composed of pure alumina (ceramic) and 
aluminum (metal), respectively. Mechanical properties of functionally graded nanorod 
constituents are given as [40]: Em=70 GPa, ρm=2700 kg/m3 for aluminum and Ec=393 Gpa, 
ρc=3960 kg/m3 for alumina. The following dimensionless frequency parameter is used  

 
 /n n c cL Eλ ω ρ= (22) 
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(a) 

 
(b) 

   

 
(c) 

 
(d) 

 
Fig. 2. Variation of dimensionless frequencies of FG nanorod 

Figure 2 displays the variation of dimensionless frequencies of functionally graded nanorod 
with respect to mode numbers for various power-law exponent (k) and nonlocal parameter 
(e0a) values. The Figure 2 is plotted from the analyses of FG nanorod with various nonlocal 
parameters ranging from 0 to 1.5 and various power-law exponents ranging from 0 to ∞. It is 
concluded from the Figure that the increasing values of power-law exponent and nonlocal 
parameter lead to a decrease in the dimensionless frequencies of FG nanorods. It should be 
noted that when the power-law exponent set to zero (k=0), the results give the frequencies of 
alumina (pure ceramic). If the power-law exponent sets to infinity (k=∞), the frequencies of 
aluminum (pure metal) are obtained. Also, if the nonlocal parameter e0a set to zero, the 
frequencies of the classical theory are obtained. 

 



B. Uzun, M.Ö. Yaylı 

85 
 

5. Conclusions 

In the present study, the nonlocal finite element formulation of functionally graded nanorod is 
proposed in conjunction with Eringen’s nonlocal elasticity theory. The stiffness and mass 
matrices essential to the vibration response of functionally graded nanorod are found using 
interpolation functions. Finally, an eigenvalue problem is defined with the obtained matrices 
and nω , and the eigenvalues nω  are found by setting the determinant of the coefficient matrix 
to zero. A numerical example for clamped-free boundary condition is given to investigate the 
influences of some parameters on frequencies of FG nanorod. The main results obtained in 
this study can be summarized as follows: When the nonlocal effect is ignored, that is when the 
e0a value is taken as zero, the frequencies of the FG nanorod have the highest values. It is 
understood from that the nonlocal effect causes a reduction in the frequency of the FG 
nanorod. In addition, it is seen that with the increase of the power-law exponent value, that is 
with the transition of material properties from ceramic to metal, there is a decrease in 
frequencies. 
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