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Binomial Operator as a Hausdorff Operator of the Euler Type
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ABSTRACT. In this paper, we prove that the binomial operator is a Hausdorff operator of the Euler type and con-
sequently, the binomial matrix domain associated with this operator is nothing new except an Euler sequence space.
Therefore, all the results of published papers on the binomial sequence spaces like [4], can be extracted easily from [1]
and the relation between the binomial and Euler operators that we introduce. Moreover, we compute the norm and
the lower bound of the binomial operator on some sequence spaces.

Keywords: Binomial operator, Euler operator, norm, lower bound, Hausdorff matrix, sequence spaces.

2020 Mathematics Subject Classification: 26D15, 40C05, 40G05, 47B37, 47B39.

1. INTRODUCTION

Let p ≥ 1 and ω denote the set of all real-valued sequences. The space `p is the set of all real
sequences x = (xk) ∈ ω such that

‖x‖`p =

( ∞∑
k=0

|xk|p
)1/p

<∞.

Definition 1.1. The Hausdorff matrix Hµ = (hjk)∞j,k=0 is defined by

hj,k :=

{ (
j
k

) ∫ 1

0
θk(1− θ)j−kdµ(θ) , 0 ≤ k ≤ j,

0 , k > j

for all j, k ∈ N0, where µ is a probability measure on [0, 1].

Theorem 1.1 (Hardy’s formula, [9, Theorem 216]). The Hausdorff matrix is a bounded operator on
`p if and only if

∫ 1

0
θ

−1
p dµ(θ) <∞ and

‖Hµ‖`p =

∫ 1

0

θ
−1
p dµ(θ) (1 < p <∞).(1.1)

Hausdorff operator has the following norm property.

Theorem 1.2 ([3, Theorem 9]). Let p ≥ 1 and Hµ, Hϕ and Hν be Hausdorff matrices such that
Hµ = HϕHν . Then, Hµ is bounded on `p if and only if both Hϕ and Hν are bounded on `p. Moreover,
we have

‖Hµ‖`p = ‖Hϕ‖`p‖Hν‖`p .
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Definition 1.2. For 0 < r < 1 and dµ(θ) = point evaluation at θ = r, the associated Hausdorff
matrix is the Euler matrix of order r, Er = (erj,k), who has the entries

erj,k =

{ (
j
k

)
(1− r)j−krk , 0 ≤ k ≤ j

0 , otherwise

and the `p-norm ‖Er‖`p = r
−1
p .

The matrix domain λA of an infinite matrix A in a sequence space λ is defined by

(1.2) λA = {x = (xn) ∈ ω : Ax ∈ λ}.
It is easy to see that for invertible matrix A and normed space λ, the matrix domain λA is a
normed space with ‖x‖λA := ‖Ax‖λ. Let 1 ≤ p < ∞. The matrix domains er(p) and er(∞)
associated by the Euler matrix Er are

er(p) =

x = (xn) ∈ w :
∑
j

∣∣∣∣∣
j∑

k=0

(
j

k

)
(1− r)j−krk

∣∣∣∣∣
p

<∞


and

er(∞) =

{
x = (xn) ∈ w : sup

j

∣∣∣∣∣
j∑

k=0

(
j

k

)
(1− r)j−krk

∣∣∣∣∣ <∞
}
.

By the notation of (1.2), the Euler sequence spaces er(p) and er(∞) can be redefined by the
matrix domain of

er(p) = (`p)Er and er(∞) = (`∞)Er .

Let r, s be two non-negative numbers that r + s 6= 0. The binomial matrix Br,s = (br,sj,k) is
defined by

br,sj,k =

{
1

(r+s)j

(
j
k

)
sj−krk , 0 ≤ k ≤ j

0 , otherwise
.

If r + s = 1, one can easily see that Br,s = Er. For 1 ≤ p < ∞, the binomial sequence spaces
br,s(p) and br,s(∞) generated by Br,s are defined by

br,s(p) =

 x = (xn) ∈ w :
∑
j

∣∣∣∣∣
j∑

k=0

1

(r + s)j

(
j

k

)
sj−krk

∣∣∣∣∣
p

<∞


and

br,s(∞) =

{
x = (xn) ∈ w : sup

j

∣∣∣∣∣
j∑

k=0

1

(r + s)j

(
j

k

)
sj−krk

∣∣∣∣∣ <∞
}
.

The binomial sequence spaces br,s(p) and br,s(∞) can be represented by the matrix domain of

br,s(p) = (`p)Br,s and br,s(∞) = (`∞)Br,s .

In this study, we investigate the norm and the lower bound of binomial operator Br,s from the
sequence spaces Ap into the sequence spaces Bp and gain inequalities of the form

‖Br,sx‖Bp ≤ U‖x‖Ap and ‖Br,sx‖Bp ≥ L‖x‖Ap
for all sequences x ∈ `p. The constants U and L are not depending on x, and the norm and
the lower bound of T are the smallest and greatest possible value of U and L, respectively. The
problem of finding the norm of matrix operators on the sequence space `p have been studied
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extensively by many mathematicians and abundant literature exists on the topic. Although
topological properties and inclusion relations of br,s(p) have largely been explored [4, 13, 12],
computing the norm of binomial operators on sequence spaces has not been investigated to
date. More recently, the author has computed the norm of operators on several sequence
spaces, [7, 8, 21, 22, 14, 15, 16, 17, 18, 20, 19].

Several papers have published about the binomial sequence space, who is a matrix do-
main associated with the binomial operator or other spaces which obtain by this operator
[4, 5, 11, 24, 23, 6]. Those are all have investigated the properties of this space such as in-
clusions, dual spaces, Schauder basis, compactness, matrix transformations etc. In this study,
we reveal that this matrix is a Hausdorff one, of the Euler type, which is not worth wasting
the mathematicians’ time more. Moreover, the bounds of this operator has computed on some
sequence spaces that has never done before.

2. CLOSE RELATION OF BINOMIAL AND EULER OPERATORS

In this section, we reveal the nature of binomial operator, its `p-norm and its relation with
Euler operators. The following theorem is the main theorem of this study.

Theorem 2.3. Suppose that r and s are two non-negative real numbers with r + s 6= 0. Then, Br,s is
a Hausdorff matrix and

• Br,s = E
r
r+s , where Er is the Euler matrix of order r,

• Er = Br,1−r,
• ‖Br,s‖`p =

(
r+s
r

)1/p,
• Br,sBt,u = Brt,ru+st+su,
• Br,s is invertible and its inverse is B1+ s

r ,
−s
r .

Proof. By letting dµ(θ) = point evaluation at θ = r
r+s , the associated Hausdorff matrix is

the binomial operator which accorollaryding to the Hardy’s formula has the `p-norm
(
r+s
r

)1/p.
This proves the first and the third parts. The second part is obvious. By applying the identity
ErEs = Ers and part one, we have

Br,sBt,u = E
r
r+sE

t
t+u = E

rt
(r+s)(t+u)

= E
rt

rt+ru+st+su = Brt,ru+st+su

which results the fourth item. For obtaining the last part, since (Er)−1 = E
1
r , applying the

second part results in

(Br,s)−1 = (E
r
r+s )−1 = E

r+s
r = B1+ s

r ,
−s
r .

�

Remark 2.1. One can verify the first result of the Theorem 2.3 directly by

br,sj,k =
1

(r + s)j

(
j

k

)
sj−krk =

(
j

k

)(
s

r + s

)j−k (
r

r + s

)k
=

(
j

k

)(
1− r

r + s

)j−k (
r

r + s

)k
= e

r
r+s

j,k .
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Remark 2.2. One can also check the second part of Theorem 2.3 straightly by

(Br,sBt,u)j,k =
1

(r + s)j

j∑
i=k

(
j

i

)(
i

k

)
sj−iri

1

(t+ u)i
ti−kuk

=
1

(r + s)j
(
u

t
)ksj

j!

k!

j∑
i=k

1

(j − i)!(i− k)!

(
rt

s

)i
1

(t+ u)i

=
1

(r + s)j
(
u

t
)ksj

j!

k!

j−k∑
i=0

1

(j − i− k)!i!

(
rt

s(t+ u)

)i+k

= (
s

r + s
)j(

ru

st+ su
)k
(
j

k

) j−k∑
i=0

(
j − k
i

)(
rt

s(t+ u)

)i
= (

s

r + s
)j(

ru

st+ su
)k
(
j

k

)(
1 +

rt

s(t+ u)

)j−k
= (

1

r + s
)j(

ru

t+ u
)k
(
j

k

)(
s+

rt

t+ u

)j−k
=

1

(r + s)j
1

(t+ u)j
(ru)k

(
j

k

)
(st+ su+ rt)j−k

= Brt,ru+st+su
j,k .

2.1. Factorization of the Binomial operators and its applications. In this part of study, we
find some factorization for the binomial operator and obtain several inequalities and inclusions
who are all the straightforward result of the Theorem 2.3.

Corollary 2.1. Let r, s, t, u be positive numbers that r
s <

t
u . The binomial operator Br,s has a factor-

ization of the form

Br,s = E
r(t+u)
t(r+s)Bt,u.

In particular,

• Er = E
r(t+u)
t Bt,u, r < t

t+u ,
• Br,s = E

r
t(r+s)Et, r

r+s < t,
• Er = E

r
tEt, r < t.

As a result of the above factorization, we have the following inequalities.

Corollary 2.2. Let r, s, t, u be positive numbers that rs <
t
u and x ∈ `p. Then,

∞∑
k=0

∣∣∣∣ 1

(r + s)j

(
j

k

)
sj−krkxk

∣∣∣∣p ≤ t(r + s)

r(t+ u)

∞∑
k=0

∣∣∣∣ 1

(t+ u)j

(
j

k

)
uj−ktkxk

∣∣∣∣p .
In particular,

∞∑
k=0

∣∣∣∣(jk
)

(1− r)j−krkxk
∣∣∣∣p ≤ t

r(t+ u)

∞∑
k=0

∣∣∣∣ 1

(t+ u)j

(
j

k

)
uj−ktkxk

∣∣∣∣p , r <
t

t+ u
,

∞∑
k=0

∣∣∣∣ 1

(r + s)j

(
j

k

)
sj−krkxk

∣∣∣∣p ≤ t(r + s)

r

∞∑
k=0

∣∣∣∣(jk
)

(1− t)j−ktkxk
∣∣∣∣p ,

r

r + s
< t
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and
∞∑
k=0

∣∣∣∣(jk
)

(1− r)j−krkxk
∣∣∣∣p ≤ t

r

∞∑
k=0

∣∣∣∣(jk
)

(1− t)j−ktkxk
∣∣∣∣p , r < t.

Proof. The proof is obvious by Corollary 2.1. �

Theorem 2.4. Let r, s, t, u be positive numbers that rs <
t
u . Then, bt,u(p) ⊂ br,s(p).

In particular,
• bt,u(p) ⊂ er(p), r < t

t+u ,
• et(p) ⊂ br,s(p), r

r+s < t,
• et(p) ⊂ er(p), r < t.

Proof. This is the straightforward result of Corollary 2.2. �

Remark 2.3. The last part of previous theorem is the Theorem 3.4 of [1].

Remark 2.4. Since r
s <

t
u , hence r

r+s <
t

t+u . Now, accorollaryding to the Theorem 3.4 of [1],
bt,u(p) = e

t
t+u (p) ⊂ e

r
r+s (p) = br,s(p).

2.2. The α-, β- and γ-dual of br,s(p). In this example, we show that Theorem 4.2 of [4] can be
easily gained from Theorem 4.4 of [1]. Therefore, let us bring that theorem first

Theorem 2.5 ([1, Theorem 4.4]). Define the sets Arq and Ar∞ as follows. For 1 ≤ p <∞,

Arq =

{
a = (ak) ∈ w : sup

K∈F

∑
k

∣∣∣∣∣∑
n∈K

(
n

k

)
(r − 1)n−kr−nan

∣∣∣∣∣
q

<∞

}
and

Ar∞ =

{
a = (ak) ∈ w : sup

k∈N

∑
n

∣∣∣∣(nk
)

(r − 1)n−kr−nan

∣∣∣∣ <∞
}
.

Then, (Er1)α = Ar∞ and (er(p))α = Arq , where 1 < p ≤ ∞.

Now, we obtain the α-dual of br,s(p) and br,s(1). By applying the above theorem and the
identity Br,s = E

r
r+s of Theorem 2.3,

(br,s(p))α = (e
r
r+s (p))α = A

r
r+s
q

=

{
a = (ak) ∈ w : sup

K∈F

∑
k

∣∣∣∣∣∑
n∈K

(
n

k

)(
r

r + s
− 1

)n−k (
r

r + s

)−n
an

∣∣∣∣∣
q

<∞

}

=

{
a = (ak) ∈ w : sup

K∈F

∑
k

∣∣∣∣∣∑
n∈K

(
n

k

)
(−s)n−kr−n(r + s)kan

∣∣∣∣∣
q

<∞

}
= V r,s1

and

(br,s(1))α = (e
r
r+s (1))α = A

r
r+s
∞

=

{
a = (ak) ∈ w : sup

k∈N

∑
n

∣∣∣∣∣
(
n

k

)(
r

r + s
− 1

)n−k (
r

r + s

)−n
an

∣∣∣∣∣ <∞
}

=

{
a = (ak) ∈ w : sup

k∈N

∑
n

∣∣∣∣(nk
)

(−s)n−kr−n(r + s)kan

∣∣∣∣ <∞
}

= V r,s2 ,
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where V r,s1 and V r,s2 are the α-duals of br,s(p) and br,s(1) respectively, as the author of [4] has
proved in Theorem 4.2. Note that for obtaining the β- and γ-duals of br,s(p) and br,s(1) ([4],
Theorem 4.3), we only need changing r to r

r+s in Theorems 4.5 and 4.6 of [1].

3. BOUNDS OF BINOMIAL OPERATOR ON SOME SEQUENCE SPACES

In this section, we investigate the bounds of binomial operator on some sequence spaces. In
so doing, the following lemma is needed.

Lemma 3.1 ([15, Lemma 2.1]). Let U is a bounded operator on `p, and Ap and Bp be two matrix
domains such that Ap ' `p. Then, the following statements hold:

(i) If BT is a bounded operator on `p, then T is a bounded operator from `p into Bp and

‖T‖`p,Bp = ‖T‖`p and L(T )`p,Bp = L(BT ).

(ii) If T has a factorization of the form T = UA, then T is a bounded operator from the matrix
domain Ap into `p and

‖T‖Ap,`p = ‖U‖`p and L(T )Ap,`p = L(U).

(iii) If BT = UA, then T is a bounded operator from the matrix domain Ap into Bp and

‖T‖Ap,Bp = ‖U‖`p and L(T )Ap,Bp = L(U).

In particular, if AT = UA, then T is a bounded operator from the matrix domain Ap into itself
and ‖T‖Ap = ‖U‖`p and L(T )Ap = L(U). Also, if T and A commute, then ‖T‖Ap = ‖T‖`p
and L(T )Ap = L(T ).

Throughout this section, we use the notations L(·) for the lower bound of operators on `p
and L(·)X,Y for the lower bound of operators from the sequence space X into the sequence
space Y .

3.1. Norm of binomial operator on difference sequence space. The backward difference ma-
trix ∆ = (δj,k) is defined by

δj,k =

 1 , k = j
−1 , k = j − 1

0 , otherwise

and the difference sequence space associated with this matrix is called bvp

bvp =

{
x = (xn) :

∞∑
n=1

|xn − xn−1|p <∞

}
, 1 ≤ p <∞,

which has the norm ‖x‖bvp = (
∑∞
n=1 |xn − xn−1|p)

1/p
. The idea of difference sequence spaces

was introduced by Kizmaz [10]. Recently, Roopaei in [14] has computed the norm of Hausdorff
operators on bvp sequence space.

Theorem 3.6 ([14, Theorem 2.4]). The Hausdorff operator Hµ is a bounded operator on bvp and

‖Hµ‖bvp = 1.

We have proved that the binomial operator is a Hausdorff operator of Euler type, hence

Corollary 3.3. The binomial operator Br,s is a bounded operator on bvp and ‖Br,s‖bvp = 1.
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3.2. Bounds of binomial operator on the Hausdorff sequence space. The Hausdorff matrix
contains the famous classes of matrices. For α > 0, some of these classes are as follows:

• The choice dµ(θ) = α(1− θ)α−1dθ gives the Cesàro matrix of order α,
• The choice dµ(θ) = αθα−1dθ gives the Gamma matrix of order α,
• The choice dµ(θ) = | log θ|α−1

Γ(α) dθ gives the Hölder matrix of order α.

Theorem 3.7 ([3, Theorem 1]). Let p ≥ 1, and let Hµ is a bounded Hausdorff matrix on `p. Then,

‖Hµx‖`p ≥ L‖x‖`p
for every decreasing sequence x of non-negative terms, where

Lp =

∞∑
k=0

(∫ 1

0

(1− θ)kdµ(θ)

)p
.(3.3)

The constant in (3.3) is the best possible, and there is equality only when x = 0 or p = 1 or dµ(θ) is the
point mass at 1.

As an example of Theorem 3.7, we compute the lower bound of the Cesàro, Gamma and
Euler operators by choosing their associated dµ(θ).

• L(Cα) =
{∑∞

k=0

(
α
α+k

)p}1/p

,

• L(Γα) =
{∑∞

k=0

(
α+k
k

)−p}1/p

,

• L(Eα) = 1
[1−(1−α)p]1/p

, 0 < α < 1,
• L(Br,s) = 1

[1−( s
r+s )p]1/p

(by Theorem 2.3).

We use the notation hau(p) as the set of all sequences whose Hµ-transforms are in the space `p,
that is

hau(p) =

x = (xj) ∈ ω :

∞∑
j=0

∣∣∣∣∣
j∑

k=0

∫ 1

0

(
j

k

)
θk(1− θ)j−kdµ(θ)xk

∣∣∣∣∣
p

<∞

 ,

where µ is a fixed probability measure on [0, 1].

Theorem 3.8. The binomial operator Br,s is a bounded operator from `p into hau(p) and

‖Br,s‖`p,hau(p) =

(
r + s

r

)1/p ∫ 1

0

θ
−1
p dµ(θ)

and

L(Br,s)`p,hau(p) ≥


∑∞
k=0

(∫ 1

0
(1− θ)kdµ(θ)

)p
1− ( s

r+s )p


1/p

.

In particular, for r + s = 1, the Euler operator Er is a bounded operator from `p into hau(p) and

‖Er‖`p,hau(p) = r
−1
p

∫ 1

0

θ
−1
p dµ(θ) and L(Er)`p,hau(p) ≥


∑∞
k=0

(∫ 1

0
(1− θ)kdµ(θ)

)p
1− (1− r)p


1/p

.
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Proof. Applying Lemma 3.1 part (i) and Theorems 1.2 and 2.3, result that

‖Br,s‖`p,hau(p) = ‖HµBr,s‖`p = ‖Hµ‖`p‖Br,s‖`p =

(
r + s

r

)1/p ∫ 1

0

θ
−1
p dµ(θ).

Also, the identity L(AB) ≥ L(A)L(B) results in

L(Br,s)`p,hau(p) = L(Br,sHµ) ≥

{
1

1− ( s
r+s )p

}1/p{ ∞∑
k=0

(∫ 1

0

(1− θ)kdµ(θ)

)p}1/p

.

�

By letting dµ(θ) = α(1−θ)α−1dθ in the definition of the Hausdorff matrix, the Cesàro matrix
Cα = (Cαjk) of order α is defined as follows

Cαj,k =


(
α+j−k−1

j−k
)(

α+j
j

) , 0 ≤ k ≤ j

0 , otherwise
,

which accorollaryding to the Hardy’s formula has the `p-norm

‖Cα‖`p =
Γ(α+ 1)Γ(1/p∗)

Γ(α+ 1/p∗)
.

Note that, C0 = I , where I is the identity matrix and C1 is the well-known Cesàro matrix C
which has the `p-norm ‖C‖`p = p∗ and the lower bound L(C) = ζ(p)1/p. We use the notation
ces(α, p) as the set of all sequences whose Cα-transforms are in the space `p, that is

ces(α, p) =

x = (xj) ∈ ω :

∞∑
j=0

∣∣∣∣∣ 1(
α+j
j

) j∑
k=0

(
α+ j − k − 1

j − k

)
xk

∣∣∣∣∣
p

<∞

 .

The space ces(α, p) is a Banach space which has the norm

‖x‖ces(α,p) =

 ∞∑
j=0

∣∣∣∣∣ 1(
α+j
j

) j∑
k=0

(
α+ j − k − 1

j − k

)
xk

∣∣∣∣∣
p
1/p

.

We use the notation ces(p) instead of ces(1, p) as the sequence space associated with the well-
known Cesàro matrix C. For more information about Cesàro matrix, the readers can refer to
[20, 19].

Corollary 3.4. The binomial operator Br,s is a bounded operator from `p into ces(α, p) and

‖Br,s‖`p,ces(α,p) =

(
r+s
r

)1/p
Γ(α+ 1)Γ(1/p∗)

Γ(α+ 1/p∗)

and

L(Br,s)`p,ces(α,p) ≥


∑∞
k=0

(
α
α+k

)p
1− ( s

r+s )p


1/p

.

In particular, for r + s = 1 and α = 1, the Euler operator Er is a bounded operator from `p into ces(p)

and ‖Er‖`p,ces(p) = r−1/pp
p−1 and L(Er)`p,ces(p) ≥

{
ζ(p)

1−(1−r)p

}1/p

.
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By letting dµ(θ) = αθα−1dθ in the definition of the Hausdorff matrix, the Gamma matrix of
order α, Γα = (γαj,k), is

γαj,k =

 (α+k−1
k )

(α+j
j )

, 0 ≤ k ≤ j
0 , otherwise

,

which accorollaryding to the Hardy’s formula has the `p-norm ‖Γα‖`p = αp
αp−1 . Note that, Γ1 is

the well-known Cesàro matrix. The Gamma space of order α, gam(α, p), is

gam(α, p) =

 x = (xk) ∈ ω :
∞∑
j=0

∣∣∣∣∣ 1(
α+j
j

) j∑
k=0

(
α+ k − 1

k

)
xk

∣∣∣∣∣
p

<∞

 ,

which is a Banach spaces with the norm

‖x‖gam(α,p) =

 ∞∑
j=0

∣∣∣∣∣ 1(
α+j
j

) j∑
k=0

(
α+ k − 1

k

)
xk

∣∣∣∣∣
p
 1

p

.

Note that gam(1, p) = ces(p).

Corollary 3.5. The binomial operator Br,s is a bounded operator from `p into gam(α, p) and

‖Br,s‖`p,gam(α,p) =

(
r+s
r

)1/p
αp

αp− 1

and

L(Br,s)`p,gam(α,p) ≥

{∑∞
k=0

(
α+k
k

)−p
1− ( s

r+s )p

}1/p

.

In particular, for r + s = 1 and α = 1, the Euler operator Er is a bounded operator from `p into ces(p)

and ‖Er‖`p,ces(p) = r−1/pp
p−1 and L(Er)`p,ces(p) ≥

{
ζ(p)

1−(1−r)p

}1/p

.

Corollary 3.6. The binomial operator Br,s is a bounded operator from `p into eα(p) and

‖Br,s‖`p,eα(p) =

(
r + s

rα

)1/p

and L(Br,s)`p,eα(p) ≥
1

[1− (1− α)p]1/p[1− ( s
r+s )p]1/p

.

In particular, for r + s = 1, the Euler operator Er is a bounded operator from `p into eα(p) and
‖Er‖`p,eα(p) = (rα)−1/p and L(Er)`p,eα(p) ≥ 1

[1−(1−α)p]1/p[1−(1−r)p]1/p
.

Corollary 3.7. The binomial operator Br,s is a bounded operator from `p into hol(α, p) and

‖Br,s‖`p,hol(α,p) =

(
r + s

r

)1/p(
p

p− 1

)α
.

In particular, for r + s = 1 and α = 1, the Euler operator Er is a bounded operator from `p into ces(p)
and ‖Er‖`p,ces(p) = r−1/pp

p−1 .

Corollary 3.8. The binomial operator Br,s is a bounded operator from `p into bt,u(p) and

‖Br,s‖`p,bt,u(p) =
(r + s)1/p(t+ u)1/p

(rt)1/p
and L(Br,s)`p,bt,u(p) ≥

1

[1− ( u
t+u )p]1/p[1− ( s

r+s )p]1/p
.

In particular,
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• for r+s = 1, the Euler operatorEr is a bounded operator from `p into bt,u(p) and ‖Er‖`p,bt,u(p) =(
t+u
rt

)1/p and L(Er)`p,bt,u(p) ≥ 1
[1−( u

t+u )p]1/p[1−(1−r)p]1/p
,

• for t + u = 1, the binomial operator Br,s is a bounded operator from `p into et(p) and
‖Br,s‖`p,et(p) =

(
r+s
rt

)1/p and L(Br,s)`p,et(p) ≥ 1
[1−(1−t)p]1/p[1−( s

r+s )p]1/p
,

• for r + s = t + u = 1, the Euler operator Er is a bounded operator from `p into et(p) and
‖Er‖`p,et(p) = (rt)−1/p and L(Er)`p,et(p) ≥ 1

[1−(1−t)p]1/p[1−(1−r)p]1/p
.

We can also prove our results in the above corollary accorollaryding to Theorem 2.3.

Remark 3.5. The binomial operator Br,s is a bounded operator from `p into bt,u(p) and

‖Br,s‖`p,bt,u(p) = ‖Br,sBt,u‖`p = ‖Brt,ru+st+su‖`p

=

(
rt+ ru+ st+ su

rt

)1/p

=
(r + s)1/p(t+ u)1/p

(rt)1/p
.

In particular,
• for r + s = 1, the Euler operator Er is a bounded operator from `p into bt,u(p) and

‖Er‖`p,bt,u(p) = ‖ErBt,u‖`p = ‖Br,1−rBt,u‖`p = ‖Brt,ru+(1−r)t+(1−r)u‖`p

= ‖Brt,u+t−rt‖`p =

(
u+ t

rt

)1/p

,

• for t+ u = 1, the binomial operator Br,s is a bounded operator from `p into et(p) and

‖Br,s‖`p,et(p) = ‖EtBr,s‖`p = ‖Bt,1−tBr,s‖`p

= ‖Brt,r+s−rt‖`p =

(
r + s

rt

)1/p

,

• for r + s = t+ u = 1, the Euler operator Er is a bounded operator from `p into et(p) and

‖Er‖`p,et(p) = ‖ErEt‖`p = ‖Br,1−rBt,1−t‖`p = ‖Brt,1−rt‖`p = (rt)−1/p.

Accorollaryding to Lemma 3.1, for obtaining the bound of the operator T from the sequence
space Ap into `p there is need that we have a factorization for T of the form T = UA. The
existence of this factorization for the Hausdorff operators is a challenging problem.

Theorem 3.9. If Br,s has a factorization of the form Br,s = UHµ, then the binomial operator Br,s is a
bounded operator from hau(p) into `p and

‖Br,s‖hau(p),`p =

(
r + s

r

)1/p(∫ 1

0

θ
−1
p dµ(θ)

)−1

.

In particular, for r + s = 1, the Euler operator Er is a bounded operator from hau(p) into `p and

‖Er‖hau(p),`p = r
−1
p

(∫ 1

0
θ

−1
p dµ(θ)

)−1

.

Proof. Similar to Bennett ([2, p. 120]), if Br,s has a factorization of the form Br,s = HωHµ,
where ω is a quotient measure, then Lemma 3.1 part (ii) and Theorem 1.2 result in

‖Br,s‖hau(p),`p = ‖Hω‖`p =

(
r + s

r

)1/p(∫ 1

0

θ
−1
p dµ(θ)

)−1

.

�
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Corollary 3.9. The binomial operator Br,s is a bounded operator from bt,u(p) into `p and

‖Br,s‖bt,u(p),`p =

(
r + s

r

)1/p(
t

t+ u

)1/p

.

In particular,
• for r+s = 1, the Euler operatorEr is a bounded operator from bt,u(p) into `p and ‖Er‖bt,u(p),`p =(

t
rt+ru

)1/p

,
• for t + u = 1, the binomial operator Br,s is a bounded operator from et(p) into `p and
‖Br,s‖et(p),`p =

(
rt+st
r

)1/p,
• for r + s = t + u = 1, the Euler operator Er is a bounded operator from et(p) into `p and
‖Er‖et(p),`p = ( tr )1/p.

Proof. Let the binomial operator Br,s has a factorization of the form Br,s = UBt,u. Then, U is

U = Br,s(Bt,u)−1 = Br,sB1+u
t ,

−u
t = Br+

ru
t ,s−

ru
t ,

hence according to Lemma 3.1

‖Br,s‖bt,u(p),`p = ‖U‖`p = ‖Br+ ru
t ,s−

ru
t ‖`p

=

(
r + s

r

)1/p(
t

t+ u

)1/p

.

�

Corollary 3.10. The binomial operator Br,s is a bounded operator on Hausdorff sequence space hau(p)
and

‖Br,s‖hau(p) =

(
r + s

r

)1/p

and L(Br,s)hau(p) =
1

[1− ( s
r+s )p]1/p

.

In particular, for r + s = 1, the Euler operator Er is a bounded operator on hau(p) and ‖Er‖hau(p) =

r
−1
p and L(Er)hau(p) = 1

[1−(1−r)p]1/p
.

Proof. Since Hausdorff operators commute, hence by Lemma 3.1, we have

‖Br,s‖hau(p) = ‖Br,s‖`p =

(
r + s

r

)1/p

and

L(Er)hau(p) = L(Er) =
1

[1− (1− r)p]1/p
.

�

4. LOWER BOUND OF THE TRANSPOSED BINOMIAL OPERATOR ON THE TRANSPOSED
HAUSDORFF MATRIX DOMAINS

In this section, we intend to compute the lower bound of the transposed binomial operator
(Br,s)t on the transposed Hausdorff sequence space haut(p) for 0 < p < 1. For this reason, we
need the following theorem which is an analogy of Hardy’s formula.
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Theorem 4.10 ([2, Theorem 7.18]). Fix p, 0 < p < 1, and letHµt be the transposed Hausdorff matrix.
Then,

‖Hµtx‖`p ≥
(∫ 1

0

θ
1−p
p dµ(θ)

)
‖x‖`p

for every sequence x of non-negative terms. The constant is best possible, and there is equality only when
x = 0 or p = 1 or H = I .

Theorem 4.11 ([2, Corollary 7.27]). If Hµt and Hνt are two transposed Hausdorff matrices, then the
lower bound (on `p, 0 < p < 1) of their product is the product of their lower bounds.

Theorem 4.12. The transposed binomial operator is a bounded operator from `p into haut(p) and

L((Br,s)t)`p,haut(p) =

(
r

r + s

)1/p∗ ∫ 1

0

θ
1−p
p dµ(θ).

In particular, for r+s = 1, the transposed Euler operatorErt is a bounded operator from `p into haut(p)
and L(Ert)`p,haut(p) = r1/p∗

∫ 1

0
θ

1−p
p dµ(θ).

Proof. The proof is obvious accorollaryding to the Lemma 3.1 and Theorems 4.11 and 4.10. �
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[20] H. Roopaei, D. Foroutannia, M. İlkhan and E. E. Kara: Cesàro spaces and norm of operators on these matrix domains.

Mediterr. J. Math. 17, 121 (2020).
[21] H. Roopaei, D. Foroutannia: The norms of certain matrix operators from `p spaces into `p(∆n) spaces. Linear Multilin-

ear Algebra 67 (4) (2019), 767-776.
[22] H. Roopaei, D. Foroutannia: The norm of matrix operators on Cesàro weighted sequence space. Linear Multilinear

Algebra 67 (1) (2019), 175-185.



Binomial Operator as a Hausdorff Operator of the Euler Type 177

[23] A. Sönmez: Some new sequence spaces derived by The composition of binomial matrix and double band matrix. Journal of
Applied Analysis and Computation 9 (1) (2019), 231-244.

[24] T. Yaying, B. Hazarika: On sequence spaces generated by binomial difference operator of fractional order. Mathematica
Slovaca 69 (4) (2019).

HADI ROOPAEI

ISLAMIC AZAD UNIVERSITY MARVDASHT BRANCH

YOUNG RESEARCHERS AND ELITE CLUB

MARVDASHT, IRAN

ORCID: 0000-0001-7190-3387
E-mail address: h.roopaei@gmail.com


	1. Introduction
	2. Close relation of Binomial and Euler operators
	2.1. Factorization of the Binomial operators and its applications
	2.2. The -, - and -dual of br,s(p)

	3. Bounds of binomial operator on some sequence spaces
	3.1. Norm of binomial operator on difference sequence space
	3.2. Bounds of binomial operator on the Hausdorff sequence space

	4. Lower bound of the transposed binomial operator on the transposed Hausdorff matrix domains
	References

