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Abstract 

Near-Infrared (NIR) Spectroscopy is a time and cost-effective method to characterize the materials in the food, 
petrochemical, pharmaceutical, and agricultural industries. Proximate analysis of the carbon-containing materials and 
investigating the effectiveness of the heat treatments on the material are a particularly time-consuming process. This  work 
presents  the four regression methods, i.e., decision tree regression, support vector regression and two versions of ensembles 
of decision trees to predict the proximate analysis of biomass and heat treatment temperature. Thus, effective method has 
been proposed to reduce experimental effort and present the characterization of heat-treated biomass feedstock 
theoretically. Prediction results show that SVR and ENS2 regression methods calibrating the NIR spectra to the values of 
wood pellet properties achieved good performance with the coefficient of determination (R2) of 0.880- 0.984 and RMSE of 
0.444- 5.308 for ash and volatile matter. This study suggests that machine learning-based regression methods with 
integrated NIR spectroscopy of biomass is promising as an alternative method for rapid characterization. Another possible 
application of the current study is that it can be used for processed fuel recognition prior to a fully automated fuel quality 
assessment system in the biomass industry. 
Keywords: biomass, near-infrared spectroscopy, machine learning, support vector regression, ensembles of decision trees, 
decision tree regression 

TORREFİYE VE PİROLİZ EDİLMİŞ ODUN PELETİNİN PROSES SICAKLIĞININ, 
KISA ANALİZİNİN MAKİNE ÖĞRENMESİ DESTEKLİ YAKIN KIZILÖTESİ 

SPEKTROSKOPİSİ İLE TAHMİNİ 

Özet 

Yakın Kızılötesi (NIR) Spektroskopi, gıda, petrokimya, ilaç ve tarım endüstrilerindeki malzemeleri karakterize etmek için 
zaman ve maliyet açısından etkin bir yöntemdir. Karbon içeren malzemelerin yakın analizi ve ısıl işlemlerin malzeme 
üzerindeki etkinliğinin araştırılması özellikle zaman alan bir süreçtir. Bu çalışmada, biyokütle ve ısıl işlem sıcaklığının 
yakın analizini tahmin etmek için dört regresyon yöntemi olan karar ağacı regresyonu, destek vektör regresyonu ve rassal 
orman regresyonunun iki versiyonu kullanılmıştır. Deneysel çabayı azaltmak ve ısıl işlem görmüş biyokütle hammaddesinin 
karakterizasyonunu teorik olarak sunmak için etkili bir yöntem önerilmiştir. Tahmin sonuçları, odun peletinin NIR 
spektrum değerlerini kalibre eden SVR ve ENS2 regresyon yöntemlerinin kül ve uçucu madde için 0.880- 0.984 belirleme 
katsayısı (R2) ve 0.444- 5.308 RMSE ile iyi performans elde ettiğini göstermektedir. Bu çalışma, entegre NIR 
spektroskopisine sahip makine öğrenmesine dayalı regresyon yöntemlerinin biyokütlenin hızlı karakterizasyon için 
alternatif bir yöntem olarak umut verici olduğunu göstermektedir. Mevcut çalışmanın bir başka olası uygulaması, biyokütle 
endüstrisinde tam otomatik yakıt kalitesi değerlendirme sisteminden önce işlenmiş yakıt tanıma sistemleri için 
kullanılabilmesidir. 
Anahtar Kelimeler: biyokütle, yakın kızılötesi spektroskopi, makine öğrenimi, destek vektör regresyonu, rassal orman, 
karar ağacı 
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1. Introduction 
According to the recent Global Energy and CO2 Status 
Report of the Internal Energy Agency (IEA), in 2018, the 
energy-related carbon dioxide (CO2) emissions grew by 
1.7% to 33.1 billion tons. It was the highest growth rate 
estimated since 2013 and was 70% higher than the 
average increase since 2010 [1]. The increase in the CO2 

emissions will cause irreversible climatic, environmental 
and ecological changes of the Earth's atmospheric system 
on both short and long-time scales [2]. By year of 2019, 
about 81.4% of the world's energy demand are provided 
from three main fossil fuels, oil, coal and natural gas [3]. 
The continued use of fossil fuels to generate energy has 
the potential to further intensify global CO2 emissions 
and climate change, as well as negative social, political 
and environmental impacts [3, 4]. Therefore, it is 
necessary to establish a global, sustainable and bio-based 
economy to reduce greenhouse gas emissions and 
increase climate resistance [5].  

Among the various renewable energies, biomass 
energy conversations have seen large-scale 
implementations worldwide. The world energy 
consumption based on biomass has increased to 14% of 
total energy consumption [6]. Biomass energy 
conversion is a reliable and cost-effective method to 
produce chemicals and meet energy demand without 
requiring storage compared to other renewable sources 
such as wind, solar and wave [7]. Biomass is expected to 
have the potential to become one of the major global 
energy sources in the next century. It is thought that 
modernized bioenergy systems will contribute to 
sustainable energy systems in the future and sustainable 
development in industrialized as well as developing 
countries [8]. Biomass can be used to generate energy 
with various technologies, but when raw biomass is used 
as fuel, it has some disadvantages such as low calorific 
value, high moisture content, hygroscopic nature [9]. In 
order to reduce these disadvantages, biomass is treated 
with thermal energy yielding processes such as 
torrefaction, pyrolysis and gasification, which produces 
biofuels. Biomass torrefaction is a mild pretreatment of 
biomass carried out at temperatures of 200 – 340 ºC. 
Since most of the moisture, volatiles and hemicellulose 
are removed from the biomass in the torrefaction 
process, the biomass loses its tenacious and fibrous 
structure. Eventually, the resulting torrefied biomass has 
higher energy density, and improved ignitability, 
reactivity and grindability with more uniform structure 
when compared to raw biomass [10]. Given these 
advantages, the torrefied biomass can be regarded as a 
more valuable fuel than raw biomass.  

Biochar is a carbon-rich product obtained when 
biomass is heated at temperatures below 700 °C in a 
closed container with limited or no available oxygen. In 
addition to being an excellent material for energy 
production, biochar has also been described as an 
advantageous material to improve soil fertility and 

mitigate climate change by reducing CO2 emissions [11]. 
Although the quality of the biochar depends mainly on 
the type of raw material and the pyrolysis conditions, 
determining the quality and properties of the biochar is 
costly and time-consuming process [12]. As a result, 
alternative techniques are needed to effectively 
determine parameters of torrefaction, pyrolysis and 
gasification processes.  

Near Infrared Spectroscopy is a time and cost-
effective method commonly used in the food, 
petrochemical, pharmaceutical and agricultural 
industries [13-16]. The NIR technology provides 
information with sufficient precision for solid and liquid 
systems without any sample preparation. This 
technology has also been increasingly used in the wood 
industry to determine physical, mechanical properties 
and the amount of wood components such as lignin, 
cellulose, hemicellulose, extract, etc. [17, 18]. So et al. 
determined that the rapid assessment of solid wood 
properties using NIR spectra. They also noted that NIR as 
an online monitoring tool in the manufacturing process 
encourages many laboratories to examine potential 
applications for wood composites [19]. In addition to 
predicting wood properties, NIR spectroscopy was also 
used to classify wood species and their origins [20, 21]. 
Schwanninger et al. reported that there is a close 
relationship between the chemical changes of thermally 
modified wood and its corresponding NIR spectra [22]. 
NIR radiation interacts with polar structural groups such 
as, C−H, C−O, C−O−H, O−H, N−H and C=O bonds. The 
absorption bands observed in NIR spectra of biomass 
arise from overtones and combinations of these bonds. 
Due to the overtone vibrations in the NIR spectra provide 
valuable chemical information about the state of 
torrefied biomass, NIR techniques can be used to monitor 
and control biomass treatment and conversion processes 
as well as the resulting torrefaction quality. The 
characteristics of treated biomass are highly related to 
chemical modifications induced by temperature 
conditions and treatment duration [23]. So far, some 
studies have been reported for using NIR spectroscopy to 
identify the raw wood components such as lignin, 
cellulose, hemicellulose, etc. [24, 25]. Multivariate 
modeling of the resulting NIR data can be used to 
accurately estimate not only the properties of the 
torrefied wood such as volatile matter, fixed carbon and 
ash content, but also important process parameters such 
as temperature and time. Via et al. built calibration 
models of the NIR data for the prediction of proximate 
analysis after torrefaction [26]. However, there is a few 
researches on identification of process parameters of 
torrefied biomass, biochar and the solid residue after 
gasifying biomass. Rousset et al. applied principal 
component analysis to NIR spectra of thermally treated 
wood samples. The authors indicated that NIR 
spectroscopy can effectively adapted to the rapid 
measurement of native and thermally treated wood [9].  
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As NIR spectroscopy is rapid and completely non-
destructive technique it would be an attractive option for 
utilized in standardized procedures for measuring 
diverse variables. Therefore, it would be possible to 
develop NIR-based methods which have major 
advantages over traditional analysis techniques for 
characterizing torrefied biomass, biochar and solid 
residues after gasification. Real-time monitoring of the 
process using the NIR spectroscopy technique may be an 
advantageous method to ensure the quality of the final 
product to the consumer.  

In this study, the effect of process temperature and 
heat treatment time on torrefied and pyrolyzed wood 
pellets were studied. After the heat treatment process, 
the proximate analysis of torrefied/pyrolyzed biomass 
was also studied. The NIR spectra of torrefied and 
pyrolyzed biomass at different heating temperature and 
duration were collected. In the last part of the study, four 
regression methods including support vector regression 
(SVR), decision tree regression (DTR), and the ensemble 
of decision trees were utilized to build prediction models 
for the above-mentioned outputs. 

 
2. Methods 

2.1. Heat Treatment 
The wood chips in pellet form were kindly provided from 
a local market in Ankara, TURKEY. Biochar samples were 
obtained by torrefaction and pyrolysis of raw biomass at 
various temperatures, allowing the materials to 
carbonize instead of combustion under oxygen-limited 
conditions. The heat treatment procedure was 
performed in a tubular furnace at the temperatures of 
200, 250, 300, 350, 400 and 450 °C with a residence time 
of 0.25, 0.50, 0.75, 1, 2, 3, 4, 5 and 6 hours under 
continuous nitrogen flow (150 ml/min). A total of 54 
torrefied and pyrolyzed samples were collected. The 
samples were kept in a desiccator until they were used. 
The proximate analyses of wood pellets were determined 
using standard procedures. ASTM E1755-01 for ash, 
ASTM E871-72 for moisture content and ASTM D3175 
for volatile matter methods were applied for proximate 
analysis by using ash furnace. Fixed carbon was 
determined by balance. 
 
2.2. NIR Spectroscopy 
Diffuse-reflectance spectra were collected using a 
Fourier transform near infrared (FT-NIR) 
spectrophotometer (Bruker Optics, Ettlingen, Germany) 
and the Bruker software OPUS 5.5. The NIR spectra were 
acquired by an integrating sphere scanning an area of 
about 1 cm in diameter; 32 scans were averaged per scan 
at a spectral resolution of 8 cm-1 between 12500 and 
4000 cm-1. Measurements were first taken on the gold 
reference (32 readings), followed by 32 readings on the 
sample. NIR data points were collected from a sample in 
log of inverse reflectance log10(1/R) form (1 being the 
gold reference and R the reflectance of the sample for 
each wavelength), i.e. equivalent to an absorbance 

spectrum. Three spectra were obtained for each sample, 
and the average of the three was recorded. 

 
2.3. Machine Learning 

2.3.1. Feature Extraction and Preprocessing 
The NIR spectra may show systematic variations such as 
random noise and basal deviation. The pretreatment of 
the spectrum can reduce the complexity of the model and 
improve interpretation by making it more robust and 
reliable against undesirable variations. In this study, no 
pre-treatment method that comes with application 
software of NIR spectroscopy was used. But, we employ 
relative second order derivative which is given in Eq. (1) 
in order to eliminate exponential trends which, for 
example, may be caused by inflationary influences. 
 

�̃�[𝑖] =  
x[𝑖 − 1] − 2x[𝑖] + x[𝑖 + 1]

x[𝑖]
 

(1) 

where 𝑥[𝑖] is the ith element of the spectrum to construct 
scaled features �̃�[𝑖]. 
 
2.4. Support Vector Regression (SVR) 
The support vector machine (SVM) is a supervised 
learning algorithm widely used for data classification 
introduced by Vapnik and Cortes [27]. It ensures high 
generalization ability through non-linear mapping of 
input vectors by constructing a decision surface [28, 29]. 
SVMs have been effectively used to perform not only 
binary but also multi-class classification and regression 
problems [30]. Compared to other proposed methods 
such as polynomial regression SVMs offer some primary 
advantages. It can learn in high-dimensional 
characteristic space by using small number of training 
samples [31] and over-fitting in the input space which 
caused by the classification in high dimension feature 
spaces can be controlled easily by using SVMs [32]. When 
the problem has complex and non-linear dynamics, the 
use of kernel function gives SVMs flexibility by implicitly 
converting the data to a higher-dimensional feature 
space. By using a kernel function, linearly inseparable 
input data becomes separable. Support vector regression 
(SVR) is one of the fundamental class of SVMs which has 
been effectively utilized for nonlinear frameworks [31]. 
The global prediction function of SVR is presented in Eq. 
(2). The kernel function defines the features space, where 
data are regressed. Hence, selecting an appropriate one 
during the regression is essential. In this study linear 
function Eq. (3) is used as kernel.  

𝑓(𝑥) = ∑ 𝛼𝑖 ∗ 𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏

𝑛

𝑖=1

 
(2) 

 
𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥′𝑖𝑥𝑗     

 
(3) 

 
where 𝛼𝑖(𝑖 = 1, 2, 3, … , 𝑛) are the support vectors, 𝑏 is 
the bias term that is estimated in training phase and 
𝐾(𝑥𝑖, 𝑥𝑗) is the kernel function. The empirical risk 

minimization approach (𝐽, Eq. (4)) with robust 
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𝜖 −insensitive loss function (𝐿𝜖, Eq. (5)) is used to train 
SVR model. α vector is obtained via the minimization of J 
and the constant b are used to provide estimations using 
Eq. (2). 

𝐽 = ∑ 𝐿𝜖(𝑓(𝑥𝑖), 𝑦)

𝑚

𝑖=1

   
(4) 

 

𝐿∈ = {
0,

|𝑦 − 𝑓(𝑥)| − 𝜖,

𝑖𝑓 |𝑦−𝑓(𝑥)| ≤ 𝜖

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
(5) 

 
here 𝑦 states the output vector and 𝜖 defines epsilon 
value.  
 

2.4.1. Decision Tree Regression (DTR) 
Decision tree is widely used and advantageous machine 
learning method that quick to build and easy to interpret. 
The estimations based on decision trees are effective 
[33]. The decision trees are built through repeatedly 
dividing the data into binary sections. In each iteration 
the data is split according to the values of a selected 
attribute. The selection repeats until ‘pure’ data subsets 
which only include instances of the same class or pre-
specified number of nodes is reached [34]. Concisely, the 
basic concept of a decision tree is to separate a complex 
decision into simpler decisions which made estimation 
easier to predict [35]. If predictable target attribute 
consists of discrete data, the developed decision tree 
model is called as a classification tree. If the target 
attribute is a continuous variable, then the model is 
called as a regression tree [36]. When this algorithm is 
applied to regression problems, it is called DTR. DTR 
utilizes the sum of square error metric to build subsets 
which has the least reasonable variations among the 
elements. Next, the questions in the decision tree can be 
followed again to obtain a continuous variable with a set 
of properties for the prediction. 

 

2.4.2. Ensembles of Decision Trees: Bagging and 
Boosting 

The main idea behind the ensemble modeling is to build 
a predictive model by integrating multiple models in 
order to obtain a classifier that outperforms every one of 
them. Ensembles of decision tree method can be defined 
as a supervised learning algorithm which combines 
several decision trees instead of using a single decision 
tree for improving prediction performance. Two of the 
most popular techniques for constructing ensembles are 
bagging and boosting [37, 38]. Bagging is a general 
technique for combining the predictions of many models. 
In bagging, the data from training samples is chosen 
randomly in order to create several subsets by replacing 
the data. In boosting, the weak learners converted to 
strong ones by repeatedly running a weak learner on 
various distributed training data. The classifiers first 
produced by the weak learners, then they combined into 
a single composite strong classifier [39]. In this study, 
ensembles of decision tree (bagging) is named as ENS1 

and ensembles of decision tree (boosting) is named as 
ENS2. 

3. Results and Discussion 
3.1. Spectroscopic Characterization 
NIR absorbance spectra of torrefied and pyrolyzed 
biomass samples at the temperatures of 200, 250, 300, 
350, 400 and 450 °C for the heating times of 0.25, 0.5, 
0.75, 1 - 6 hours are shown in Figure 1a. Since only small 
chemical information could be obtained from the raw 
spectrum, the second derivative spectra were also taken 
for better interpretation (Figure 1b). The differences 
between the absorbance spectrum of control and the 
heat-treated (0.25, 2, 4 and 6 h) samples are shown in 
Figure 2. The spectrum of untreated control sample 
showed a characteristic peak at 8250 cm-1 corresponding 
to the 2nd overtone of C−H stretching vibration of 
cellulose molecule [40]. The peaks at 6913, 6727 and 
5191 cm-1 were attributed to the 1st overtone of O−H 
stretching vibrations of lignin, cellulose and including 
water molecules, respectively [40, 41]. The peaks at 5976 
cm-1 and 5800 cm-1 corresponded to the aromatic C−H 
stretching vibrations of lignin and 1st overtone of C−H 
stretching vibration of hemicellulose, respectively [42, 
43]. The peak at 4280 cm-1 was assigned C−H stretchings 
and deformations of cellulose and hemicellulose. The 
peak at 4411 cm-1 corresponded to the O−H and C−H 
stretching vibrations of lignin [44]. The spectral profile of 
0.25 h heat-treated samples were found similar to that of 
the control sample. Same peaks were observed but the 
intensities of the peaks were displayed to be weaker 
compared with control. In other words, at 0.25 h duration 
at 200 ºC, there was not much depolymerization of 
cellulose, hemicellulose and lignin. In the case of 2,4 and 
6 h treatments, the differences were more obvious. The 
peaks at 6727 and 5051 cm-1 which corresponded to the 
O−H stretching vibrations of cellulose and water were 
disappeared after 2 h heat treatment. It was observed for 
the 4 h heat-treated samples that the broad band around 
5600 cm-1 disappeared which assigned to the C−H 
stretching vibrations of semi-crystalline and crystalline 
regions in cellulose [42]. The peak at 8250 cm-1 which 
belongs to the C−H stretching vibrations of cellulose 
molecule were also disappeared. The intensity of the 
peak at 6727 cm-1 which attributed to the cellulose 
decreased after the 4 h heat treatment. At the end of the 
6 h heat treatment, the mentioned peak disappeared. The 
disappearance of the peaks can be attributed to the 
decomposition of intramolecular H bonding interactions 
and C−H groups which associated with cellulose and 
hemicellulose molecules [44]. In the case of 6 h heat 
treatment, it was observed that the peak at 4280 cm-1 
which belongs to the cellulose and hemicellulose 
molecule vibrations were also completely disappeared. 
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Figure 1. NIR absorbance spectra (a) and 2nd derivative spectra (b) of 54 torrefied and pyrolyzed biomass samples. 
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Figure 2. NIR absorbance spectra (a) and 2nd derivative spectra (b) of control, 0.25, 2, 4 and 6 h heat-treated samples. 
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Figure 3. NIR absorbance spectra (a) and 2nd derivative spectra (b) of heat-treated samples at 200, 250, 300, 
350, 400 and 450 ºC. 
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The intensity of the peak at 5191 cm-1 which belongs to 
the O−H groups in water has shown to be decreased as 
the heat treatment time increased, due to the reduction 
of O−H groups. The NIR spectra of heat- treated samples 
between the temperatures of 200 - 450 ºC are shown in 
Figure 3. In the spectra at the temperatures between 200 
- 300 ºC, a downward shift of the baseline was observed 
which can be attributed to the degradation of 
hemicellulose. The peak at 7307 cm-1 which belongs to 
the C−H stretching of hemicellulose molecule 
disappeared as the temperature increased to 300 ºC. It is 
known that hemicelluloses are the most unstable 
components of wood with respect to temperature [9]. 
This result is in accordance with the results obtained Via 
et al. who torrefied the wood biomass samples at 225 ºC 
[26]. At 300 ºC, the peak at 5063 cm-1 corresponding to 
the stretching and deformation vibrations of O−H at 
water was disappeared due to the evaporation of water 
[45]. At the same temperature, there was not much 
depolymerization of some components at the 
wavenumbers of 5191, 4762 and 4400 cm-1 was 
observed. These peaks can be attributed to the O−H 
stretching and deformation vibration of bound water, 
O−H and C−H deformation stretching of cellulose and 
C−H2 stretching and deformation of cellulose, 
respectively [46-48]. However, it was noticed that the 
higher temperatures such as 350 - 400 ºC caused 
depolymerization. Melkior et al. reported that 
depolymerization of wood begins at around 200 ºC and 
increases as the temperature was increased. It was also 
concluded by the researchers that the cellulose was 
completely decomposed after treatment of wood at 350 
ºC [49]. The peaks at 6913 and 4411 cm-1 which can be 
associated with vibrations of lignin molecule appeared 
more resistant to the temperature increase. Lignin 
molecule was found resistant to the thermal 
decomposition of the polymer chains during torrefaction 
process, conversely to cellulose and hemicellulose 
molecules. These findings are consistent with the results 
reported Via et al. who also reported that the lignin-
based polymers were resistant to thermal 
depolymerization during torrefaction [26]. Based on the 
NIR results it could be suggested that the temperature 
and heat treatment time clearly affect the chemical 
composition of the biomass and this effect can be 
measured by the NIR technique. 

 
3.2. Machine Learning 
The four regression methods presented were used to 
improve  the prediction capabilities of models for five 
different outputs using 2203 NIR spectra points 
generated by NIR absorbance spectra of torrefied and 
pyrolyzed biomass samples as mentioned in Section 
3.1. In order to predict each output variable, all 
prediction models were trained and interpreted with 
respect to their test performance in hold-out cross-
validation (absorbance data were randomly split into 
two parts: 15% for testing, and 85% for training) by 

using correlation coefficient (R2), root mean square error 
(RMSE) and normalized root mean square error 
(NRMSE) metrics. 

 

𝑅2 = 1 − [
∑ (𝑦𝑖 − �̂�𝑖)2𝑚

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑚
𝑖=1

] 
(6) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)2𝑚

𝑖=1

𝑚
         

 
 

(7) 
 

𝑁𝑅𝑀𝑆𝐸 =
1

𝑚
√

∑ (𝑦𝑖 − �̂�𝑖)2𝑚
𝑖=1

�̅�
 

 
(8) 

where m is the number of features in the data set, �̅� 
implies the mean of output vector and �̂� defines the 
estimation vector. The efficiency of the suggested 
methods in estimating the five different outputs 
variables is given in Table 1. The estimated outputs of all 
samples against actual observation plots are illustrated 
in Figure 4 to clearly present the performance of the 
regression models. In the ideal case scenario, all 
prediction and observation points equal to each other 
and the slope is 1. As can be seen in Table 1, SVR and 
ENS2 regression methods provided the highest 
performance results for all output variables among other 
methods. In these results, R2 is higher and RMSE and 
NRMSE are lower. For all outputs, ENS2 prominently 
outperformed SVR and other regression methods. When 
the characterization of complex bond interactions by NIR 
Spectroscopy is considered, ENS2 is generally is assumed 
to show better performance confronted with other 
machine learning methods due to its ability to combine 
several models with lower errors by reducing pitfalls of 
the single model. On the other hand, SVR showed parallel 
prediction efficiency compared to ENS2 for entire 
outputs. SVR is the extension of a classification algorithm 
(SVM) and this is one of the reasons for the superior 
performance. When Figure 4a is examined, predictions 
by ENS2 tend to scatter on the 45-degree line but also 
show irrelevant scattering at some points. This is caused 
by strict relation between temperature and time effects 
on the pyrolysis. For example, long periods at low 
temperature may have the same effect on the biomass as 
short periods at high temperature. On the contrary, as 
can be seen on Figure 4b, predictions of process 
temperature improved significantly compared to 
prediction of process time. It inclines to form a group of 
output variables during the training phase. Thanks to this 
behavior, it can be helpful when samples of a particular 
output variable are within a certain range and entire 
estimates fall within a specific area as shown in Figure 4a 
[50]. For ash and volatile matter content of processed 
biomass, ENS2 were able to achieve satisfactory 
performance. However, the results of the fixed carbon 
predictions were satisfactory only for those greater than 
32 (shown as dashed vertical line), as can be seen in 
Figure 4d. This behavior shows that fixed carbon 
prediction of processed biomass much easier compared 
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to unprocessed biomass. Because as the process 
temperature and time increases, the amount of fixed 
carbon increases. However, DTR has less performance 
for all outputs compared to SVR and overall performance 
is worse than ENS2. This machine learning method is 
used to create prediction models based on basic logical 
expressions, and since it uses logic instead of numbers, it 
can create problems in practical processes such as 
characterization of biomass. For better results, it is 
possible to increase the success rate in processes 
involving more data samples [51]. In order to further 
evaluate the performance of the machine learning 
methods in the characterization of torrefied and 
pyrolyzed pellets more deeply, the estimation capability 
of each output variable was investigated. For 
temperature output, ENS2 and SVR succeed a convincing 
estimation precision with R2=0.986 and R2=0.965, 
respectively. DTR regression method also presented 
higher prediction accuracy (R2=0.948) but ENS1 showed 
less performance with R2=0.901 from other machine 
learning methods. This prediction performance can also 
be seen for volatile matter and ash outputs where the 
proposed models had good performance values. ENS is 
employed in two forms, i.e., bagging and boosting in this 
study. The prediction performance of Bagging (ENS1) 

was relatively worse compared to other methods 
according to Table 1 except in estimating fixed carbon 
value. However, the bagging version of ensembles of 
decision trees and other machine learning methods are 
not sufficient to present fixed carbon output and more 
experiments and NIR absorbance spectra are required. 
To increase the fixed carbon prediction performance, the 
number of samples in the data set can be increased with 
additional characterization. This attempt can 
meaningfully develop prediction efficiency due to the 
data hunger of machine learning methods, particularly 
the ENS and DTR [52]. 
 

4. Conclusion 
In this study, the effectiveness of machine learning 
methods was investigated by characterizing heat-treated 
wood pellets using NIR spectroscopy. Four regression 
methods, DTR, SVR, ENS1 and ENS2 were proposed to 
predict the proximate analysis variables of biomass and 
heat treatment duration and temperature. In order to 
build estimation models, a total of 2203 features are 
provided from the NIR absorbance spectra of torrefied 
and pyrolyzed wood pellets.  
 

Figure 4: Predictions obtained by all proposed regression methods against observations. 
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ENS2 and SVR are carried out particularly preferable 
than the rest of the methods by accomplishing R2 > 0.88 
for temperature, ash, and volatile matter outputs and R2 
> 0.62 for fixed carbon output. Generally, the results 
revealed that NIR Spectroscopy coupled with machine 
learning as an alternative method for rapid 
characterization. The efficiency of proposed regression 
methods decreased while estimating fixed carbon value 
compared to other outputs, thus, there is a gap for 
progress for both feature selection and hyper-parameter 
to develop estimation performance for this output. With 
the estimation model suggested in this study, we believe 
that investigators can obtain a fast determination 
methodology to predict the proximate analysis of 
processed biomass. The other potential application of the 
present study is the actual need for processed fuel 
recognition prior to a fully automated fuel quality 
assessment system in the biomass industry. In our 
further study, more samples will be collected to correct 
and optimize the model results. 
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