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Abstract
Dealing with a question initiated by Liu [Meromorphic functions sharing a set with ap-
plications to difference equations, J. Math. Anal. Appl., 2009], we have investigated the
situation when a finite order entire function and its shift differential operator share two
sets of small functions. Our result has improved and extended the results of Chen-Chen
[Entire functions sharing sets of small functions with their difference operators or shifts,
Math. Slovaca, 2013] and Cui-Chen [The conjecture on unity of meromorphic functions
concerning their differences, J. Difference Equ. Appl., 2016]. We have exhibited several
examples relevant to the content of the paper.
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1. Introduction and results
In this paper, the term “meromorphic" will be used to mean meromorphic in the whole

complex plane, unless specifically stated otherwise. At the outset, we have assumed that
the readers are familiar with the standard definitions and notations of the Nevanlinna
theory. Still we suggest the readers to make a glance over [5, 8, 9].

In addition, for any non-constant meromorphic function f(z) and for all r outside of a
possible exceptional set of finite linear measure, we define S(r, f) = o(T (r, f)). We denote
by S(f) the set of all meromorphic functions a(z) such that T (r, a(z)) = S(r, f) and a(z)
is called small function compared to f(z).

Next we explain some definitions and notations which are used in the paper.
For some a ∈ C, we denote by E(a; f), the collection of the zeros of f −a, where a zero is

counted according to its multiplicity. In addition to this, when a = ∞, the above definition
implies that we are considering the poles. In the same manner, by E(a; f), we denote the
collection of the distinct zeros or poles of f − a according as a ∈ C or a = ∞ respectively.
For any two non-constant meromorphic functions f and g, if E(a; f) = E(a; g) (E(a; f) =
E(a; g)), we say that f and g share the value a CM (IM). If a = a(z) is a small function
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we define that f and g share a CM or a IM according as f − a and g − a share 0 CM or 0
IM respectively.

Let S1 be a subset containing distinct small functions of S(f) and Ef (S1) =
∪a(z)∈S1{z : f(z) − a(z) = 0}, where each zero is counted according to its multiplic-
ity. If we do not count the multiplicity then the set ∪a(z)∈S1{z : f(z) − a(z) = 0} is
denoted by Ef (S1). If Ef (S1) = Eg(S1) we say that f and g share the set S1 CM. On the
other hand, if Ef (S1) = Eg(S1), we say that f and g share the set S1 IM.

For a meromorphic function f(z) and a non-zero complex constant c, the shift operator
of f(z) is denoted by f(z + c). We use ∆cf and ∆k

c f to denote the difference and k-th
order difference operators of f(z), defined respectively by

∆cf = f(z + c) − f(z), ∆k
c f = ∆c(∆k−1

c f) =
k∑

i=0
(−1)k−i

(
k

i

)
f(z + ic), k ∈ N, k ≥ 2.

Next we define linear shift, shift-differential and differential operators respectively as
follows:

L1(f(z)) = a0(z)f(z) +
k∑

i=1
ai(z)f(z + ci),

L2(f(z)) =
s∑

i=1
bi(z)f (i)(z + ci), L3(f(z)) =

t∑
i=1

di(z)f (i)(z),

where ai(z) (i = 0, 1, . . . , k); bi(z) (i = 1, . . . , s); di(z) (i = 1, . . . , t) ∈ S(f) and all c′
is are

non-zero complex constants. For the sake of convenience we shall call L1(f(z)) + L3(f(z))
as linear shift and differential operator and denote it by L̂(f(z)) ( ̸≡ 0). In particular,
for some non-zero complex constant c if we choose ci = ic (i = 1, . . . , k), and ak(z)
( ̸≡ 0) in L1(f(z)) we call the operator as linear c-shift operator and is denoted by Lcf =

k∑
i=0

ai(z)f(z + ic). In addition to it, if the coefficients of Lcf are constants satisfying

k∑
i=0

ai = 0, then this operator will be called reduced linear c-shift operator and recently it

has been denoted by Lr
cf (see [1]). In this paper, for the first two theorems we use the

operator L̂(f(z)) while for the last one, we use the operator Lr
cf .

In 2009, Liu [7] first investigated the uniqueness of a finite order entire function together
with its difference operator sharing a set containing two elements. Liu’s [7] result was as
follows:

Theorem 1.1. [7] Let f be a transcendental entire function of finite order and let a be a
non-zero finite constant. If f and ∆cf share the set {a, −a} CM, then f(z + c) ≡ 2f(z).

In [7] the author posed an open question: “What happens if in Theorem 1.1, {a, −a} is
replaced by {a(z), b(z)} where a(z), b(z) ∈ S(f) are two non-vanishing periodic functions
with period c?"

Chen-Chen [2] answered the question of Liu [7] in the following way:

Theorem 1.2. [2] Let f(z) be a transcendental entire function of finite order, c ∈ C \ {0}
and let a(z) ∈ S(f) is a periodic entire function with period c such that a(z) ̸≡ 0. If f and
Lcf share the sets {a(z), −a(z)} and {0} CM, then Lcf(z) ≡ ±f(z) for all z ∈ C.

In the paper, we have been able to reduce the sharing condition {0} CM in Theorem
1.2 to {0} IM. We have also extended Theorem 1.2 for L̂(f(z)) as follows:
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Theorem 1.3. Let f(z) be a transcendental entire function of finite order, L̂(f(z)) be
the shift and differential operator such that L̂(f(z)) ̸≡ 0 and a(z) ( ̸≡ 0) ∈ S(f) be an
entire function. If f(z) and L̂(f(z)) share the sets {a(z), −a(z)} CM and {0} IM then
L̂(f(z)) ≡ ±f(z).

In the next theorem, we shall show that if sharing of CM, IM of the range sets in
Theorem 1.3 is reversed the conclusion remains same.
Theorem 1.4. Under the same situation as in Theorem 1.3, if f(z) and L̂(f(z)) share
the sets {a(z), −a(z)} IM and {0} CM then L̂(f(z)) ≡ ±f(z).
Remark 1.5. Following the same procedure as used to prove the above two theorems,
the same two can be extended for L1(f(z)) + L2(f(z)) + L3(f(z)) also.

Following two examples show that in Theorems 1.3 and 1.4, the case L̂(f(z)) ≡ −f(z)
actually occur.
Example 1.6. Let f(z) = sin z. For a suitable choice of coefficients, one can make
L̂(f(z)) = −sin z. Then clearly f and L̂(f(z)) share the sets {1, −1}, {0} CM and
L̂(f(z)) = −f(z).

Example 1.7. Let f = e
2πiz

c +1
e

πiz
c

. Choose L̂(f(z)) = (−1)k−1

2k ∆k
c f = −f . Clearly f and

L̂(f(z)) share the sets {1, −1}, {0} CM and L̂(f(z)) = −f(z).
Next examples show that {0} sharing can not be removed in Theorems 1.3 and 1.4.

Example 1.8. Let f(z) = e2z + 3ez + 1 and L̂(f(z)) = a2f(z + c2) + a1f(z + c1) + a0f(z).
Choosing c2 = πi; c1 = πi

2 ; a2 = 11+15i
12 ; a1 = 5

2 ; a0 = 43−15i
12 , we get L̂(f(z)) = 2e2z +

8ez + 7. One can easily check that f and L̂(f(z)) share the sets {1, −1} IM but not share
{0} and so L̂(f(z)) ̸= ±f .
Example 1.9. Let f(z) = sin z. For a suitable choice of coefficients, one can make
L̂(f(z)) = cos z. e.g., choose c1 = π

2 ; a0 = d2, a1 + d1 = 1 and all other coefficients are
zero. Clearly we have L̂(f(z)) = a0f(z) + a1f(z + c1) + d1f ′(z) + d2f ′′(z) = cosz. Though
f and L̂(f(z)) share the set

{
1√
2 , − 1√

2

}
CM but L̂(f(z)) ̸= ±f(z).

Following example shows that in Theorems 1.3 and 1.4, one can not replace two specific
sets by two arbitrary sets.

Example 1.10. Let f(z) = e
λz
c + a + b, where eλ − 1 = i, where a and b be two distinct

complex numbers. Clearly L̂(f(z)) = ∆k
c f = ike

λz
c . For k = 4m − 2, m ∈ N, L̂(f(z)) and

f share the sets {a, b} and {a+b
2 } CM, but L̂(f(z)) ̸= ±f(z).

The following example shows that the infinite order entire function can also satisfy
Theorems 1.3 and 1.4. However we were unable to deduce the analogous result of those
two theorems for infinite order entire function.

Example 1.11. Let f(z) = e−e
πiz

c − ee
πiz

c . Then L̂(f(z)) = 1
2k ∆k

c f = (−1)kf(z). Here
L̂(f(z)) = (−1)kf(z), which shows that L̂(f(z)) = ±f(z) according to k is even or odd.

From the very definitions of sharing of sets we observe that the sharing of two sets
{a(z), −a(z)} and {0} can also be visualized as a specific sharing of a single set comprises
of three elements, namely, {a(z), −a(z), 0}. But the following example shows that Theorem
1.3 is not in general true for a set consisting of three elements for IM sharing.
Example 1.12. Following the same procedure as done in Example 1.9 we can find
L̂(f(z)) = cos z, when f(z) = sin z. One can easily check that f and L̂(f(z)) share
the set {1, −1, 0} IM but L̂(f(z)) ̸= ±f(z).
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In view of Example 1.12, the following question is inevitable:

Question 1.13. What happens, if under the same situations as in Theorem 1.3, f and
L̂(f(z)) share a single set containing 3 elements?

By the following example, we see that a finite order meromorphic function f and L̂(f(z))
fulfill all the conditions of Theorems 1.3, 1.4 and L̂(f(z)) ≡ −f(z).

Example 1.14. Let f(z) = e
πiz

c

e
2πiz

c +1
. Then L̂(f(z)) = 1

2∆cf = − e
πiz

c

e
2πiz

c +1
= −f . Clearly f

and L̂(f(z)) share the sets {a(z), −a(z)} and {0} CM.

Next we pose the following question:

Question 1.15. Are Theorems 1.3 and 1.4 valid for the operator ∆cf or even for L̂(f(z)),
where f is a finite order meromorphic function?

From Theorems 1.3 and 1.4, the following corollary immediately follows.

Corollary 1.16. In Theorems 1.3 and 1.4, particularly if L̂(f(z)) is ∆cf then ∆cf ≡ f .

In view of Theorem 1.3, it will be natural to investigate whether in the same theorem,
the set {0} can be replaced by {b(z)}, where b(z) is non-zero periodic small function of f .
In this respect, we would first like to mention the following contribution due to Chen-Chen
[2].

Theorem 1.17. [2] Let f(z) be a transcendental entire function of finite order, c ∈ C\{0},
and let a(z) ( ̸≡ 0), b(z) ∈ S(f) be two periodic entire functions with period c such that
a(z) and b(z) are linearly dependent over the complex field, but b(z) ̸≡ ±a(z). If f(z) and
∆cf share the sets {a(z), −a(z)} and {b(z)} CM, and if the inequality

N

(
r,

1
f(z) − b(z)

)
≥ λT (r, f),

holds for λ ∈ (2
3 , 1], then

∆cf − b(z)
f − b(z)

= t,

where t ∈ C \ {0}.

In Theorem 1.17, as t ∈ C \ {0}, the specific relation between the function and its
difference operator can not be inferred directly. Considering constants in stead of small
functions, in 2016, Cui-Chen [3] improved Theorem 1.17 as follows:

Theorem 1.18. [3] Let f(z) be a transcendental entire function of finite order, and c
be a non-zero complex constant. Let a and b be two finite complex constants satisfying
b2 − a2 ̸= 0 and n be a positive integer. If ∆n

c f(z) and f(z) share the sets {a, −a} and {b}
CM, then ∆n

c f(z) ≡ ±f(z). Moreover if b ̸= 0, then ∆n
c f(z) ≡ f(z).

In view of Theorem 1.17, it will be interesting to explore the analogous result of Theorem
1.18 for small functions. In our next theorem, we are able to derive the straightforward
relationship between the function and its reduced linear c-shift operator when they share
two sets of small functions which improves Theorems 1.17 and 1.18.

Theorem 1.19. Let f(z) be a transcendental entire function of finite order, c be a complex
number such that Lr

cf ̸≡ 0. Let a(z) ( ̸≡ 0), b(z) ( ̸≡ 0) ∈ S(f) be two periodic small
functions with period c such that b(z) ̸≡ ±a(z). If f and Lr

cf share the sets {a(z), −a(z)}
CM and {b(z)} CM, then Lr

cf ≡ f .

Remark 1.20. Putting b = −a in Example 1.10, it is easy to see that in Theorem 1.19
the condition b(z) ( ̸≡ 0) is essential.
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In view of Theorem 1.19, it is quite natural to raise the question:

Question 1.21. Does Theorem 1.19 hold for L1(f(z)) or even for L1(f(z)) + L2(f(z)) +
L3(f(z)) sharing {a(z), −a(z)} CM and {b(z)} IM?

Our next example shows that Theorems 1.3 and 1.4 are not true for any two finite order
entire functions.

Example 1.22. Let f(z) = ez and g(z) = e−z. Clearly f and g share the set {i, −i} CM
and {0} CM but g ̸≡ ±f .

2. Lemmas
Lemma 2.1. [4] Let f(z) be a meromorphic function of finite order and c ∈ C\{0}. Then

m

(
r,

f(z + c)
f(z)

)
+ m

(
r,

f(z)
f(z + c)

)
= S(r, f).

Lemma 2.2. [9] Let f(z) be a non-constant meromorphic function in the complex plane,
and let R(f) = P (f)

Q(f) , where

P (f) =
p∑

k=0
ak(z)fk and Q(f) =

q∑
j=0

bj(z)f j

are two mutually prime polynomials in f . If the coefficients ak(z) for k = 0, 1, . . . , p and
bj(z) for j = 0, 1, . . . , q are small functions of f with ap(z) ̸≡ 0 and bq(z) ̸≡ 0, then

T (r, R(f)) = max{p, q}T (r, f) + S(r, f).

Lemma 2.3. ([4]:Corollary 3.4 or [6]:Theorem 2.4) Let w(z) be a non-constant finite order
meromorphic solution of

P (z, w) = 0,

where P (z, w) is a difference polynomial in w(z). If P (z, a) ̸≡ 0 for a meromorphic
function a(z) satisfying T (r, a) = S(r, w), then

m

(
r,

1
w − a(z)

)
= S(r, w),

where the exceptional set associated with S(r, w) has at most finite logarithmic measure.

Lemma 2.4. Let f(z) be a non-constant meromorphic function in C and p ∈ C. Then
for a small function b(z) of f ,

m

(
r,

L̂(f(z)) + pL̂(b(z))
f(z) + p b(z)

)
= S(r, f).

When L̂(f(z)) = Lr
cf(z) and b(z) is a periodic small function of f with period c, then

m

(
r,

Lr
cf(z)

f(z) + p b(z)

)
= S(r, f).

Proof. Clearly,

L̂(f(z) + p b(z)) = L̂(f(z)) + pL̂(b(z)).

Let g(z) = f(z)+p b(z). Then g is a meromorphic function with T (r, g) = T (r, f)+S(r, f)
and so S(r, g) = S(r, f).
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Therefore in view of Lemma 2.1,

m

(
r,

L̂(f(z)) + pL̂(b(z))
f(z) + p b(z)

)
= m

(
r,

L̂(f(z) + p b(z))
f + p b(z)

)

= m

(
r,

L̂(g(z))
g(z)

)
= S(r, g) = S(r, f).

Since b(z) is a periodic small function of f with period c, so from the definition of Lr
cf we

obtain Lr
c b(z) = 0. Therefore,

m

(
r,

Lr
cf(z)

f + p b(z)

)
= S(r, f).

�

Lemma 2.5. Let f(z) be a transcendental entire function of finite order, c ∈ C \{0}, and
let a(z) ∈ S(f) be a periodic entire function with period c such that a(z) ̸≡ 0. If f(z) and
Lr

cf(z) share the sets {a(z), −a(z)} CM, then

(Lr
cf − a(z))(Lr

cf + a(z)) = e2γ(z)(f − a(z))(f + a(z)),

where γ(z) is a polynomial such that T (r, e2γ(z)) = S(r, f).

Proof. Set Lr
cf(z) = g(z) and P (h) = a(z)h′ −a′(z)h for some finite order entire function

h. Clearly g and P (f) are entire functions and so P (g) is also an entire function.
So, by Lemma 2.4 we have,

T (r, g) = m(r, g) ≤ m(r, f) + m

(
r,

g

f

)
+ O(1) = T (r, f) + S(r, f). (2.1)

Therefore g is of finite order. Since f and g share the sets {a(z), −a(z)} CM, so we
have

(g − a(z))(g + a(z)) = e2γ(z)(f − a(z))(f + a(z)), (2.2)
where γ(z) is a polynomial. Also, we have

N

(
r,

1
g − a(z)

)
+ N

(
r,

1
g + a(z)

)
= N

(
r,

1
(g − a(z))(g + a(z))

)
= N

(
r,

1
(f − a(z))(f + a(z))

)
= N

(
r,

1
f − a(z)

)
+ N

(
r,

1
f + a(z)

)
. (2.3)

So, by the second main value theorem we can obtain,

T (r, f) ≤ N

(
r,

1
f − a(z)

)
+ N

(
r,

1
f + a(z)

)
= N

(
r,

1
g − a(z)

)
+ N

(
r,

1
g + a(z)

)
≤ 2T (r, g) + S(r, f). (2.4)

Therefore, from (2.1) and (2.4) we can get S(r, f) = S(r, g). For convenience, let S(r) =
S(r, f) = S(r, g). From (2.2) we get, T (r, γ(z)) = S(r).

Clearly P (f) ̸= 0 as well as P (g) ̸= 0. On the contrary suppose P (f) = 0, then
f ′a(z) − fa′(z) = 0.

Integrating we have,
f(z) = Aa(z),
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where A is non-zero constant. This immediately follows that T (r, f) = S(r, f). Similarly
if suppose P (g) = 0, then T (r, g) = S(r, f). So by (2.4), T (r, f) = S(r, f), which is not
possible.

Note that,
a(z)(hh′ − a(z)a′(z)) = hP (h) + a′(z)(h2 − a2(z)). (2.5)

By taking derivative in both sides of (2.2) we have,
gg′ − a(z)a′(z) = e2γ [γ′(f2 − a2(z)) + (ff ′ − a(z)a′(z))].

Using (2.5) we can write,
gP (g) + a′(z)(g2 − a2(z)) = e2γ [a(z)γ′(f2 − a2(z)) + fP (f) + a′(z)(f2 − a2(z))].

Therefore by (2.2),
gP (g) = e2γfP (f) + a(z)γ′(g2 − a2(z)). (2.6)

Let z0 be a zero of (f−a(z))(f+a(z)). Since f(z) and Lr
cf(z) share the sets {a(z), −a(z)}

CM, so z0 is also a zero of (g−a(z))(g+a(z)). This implies g(z0) = ±f(z0) = ±a(z0). Then
from (2.6) it is clear that z0 is zero of a2(z)[(e2γP (f))2 − (P (g))2]. If a(z0) ̸= 0 then obvi-
ously z0 is zero of (e2γP (f))2−(P (g))2. If a(z0) = 0, then (f(z0)−a(z0))(f(z0)+a(z0)) = 0
and (g(z0) − a(z0))(g(z0) + a(z0)) = 0 gives f(z0) = 0 = g(z0) and then automatically z0
is zero of (e2γP (f))2 − (P (g))2. Therefore all zeros of (g − a(z))(g + a(z)) are zeros of
(e2γP (f))2 − (P (g))2. Suppose z0 is a zero of (g − a(z))(g + a(z)) with multiplicity k(≥ 2)
such that a(z0) ̸= 0. As P (f) = a(z)f ′ − a′(z)f = a(z)(f ′ − a′(z)) − a′(z)(f − a(z)) =
a(z)(f ′ + a′(z)) − a′(z)(f + a(z)) and similar expression holds for P (g) also, we note that
clearly z0 is a zero of P (f) and P (g) with multiplicity (k − 1). Therefore, z0 is a zero of
(e2γP (f))2 − (P (g))2 with multiplicity at least 2(k − 1).

Let,

Φ = (e2γP (f) − P (g))(e2γP (f) + P (g))
(g − a(z))(g + a(z))

. (2.7)

Hence N(r, Φ) ≤ N
(
r, 1

a(z)

)
= S(r).

Note that, for an entire function h and for some complex constant q, we can deduce
that

m

(
r,

P (h)
h + qa(z)

)
= m

(
r,

h′a(z) − ha′(z)
h + qa(z)

)
= m

(
r,

a(z)(h′ + qa′(z))
h + qa(z)

− a′(z)
)

= S(r, h) + S(r). (2.8)
Using (2.2) we can write,

e2γP (f) − P (g)
g − a(z)

= gP (f)
(f − a(z))(f + a(z))

+ a(z)P (f)
(f − a(z))(f + a(z))

− P (g)
g − a(z)

= g

f − a(z)
.

P (f)
f + a(z)

+ 1
2

(
P (f)

f − a(z)
− P (f)

f + a(z)

)
− P (g)

g − a(z)
(2.9)

and
e2γP (f) + P (g)

g + a(z)

= g

f − a(z)
.

P (f)
f + a(z)

− 1
2

(
P (f)

f − a(z)
− P (f)

f + a(z)

)
+ P (g)

g + a(z)
. (2.10)
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Applying Lemma 2.4 and (2.8), from (2.9) and (2.10) we have,

m

(
r,

e2γP (f) − P (g)
g − a(z)

)
= S(r) and m

(
r,

e2γP (f) + P (g)
g + a(z)

)
= S(r).

Therefore from (2.7) we can get,

T (r, Φ) = m(r, Φ) + N(r, Φ) = S(r). (2.11)

To go through the further process first of all we calculate some proximity functions
which will be more useful for the next calculations.
Now, T (r, P (f)) ≤ T (r, f ′) + T (r, f) + S(r, f) ≤ 2T (r, f) + S(r, f). Similarly using (2.1),

T (r, P (g)) ≤ T (r, g′) + T (r, g) + S(r, f) ≤ 2T (r, g) + S(r, f) ≤ 2T (r, f) + S(r, f).

Therefore S(r, P (f)) and S(r, P (g)) can be replaced by S(r, f).
As P (g) = a(z)g′ − a′(z)g = Lr

c(P (f)), so it follows from Lemma 2.4 that

m

(
r,

P (g)
P (f)

)
= S(r, P (f)) = S(r). (2.12)

Also,

m

(
r,

(P (f))′

P (f)

)
= S(r, P (f)) = S(r) and (2.13)

m

(
r,

(P (g))′

P (g)

)
= S(r, P (g)) = S(r). (2.14)

If γ(z) is constant, then automatically T (r, e2γ) = S(r, f). So for a non-constant poly-
nomial γ(z), to prove T (r, e2γ) = S(r, f) we now distinguish two cases.
Case 1. Suppose Φ ≡ 0. Then from (2.7),

e2γ = ± P (g)
P (f)

.

So by (2.12), it follows that T (r, e2γ) = S(r).
Case 2. Next suppose Φ ̸≡ 0. Therefore, from (2.7) we have e2γP (f) − P (g) ̸≡ 0 and
e2γP (f) + P (g) ̸≡ 0. Now by (2.2) and (2.7),

1
e2γP (f) − P (g)

= e2γP (f) + P (g)
Φ(g − a(z))(g + a(z))

= 1
Φ

[
P (f)

(f − a(z))(f + a(z))
+ P (g)

(g − a(z))(g + a(z))

]
= 1

2a(z)Φ

[
P (f)

f − a(z)
− P (f)

f + a(z)
+ P (g)

g − a(z)
− P (g)

g + a(z)

]
.

Using (2.8) and (2.11), it follows that

m

(
r,

1
e2γP (f) − P (g)

)
= S(r).

In a similar manner we can get,

m

(
r,

1
e2γP (f) + P (g)

)
= S(r).

Using above two results with (2.11), it follows from (2.7) that

m

(
r,

1
(g − a(z))(g + a(z))

)
= m

(
r,

Φ
(e2γP (f) − P (g))(e2γP (f) + P (g))

)
= S(r).
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Therefore by Lemma 2.2,

N

(
r,

1
(g − a(z))(g + a(z))

)
= T

(
r,

1
(g − a(z))(g + a(z))

)
= 2T (r, g) + S(r).

i.e.,

N

(
r,

1
g − a(z)

)
+ N

(
r,

1
g + a(z)

)
= 2T (r, g) + S(r). (2.15)

Now we claim that

N

(
r,

1
(g − a(z))(g + a(z))

)
= N

(
r,

1
(g − a(z))(g + a(z))

)
+ S(r). (2.16)

Rewriting (2.6) with the help of (2.2) we get,
gP (g)

g2 − a2(z)
= fP (f)

f2 − a2(z)
+ a(z)γ′. (2.17)

Also from (2.7) we have,

Φ(g2 − a2(z)) = (e2γP (f))2 − (P (g))2,

which in view of (2.2) yields

Φ
g2 − a2(z)

=
(

P (f)
f2 − a2(z)

)2
−
(

P (g)
g2 − a2(z)

)2
.

Applying (2.17) on the above equation we can obtain,

g2Φ
g2 − a2(z)

=
(

gP (f)
f2 − a2(z)

)2
−
(

fP (f)
f2 − a2(z)

+ a(z)γ′
)2

.

i.e.,

g2Φ
g2 − a2(z)

= (g2 − f2)(P (f))2

(f2 − a2(z))2 − a2(z)γ′2 − 2a(z)γ′fP (f)
f2 − a2(z)

. (2.18)

Let z0 be a zero of (f−a(z))(f+a(z)) with multiplicity k(≥ 2) such that a(z0) ̸= 0. Since
f and g share the set {a(z), −a(z)} CM, so z0 is a zero of (g−a(z))(g+a(z)) with the same
multiplicity k. Since g2−f2 can be written as {(g+a(z))+(f−a(z))}{(g−a(z))−(f−a(z))}
or {(g + a(z)) + (f − a(z))}{(g + a(z)) − (f + a(z))} or {(g − a(z)) + (f + a(z))}{(g −
a(z)) − (f − a(z))} or {(g − a(z)) + (f + a(z))}{(g + a(z)) − (f + a(z))}, so it follows that
z0 is zero of (g2−f2)(P (f))2

(f2−a2(z))2 of multiplicity at least k + 2(k − 1) − 2k = k − 2 (≥ 0) that
means not a pole. If z0 is not a zero of γ′, then z0 is a simple pole of 2a(z)γ′fP (f)

f2−a2(z) . Thus
z0 is a simple pole of right-hand side of (2.18) and hence z0 is a simple pole of g2Φ

g2−a2(z)
as long as z0 is not a zero of Φ. This contradicts the assumption that z0 is a multiple
zero of (g − a(z))(g + a(z)). Therefore, the above argument indicates that all zeros of
(g − a(z))(g + a(z)) are simple as long as they are not zeros of Φ, γ′ and a(z). Hence,

N

(
r,

1
(g − a(z))(g + a(z))

)
≤ N

(
r,

1
(g − a(z))(g + a(z))

)
+ N

(
r,

1
a(z)

)
+N

(
r,

1
Φ

)
+ N

(
r,

1
γ′

)
≤ N

(
r,

1
(g − a(z))(g + a(z))

)
+ T (r, γ) + S(r)

≤ N

(
r,

1
(g − a(z))(g + a(z))

)
+ S(r).
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Therefore, our claim (2.16) is proved.
From (2.7),

e4γ(P (f))2 = (P (g))2 + Φ(g2 − a2(z)). (2.19)
Differentiating both sides of above equation we have,

2e4γP (f)[(P (f))′ + 2γ′P (f)] = 2P (g)(P (g))′ + Φ′(g2 − a2(z)) + 2Φ(gg′ − a(z)a′(z)).
Using (2.5) we have,

2e4γa(z)P (f)[(P (f))′ + 2γ′P (f)] = a(z)[2P (g)(P (g))′ + Φ′(g2 − a2(z))]
+2Φ[gP (g) + a′(z)(g2 − a2(z))]. (2.20)

Eliminating e4γ from (2.19) and (2.20) and using the fact P (f) ̸= 0 we can obtain,
2a(z)[(P (f))′ + 2γ′P (f)][(P (g))2 + Φ(g2 − a2(z))]
= a(z)P (f)[2P (g)(P (g))′ + Φ′(g2 − a2(z))] + 2ΦP (f)[gP (g) + a′(z)(g2 − a2(z))].

i.e.,
{2a(z)Φ[(P (f))′ + 2γ′P (f)] − a(z)Φ′P (f) − 2a′(z)ΦP (f)}(g2 − a2(z))
= 2P (g)[a(z)P (f)(P (g))′ + ΦgP (f) − a(z)P (g)((P (f))′ + 2γ′P (f))]. (2.21)

Since all zeros of (g −a(z))(g +a(z)) are almost simple, so they can not be zero of P (g).
Using this fact we can say that all zeros of (g − a(z))(g + a(z)) are almost simple zeros of
a(z)P (f)(P (g))′ + ΦgP (f) − a(z)P (g)((P (f))′ + 2γ′P (f)).
Let

Φ1 = a(z)P (f)(P (g))′ + ΦgP (f) − a(z)P (g)((P (f))′ + 2γ′P (f))
(f − a(z))(f + a(z))

. (2.22)

From the above argument it is clear that N(r, Φ1) = S(r). Now,

m(r, Φ1) ≤ 3m

(
r,

P (f)
f − a(z)

)
+ 4m

(
r,

P (f)
f + a(z)

)
+ 3m

(
r,

P (g)
P (f)

)
+ m

(
r,

(P (g))′

P (g)

)
+m

(
r,

g

f − a(z)

)
+ m

(
r,

(P (f))′

P (f)

)
+ m(r, Φ) + S(r).

Applying Lemma 2.4 and (2.8), (2.11), (2.12), (2.13), (2.14) it is clear that m(r, Φ1) =
S(r). Hence T (r, Φ1) = S(r).
Subcase 2.1. Let Φ1 ̸≡ 0. Then by Lemma 2.2 from (2.22) and then using (2.1), (2.8),
(2.13), (2.14) we have,

2T (r, f)
= T (r, Φ1(f − a(z))(f + a(z))) + S(r)
= m(r, Φ1(f − a(z))(f + a(z))) + S(r)

≤ m(r, fg) + m

(
r,

a(z)P (f)(P (g))′ + ΦgP (f) − a(z)P (g)((P (f))′ + 2γ′P (f))
fg

)
+S(r)

≤ T (r, f) + T (r, g) + 4m

(
r,

P (f)
f

)
+ 3m

(
r,

P (g)
g

)
+ m

(
r,

(P (g))′

P (g)

)
+m(r, Φ) + m

(
r,

(P (f))′

P (f)

)
+ S(r)

= T (r, f) + T (r, g) + S(r) ≤ 2T (r, f) + S(r).
Therefore, T (r, f) = T (r, g) + S(r). Thus, from (2.3) and (2.15),

2T (r, f) = 2T (r, g) + S(r) = N

(
r,

1
f − a(z)

)
+ N

(
r,

1
f + a(z)

)
+ S(r),
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which implies

m

(
r,

1
f − a(z)

)
+ m

(
r,

1
f + a(z)

)
= S(r). (2.23)

Hence from (2.2),

T (r, e2γ) ≤ m

(
r,

g

f − a(z)

)
+ m

(
r,

g

f + a(z)

)
+ m

(
r,

1
f − a(z)

)
+m

(
r,

1
f + a(z)

)
+ S(r).

Applying Lemma 2.4, it follows from (2.23) that T (r, e2γ) = S(r).
Subcase 2.2. Let Φ1 ≡ 0. Then from (2.21) and (2.22) we have,

2a(z)Φ[(P (f))′ + 2γ′P (f)] − a(z)Φ′P (f) − 2a′(z)ΦP (f) = 0.

i.e.,
Φ′

Φ
= 2(P (f))′

P (f)
+ 4γ′ − 2a′(z)

a(z)
.

Integrating in both sides we obtain,
(e2γP (f))2 = AΦa2(z), (2.24)

where A (̸= 0) is a constant. Putting (2.24) in (2.7) and simplifying we have,

(P (g))2 = −Φ[g2 − (1 + A)a2(z)]. (2.25)
Now, our claim is A ̸= −1. On the contrary suppose A = −1. Then from (2.24) and

(2.25) we have,

Φ = −
(

e2γP (f)
a(z)

)2

and Φ = −
(

P (g)
g

)2
. (2.26)

i.e., (
e2γP (f)

a(z)

)2

=
(

P (g)
g

)2
,

which implies that

e2γ = ±a(z)P (g)
gP (f)

. (2.27)

Clearly, first equation of (2.26) shows that N
(
r, 1

P (f)

)
≤ N

(
r, 1

a(z)

)
+N

(
r, 1

Φ

)
= S(r).

Therefore by (2.12), we have

T

(
r,

a(z)P (g)
P (f)

)
= N

(
r,

a(z)P (g)
P (f)

)
+ S(r) ≤ N

(
r,

1
P (f)

)
+ S(r) = S(r).

Substituting (2.27) in (2.2) we get,

g(g − a(z))(g + a(z)) = ±a(z) P (g)
P (f)

(f − a(z))(f + a(z)).

Since a(z)P (g)
P (f) ̸= 0 and T

(
r, a(z)P (g)

P (f)

)
= S(r), so by Lemma 2.2 we can conclude that

3T (r, g) = 2T (r, f) + S(r). (2.28)
Rewriting (2.6) we have,

e2γfP (f) = g2
(

P (g)
g

− a(z)γ′
)

+ a3(z)γ′. (2.29)
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Now, from (2.26) we have T (r, e2γP (f)) = S(r) and T
(
r, P (g)

g

)
= S(r). Note that,

e2γP (f) ̸= 0. Therefore if P (g)
g − a(z)γ′ ̸= 0, then by Lemma 2.2 we can obtain that

T (r, f) = 2T (r, g) + S(r),

which together with (2.28) makes a contradiction T (r, f) = S(r). Otherwise if
P (g)

g − a(z)γ′ = 0, then from (2.29) we have e2γfP (f) = a3(z)γ′, which shows that
T (r, f) = S(r), a contradiction.

Hence our claim is proved.
Let q2 = 1 + A. So q is a non-zero complex constant. Then rewriting (2.25) we have,

1
P (g)

= − P (g)
Φ(g − qa(z))(g + qa(z))

= − 1
2qa(z)Φ

[
P (g)

g − qa(z)
− P (g)

g + qa(z)

]
.

Therefore by (2.8) we can obtain, m
(
r, 1

P (g)

)
= S(r). This together with (2.8) and (2.12)

produces that

m

(
r,

1
(f − a(z))(f + a(z))

)
≤ m

(
r,

P (f)
(f − a(z))(f + a(z))

)
+ m

(
r,

P (g)
P (f)

)
+m

(
r,

1
P (g)

)
+ O(1)

≤ m

(
r,

P (f)
f − a(z)

)
+ m

(
r,

P (f)
f + a(z)

)
+ S(r)

= S(r).

Combining (2.2) and the above equation, by Lemma 2.4, we have

T (r, e2γ) ≤ m

(
r,

g2

(f − a(z))(f + a(z))

)
+ m

(
r,

1
(f − a(z))(f + a(z))

)
+ S(r)

≤ m

(
r,

g

f − a(z)

)
+ m

(
r,

g

f + a(z)

)
+ S(r)

= S(r).

Hence the proof is completed. �

3. Proofs of the theorems
Proof of Theorem 1.3. Using logarithmic derivative lemma and Lemma 2.1 we obtain

that,

T (r, L̂(f(z))) = m(r, L̂(f(z)))

= m

r, a0(z)f(z) +
k∑

i=1
ai(z)f(z + ci) +

t∑
j=1

dj(z)f (j)(z)


≤ m(r, f) + S(r, f) ≤ T (r, f) + S(r, f), (3.1)

which gives S(r, L̂(f(z))) can be replaced by S(r, f).
Let g = L̂(f(z)). Suppose g ̸≡ ±f . Take

α(z) = P (f)[g2 − f2]
f(f − a(z))(f + a(z))

,
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where P (f) has the same meaning as used in Lemma 2.5. Here P (f) ̸≡ 0. This already
have been discussed in proof of Lemma 2.5. So, it is obvious that α(z) ̸≡ 0. Now by
Lemma 2.4 and (2.8), we obtain

m(r, α(z)) = m

(
r,

P (f)[g2 − f2]
f(f − a(z))(f + a(z))

)

≤ m

(
r,

fP (f)
(f − a(z))(f + a(z))

)
+ m

(
r,

g2

f2 − 1
)

+ O(1)

≤ m

(
r,

P (f)[(f − a(z)) + (f + a(z))]
2(f − a(z))(f + a(z))

)
+ S(r, f)

≤ m

(
r,

P (f)
f − a(z)

)
+ m

(
r,

P (f)
f + a(z)

)
+ S(r, f)

= S(r, f). (3.2)

Let z0 be a zero of f with multiplicity k1 such that a(z0) ̸= 0. Since f and g share the
set {0} IM, so z0 is also a zero of g with multiplicity k2 (say). Then z0 is zero of α(z) with
multiplicity at least 2 min{k1, k2} − 1 (≥ 1). So we can write

N

(
r,

1
f

)
≤ N

(
r,

1
α(z)

)
+ N

(
r,

1
a(z)

)
≤ N

(
r,

1
α(z)

)
+ S(r, f). (3.3)

Now, let z1 be a zero of (f − a(z))(f + a(z)) with multiplicity k such that a(z1) ̸= 0.
Since f and g share the set {a(z), −a(z)} CM, so z1 is also a zero of (g − a(z))(g + a(z))
with the same multiplicity k. Then clearly z1 is zero of α(z) with multiplicity at least
k − 1. Thus no zeros of f and (f − a(z))(f + a(z)) are poles of α(z) as long as they are
not zeros of a(z). So we have,

N(r, α(z)) ≤ N

(
r,

1
a(z)

)
= S(r, f). (3.4)

Therefore by (3.2) and (3.4) we get,

T (r, α(z)) = S(r, f). (3.5)

So from (3.3) and (3.5) we have,

N

(
r,

1
f

)
= S(r, f). (3.6)

By the Second Fundamental Theorem, it follows that

T (r, f2) ≤ N(r, f2) + N

(
r,

1
f2

)
+ N

(
r,

1
f2 − a2(z)

)
+ S(r, f)

≤ N

(
r,

1
f2 − a2(z)

)
+ S(r, f)

≤ T (r, f2) + S(r, f).

i.e.,

N

(
r,

1
f2 − a2(z)

)
= N

(
r,

1
f2 − a2(z)

)
= T (r, f2) + S(r, f).

Therefore by the First Fundamental Theorem, m
(
r, 1

f2−a2(z)

)
= S(r, f). Clearly in

view of (3.1), g is of finite order as f is so. As f , g are of finite order and share the sets
{a(z), −a(z)} CM so,

(g − a(z))(g + a(z)) = e2γ(z)(f − a(z))(f + a(z)), (3.7)
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where γ(z) is a polynomial. Now, using Lemma 2.4 we get,

T (r, e2γ(z))

≤ m

(
r,

g2 − (L̂(a(z)))2

(f − a(z))(f + a(z))

)
+ m

(
r,

(L̂(a(z)))2 − a2(z)
(f − a(z))(f + a(z))

)
+ S(r)

≤ m

(
r,

g − L̂(a(z))
f − a(z)

)
+ m

(
r,

g + L̂(a(z))
f + a(z)

)
+ m

(
r,

1
(f − a(z))(f + a(z))

)
+ S(r)

= S(r).

Let d(z) = a2(z)(1 − e−2γ(z)). Since g ̸≡ ±f , so e2γ(z) ̸≡ 1. So obviously d(z) ̸≡ 0.
Rewriting (3.7) we get,

g2 = e2γ(z)[f2 − d(z)].

Therefore,

N

(
r,

1
g

)
= N

(
r,

1
f2 − d(z)

)
.

Since f , g share 0 IM so from (3.6) we have,

N

(
r,

1
f2 − d(z)

)
= N

(
r,

1
g

)
= N

(
r,

1
f

)
= S(r, f).

Hence by the Second Fundamental Theorem for small functions we deduce that

T (r, f2) ≤ N

(
r,

1
f2

)
+ N

(
r,

1
f2 − d(z)

)
+ S(r, f) = S(r, f).

Therefore we immediately get g ≡ ±f , i.e., L̂(f(z)) ≡ f(z). �

Proof of Theorem 1.4. Since f and L̂(f(z)) share the set {0} CM, which implies f

and L̂(f(z)) share the set {0} IM. So proceeding in a similar manner as done in Theorem
1.3, we can reach up to (3.3).

Now, let z1 be a zero of (f−a(z))(f+a(z)) with multiplicity k1 such that a(z1) ̸= 0. Since
f and L̂(f(z)) share the set {a(z), −a(z)} IM, z1 is also a zero of (L̂(f(z))−a(z))(L̂(f(z))+
a(z)) with multiplicity k2 (say). Then clearly z1 will be a zero of α(z) with multiplicity at
least min{k1, k2}−1. Thus no zeros of f and (f −a(z))(f +a(z)) are poles of α(z) as long
as they are not zeros of a(z). Next proceeding in a similar manner as done in Theorem
1.3, we have (3.6).

Since f and L̂(f(z)) are of finite order and share the sets {0} CM, so

L̂(f(z))
f

= eδ(z),

where δ(z) is a polynomial. Now, by Lemma 2.4 we have, T (r, eδ(z)) = S(r, f). Since
L̂(f(z)) ̸≡ ±f , so e2δ(z) ̸≡ 1. Clearly,

N

(
r,

1
f2 − a2(z)

)
≤ N

(
r,

1
e2δ(z) − 1

)
+ N

(
r,

1
a(z)

)
≤ 2T (r, eδ(z)) + S(r, f) = S(r, f).

Now, by the Second Fundamental Theorem and using (3.6) and the above fact we can
obtain that

T (r, f2) ≤ N(r, f2) + N

(
r,

1
f2

)
+ N

(
r,

1
f2 − a2(z)

)
+ S(r, f) = S(r, f).

Hence we immediately get the conclusion. �
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Proof of Theorem 1.19. Since f and Lr
cf share the sets {a(z), −a(z)} CM, so by

Lemma 2.5 we have,

(Lr
cf − a(z))(Lr

cf + a(z)) = e2γ(z)(f − a(z))(f + a(z)), (3.8)
where γ(z) is a polynomial such that

T (r, e2γ(z)) = S(r, f). (3.9)
Here f is finite order entire function, so by (2.1), Lr

cf is also finite order entire function.
Now, since f and Lr

cf share the set {b(z)} CM, so
Lr

cf − b(z)
f − b(z)

= eη(z), (3.10)

where η(z) is a polynomial.
If eη(z) ≡ 1, then by (3.10) we obtain Lr

cf ≡ f.

Let eη(z) ̸≡ 1. First we will prove that m
(
r, 1

f−b(z)

)
= S(r, f). Let,

R(z, f(z)) = (Lr
cf − a(z))(Lr

cf + a(z)) − e2γ(z)(f − a(z))(f + a(z)). (3.11)
By (3.8) and (3.11) we have, R(z, f(z)) ≡ 0. So,

R(z, b(z)) = −a2(z) + e2γ(z)[a2(z) − b2(z)].
Now our claim is R(z, b(z)) ̸≡ 0. On the contrary, suppose that R(z, b(z)) ≡ 0. Since

b(z) ̸≡ ±a(z), so R(z, b(z)) ≡ 0 implies

e2γ(z) ≡ a2(z)
a2(z) − b2(z)

.

Putting this in (3.8) we obtain,
(a2(z) − b2(z))(Lr

cf − a(z))(Lr
cf + a(z)) = a2(z)(f − a(z))(f + a(z)).

i.e.,
(a2(z) − b2(z))(Lr

cf)2 = a2(z)(f − b(z))(f + b(z)). (3.12)
Suppose z0 is a zero of f − b(z). Since f and Lr

cf share b(z) CM, so Lr
cf(z0) = b(z0).

Therefore,
(a2(z0) − b2(z0))b(z0) = 0.

Since b(z) ̸≡ 0 and b(z) ̸≡ ±a(z), so either z0 is a Picard’s exceptional value of f − b(z)
or zero of a(z) ± b(z) or b(z) or both. Therefore,

N

(
r,

1
f − b(z)

)
= S(r, f).

From (3.12), we can observe that if zeros of f + b(z) would not contribute to the zeros
of a2(z) − b2(z), then all zeros of f + b(z) will be neutralized by that of (Lr

cf)2. Thus all
the zeros of f + b(z) must be multiple zeros and so we have,

N

(
r,

1
f + b(z)

)
≤ 1

2
N

(
r,

1
f + b(z)

)
.

By the Second Fundamental Theorem,

T (r, f) ≤ N(r, f) + N

(
r,

1
f − b(z)

)
+ N

(
r,

1
f + b(z)

)
+ S(r, f)

≤ 1
2

N

(
r,

1
f + b(z)

)
+ S(r, f)

≤ 1
2

T (r, f) + S(r, f),
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which is a contradiction. Hence our claim is proved. Therefore by Lemma 2.3, we have

m

(
r,

1
f − b(z)

)
= S(r, f).

Using this from (3.10) and Lemma 2.4 we have,

T (r, eη(z)) ≤ m

(
r,

Lr
cf

f − b(z)

)
+ m

(
r,

1
f − b(z)

)
+ S(r, f) = S(r, f). (3.13)

From (3.10) we have, Lr
cf = feη(z) + b(z)(1 − eη(z)). Putting this in (3.8) we get,

(e2η(z) − e2γ(z))(f(z))2

= 2b(z)eη(z)(eη(z) − 1)f − a2(z)(e2γ(z) − 1) − b2(z)(eη(z) − 1)2. (3.14)
If e2η(z) − e2γ(z) = 0, then from (3.14) we get

f = a2(z)(e2γ(z) − 1) + b2(z)(eη(z) − 1)2

2b(z)eη(z)(eη(z) − 1)
,

which yields in view of (3.9) and (3.13) that T (r, f) = S(r, f).
If e2η(z) − e2γ(z) ̸= 0, then using Lemma 2.2, from (3.14) in view of (3.9) and (3.13) we
can conclude that,

2T (r, f) = T (r, f) + S(r, f),
a contradiction. Hence Lr

cf ≡ f. �
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