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Abstract

For a quite long period, the so-called L-structure or L-spaces have been studied by some authors. They have
several trivial misconceptions such as their L-spaces extend the well-known generalized convex (G-convex)
spaces. In order to clarify this matter and others, we show that our KKM theory on abstract convex spaces
improves typical results in L-spaces. Main topics in this paper are related to extensions of the Himmelberg
fixed point theorem. Since such studies are beyond of L-spaces, we cordially claim that now is the proper
time to give up the useless study on L-spaces and their variants FC-spaces.
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1. Introduction

The KKM theory, first called by the author in 1992, is the study on applications of equivalent formulations
or generalizations of the KKM theorem due to Knaster, Kuratowski, and Mazurkiewicz in 1929. The KKM
theorem is one of the most well-known and important existence principles and provides the foundations for
many of the modern essential results in diverse areas of mathematical sciences. Since the theorem and its
many equivalent formulations or extensions are powerful tools in showing the existence of solutions of a lot
of problems in pure and applied mathematics, many scholars have been studying its further extensions and
applications.

The KKM theory was first devoted to convex subsets of topological vector spaces mainly by Ky Fan
and Granas, and later to the so-called convex spaces by Lassonde, to c-spaces (or H-spaces) by Horvath and
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others, to generalized convex (G-convex) spaces mainly by the present author. Since 2006, we proposed new
concepts of abstract convex spaces and (partial) KKM spaces which are proper generalizations of G-convex
spaces and adequate to establish the KKM theory. Now the theory becomes the study of (partial) KKM
spaces and we obtained a large number of new results in such frame. For the history of the KKM theory,
see our recent article [43] in 2017.

In 1998, we derived new concept of G-convex spaces removing the monotonicity restriction. Motivated
our original G-convex spaces (E,D; Γ) in 1993, Ben-El-Mechaiekh, Chebbi, Florenzano, and Llinares [4, 5] in
1998 introduced L-spaces (E,Γ) and stated incorrectly that certain forms of G-convex spaces are particular
to their L-spaces. Since then a number of authors followed the misconception of Ben-El-Mechaiekh et al. and
published incorrect obsolete articles even after we established the KKM theory on abstract convex spaces in
2006–2010.

In this article, we recall the history of relation between G-convex spaces and L-spaces, and show that
other authors’ main works on L-spaces are consequences of our KKM theory on abstract convex spaces.
Consequently, the study on L-spaces and related FC-spaces are not necessary, and hence, we conclude that
now is the proper time to give up such useless study on L-spaces and their variants FC-spaces.

This article is organized as follows: Section 2 is a preliminary on our abstract convex spaces. In Section 3,
we recall some history on the relation between G-convex spaces and L-spaces. Here we clarify the cause of why
many authors had misconception that L-spaces generalize G-convex spaces. Section 4 deals with the paper of
Altwaijry, Ounaies and Chebbi [1] in 2018 on the KKM theory on L-spaces. We clarify that its contents are
already well-known in much more generalized form. In Sections 5–8, we deal with the Himmelberg type fixed
point theorems in several types of abstract convex uniform spaces. We show that some typical theorems in
L-spaces are simple consequences of our previous results. In Section 9, as a byproduct of the above study, we
show that Shioji’s main theorem [50] on recent unification of a fixed point theorem and a minimax inequality
can be extended to a Hausdorff KKM LΓ-space. Finally, in Section 10, we conclude that now is the proper
time to give up such useless study on L-spaces and their variants FC-spaces.

2. Abstract convex spaces

In order to upgrade the KKM theory, in 2006–2010, we proposed new concepts of abstract convex spaces
and the (partial) KKM spaces which are proper generalizations of various known types of particular spaces
and adequate to establish the KKM theory.

Multimaps are also called simply maps. Let 〈D〉 denote the set of all nonempty finite subsets of a set D.
For the concepts on abstract convex spaces, KKM spaces and the KKM classes KC, KO, we follow

[39, 43, 44] and others with some modifications and the references therein.

Definition 2.1. Let E be a topological space, D a nonempty set, and Γ : 〈D〉( E a multimap with nonempty
values ΓA := Γ(A) for each A ∈ 〈D〉. The triple (E,D; Γ) is called an abstract convex space whenever the
Γ-convex hull of any D′ ⊂ D is denoted and defined by

coΓD
′ :=

⋃
{ΓA | A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to some D′ ⊂ D if for any N ∈ 〈D′〉, we
have ΓN ⊂ X, that is, coΓD

′ ⊂ X.
When D ⊂ E, a subset X of E is said to be Γ-convex if coΓ(X ∩D) ⊂ X; in other words, X is Γ-convex

relative to D′ := X ∩D.
In case E = D, let (E; Γ) := (E,E; Γ).

Definition 2.2. Let (E,D; Γ) be an abstract convex space and Z a topological space. For a multimap
F : E ( Z with nonempty values, if a multimap G : D ( Z satisfies

F (ΓA) ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,
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then G is called a KKM map with respect to F . A KKM map G : D ( E is a KKM map with respect to the
identity map 1E.

A multimap F : E ( Z is called a KC-map [resp. a KO-map] if, for any closed-valued [resp. open-valued]
KKM map G : D ( Z with respect to F , the family {G(y)}y∈D has the finite intersection property. We
denote

KC(E,Z) := {F : E ( Z | F is a KC−map}.

Similarly, KO(E,Z) is defined.

Definition 2.3. The partial KKM principle for an abstract convex space (E,D; Γ) is the statement 1E ∈
KC(E,E), that is, for any closed-valued KKM map G : D ( E, the family {G(y)}y∈D has the finite
intersection property. The KKM principle is the statement 1E ∈ KC(E,E) ∩ KO(E,E), that is, the same
property also holds for any open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satisfies the (partial) KKM principle, resp.

There are plenty of examples of KKM spaces; see [44] and the references therein.

Now we have the following diagram for subclasses of abstract convex spaces (E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Lassonde’s convex space

=⇒ c-space of Horvath =⇒ L-space =⇒ G-convex space

=⇒ φA-space =⇒ KKM space =⇒ Partial KKM space

=⇒ Abstract convex space.

This is a quite old version. Later versions replaced c-spaces and L-spaces by Horvath spaces, which are
new class including c-spaces due to Horvath; see [45].

3. G-convex spaces and L-spaces

In this section, we recall some history on the relation between G-convex spaces and L-spaces. Here we
clarify the cause of why many authors had misconception that L-spaces generalize G-convex spaces.

(1) In 1993, Park and Kim [46] defined: “A generalized convex space or a G-convex space (X,D; Γ) consists
of a topological space X, a nonempty subset D of X, and a map Γ : 〈D〉( X with nonempty values such
that

(1) for each A, B ∈ 〈D〉, A ⊂ B implies Γ(A) ⊂ Γ(B); and
(2) for each A ∈ 〈D〉 with |A| = n + 1, there exists a continuous function φA : ∆n → Γ(A) such that

J ∈ 〈A〉 implies φA(∆J) ⊂ Γ(J).”
Here, if n is any natural number and if J ⊂ {0, 1, . . . , n}, ∆n will denote the unit-simplex of Rn+1 and

∆J the face of ∆n corresponding to J , i.e. ∆J = co{ej : j ∈ J} where {e0, el, . . . , en} is the canonical basis
of Rn+1.

In [46], we listed various examples of G-convex spaces and gave their fundamental properties.
The condition (1) will be called the monotonicity and is the cause of big trouble later.

(2) In 1998, Park [28] : “At first, a G-convex space is defined under the extra restriction that
(0) for each A, B ∈ 〈D〉, A ⊂ B implies Γ(A) ⊂ Γ(B);

which was shown later to be superfluous.”

(3) In 1998, apparently motivated by [46], Ben-El-Mechaiekh, Chebbi, Florenzano, and Llinares [5] gave:

“Definition (3.1). An L-structure on E is given by a nonempty set-valued map Γ : 〈E〉 → E verifying:
(*) For every A ∈ 〈E〉, say A = {x0, x1, . . . , xn}, there exists a continuous function fA : ∆n → Γ(A) such

that for all J ⊂ {0, 1, . . . , n}, fA(∆J) ⊂ Γ({xj , j ∈ J}).
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The pair (E,Γ) is then called an L-space and X ⊂ E is said to be L-convex if ∀A ∈ 〈X〉, f(A) ⊂ X.

In particular, if Γ, as in Definition 3.1, verifies the additional condition
(**) For each A,B ∈ 〈E〉, A ⊂ B implies Γ(A) ⊂ Γ(B),

then the pair (E,Γ) is what is called by Park and Kim [46], a G-convex space.”

This statement is incorrect. Our G-convex space is a triple (X,D; Γ) and L-space is a pair (E,Γ). This
statement leads many naive peoples to think L-spaces generalize G-convex spaces without checking [46, 28]
and scores of later works on G-convex spaces.

Note that the L-spaces are motivated by [46]: In fact, [5] states “As noted by Park and Kim [46], it follows
from Theorem 1, Section 1 of Horvath [21] that if Γ defines an H-structure, then (X,Γ) is an L-space.”

(4) In 1999, Ding [9] first adopted the concept of the original generalized convex spaces in our [47, 48]
and applied them to variational inequalities and equilibrium problems by applying a coincidence theorem
involving the admissible class of multimaps due to Park.

(5) Abstract of Ding [11] submitted in 1999: “Some new generalized G-KKM and generalized S-KKM
theorems are proved under the noncompact setting of generalized convex spaces. As applications, some new
minimax inequalities, saddle point theorems, a coincidence theorem, and a fixed point theorem are given in
generalized convex spaces. These theorems improve and generalize many important known results in recent
literature.”

(6) In 2001, Ding [10] wrote: “If an L-convex space (X.Γ) satisfies the monotonicity condition, then the
pair (X,Γ) is called by Park and Kim [47, 48] a generalized convex (or G-convex) space. It is clear that the
notion of L-convex space reduces the corresponding G-convex spaces as a special case.”

And then Ding quote our definition of the class Aκc (X,Y ) in [47, 48]. This is the evidence that Ding
read [47, 48] where G-convex spaces are triples (X,D; Γ) not pairs (X,Γ). Then his careless claim on G-
convex spaces are definitely false and contrary to his [9, 11]. Moreover, we found that many of his works are
unreliable.

In 2002, Ding [12] repeated his incorrect claim,

(7) In 2002, Ding and Park, J.Y. [16] called L-convex spaces instead of L-spaces and stated: “If an
L-convex space (X,Γ) satisfies the following additional condition

(2) for each A, B ⊂ F(X), A ⊂ B implies Γ(A) ⊂ Γ(B),
then the pair (X,Γ) is called by Park and Kim [48] a generalized convex (or G-convex) space. Recently, Park
[29] has removed the isotony condition (2) and considered the G-convex space (X,D; Γ), where D need not
be X. If D = X, then a G-convex space in [29] is an L-convex space.”

This seems to be the only almost correct statement given by Ding on L-spaces and G-convex spaces.
Moreover, in 2001–2003, Ding (with some coauthors) defined G-convex spaces of the form (X; Γ) and claimed
some particular, not general enough, results on them.

(8) In 2002, Llinares [23] noted: “it is obvious that the notion of G-convex spaces, used in [46], is a
particular case of L-spaces since, to define the G-convex spaces, it is required that all of the conditions
of Definition 9 [on L-structure and L-space] be satisfied, together with a monotonicity condition on the
set-valued map.”

Here we found another people who can not distinguish pairs and triples.

(9) In 2004, Ding and Xia [18] and Ding, Yao, and Lin [19]: “The notion of a generalized convex (or
G-convex) space was introduced under an extra isotonic condition by Park and Kim [48]. Recently Park [35]
gave the following definition of a G-convex space by removing the extra condition.

A G-convex space (X,D; Γ) consists of a topological space X, a nonempty set D and a set-valued
mapping Γ : 〈D〉 → 2X \ {∅} such that for each A = {a0, a1, . . . , an} ∈ 〈D〉 with |A| = n+ 1, there exists a
continuous mapping ϕA : ∆n → (A) such that J ⊆ {0, 1, . . . , n} implies ϕA(∆J) ⊆ Γ({aj : j ∈ J}), where
∆J = co{ej : j ∈ J}, the convex hull of the set {ej : j ∈ J}.”
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It should be noted that the so-called L-spaces (X,Γ) are G-convex spaces (X,D; Γ) for X = D. However,
Ding and others repeatedly claim the converse in scores of his later papers.

(10) In 2004, Ding and Park, J. Y. [17]: The notion of generalized convex (G-convex) space was introduced
as in the preceding papers. It is strange that only three papers of Ding in 2004 correctly stated the concept of
G-convex spaces. After that Ding invented FC-spaces and claimed incorrectly that they are generalizations
of G-convex spaces. Note that FC-spaces are pairs.

In this paper and many others, Ding introduced the concept of compact closure (ccl), compact interior
(cint), transfer compactly open, etc. Note that if we consider compactly generated topology (as in k-spaces)
instead of the original one, then these concepts become the usual ones. They are not practical and useless.

(11) In 2006, Ding [13, Theorem 3.2] obtained the following fixed point theorem:

“Theorem 3.2. Let (X,U , {ϕN}) be a locally FC-space, and T ∈ KKM(X,X) be a u.s.c. compact mapping
with closed values. Then T has a fixed point in X.”

Comments on this will be given in Section 8.

(12) In 2008, Cain and González [6] considered relationship among some subclasses of the class of G-
convex spaces and introduced a subclass of L-spaces. In [6, Theorems 3.2 and 3.4], it was shown that L-spaces
are G-convex spaces.

(13) In 2009, Abstract of Park [38]: “We show that FC-spaces due to Ding are particular types of L-spaces
due to Ben-El-Mechaiekh et al., and hence particular types of G-convex spaces. Some counterexamples are
given and related matters are also discussed.”

In the text: “For the definition of a G-convex space (X,D; Γ), at first we assumedX ⊃ D and an additional
monotonicity condition. This monotonicity was removed since 1998 and the restriction X ⊃ D since 1999.
However, note that most of useful examples of G-convex spaces satisfy monotonicity, but, examples not
satisfying monotonicity seem to be artificial.”

(14) In 2010, Abstract of Park [40] : “In the KKM theory, various types of φA-spaces (X,D; {φA}A∈〈D〉)
due to other authors are simply G-convex spaces. Various types of generalized KKM maps on φA-spaces
are simply KKM maps on G-convex spaces. Therefore, our G-convex space theory can be applied to various
types of φA-spaces. In 2006-09, G-convex spaces are extended to KKM spaces. In the present paper, we
review the recent transition from G-convex spaces to KKM spaces, and introduce a basic KKM theorem on
abstract convex spaces satisfying the partial KKM principle.”

(15) In 2011, Abstract of Chebbi, Gourdel, and Hammami [8]: “We introduce a generalized coercivity
type condition for set-valued maps defined on topological spaces endowed with a generalized convex structure
and we extend Fan’s matching theorem.”

They also stated: “It should be noticed that the L-convexity is different from the G-convexity defined by
Park and Kim in [46] in 1993 which assumes in addition the following condition:

For all A,B ∈ X, A ⊂ B implies Γ(A) ⊂ Γ(B).”

(16) In 2012, Ding [15] wrote: “it is easy to see that each H-space must be a G-convex space, each
G-convex space must be a L-convex space and each L-convex space must be a FC-space.”

“some critiques on L-spaces and FC-spaces given by Park [38] are not fair. I believe that the readers will
give the fairest judgment.”

Still Ding confused L-spaces and L-convex spaces, and did not recognize the difference between a pair
and a triple. Ding repeated this kind of statements in several of his papers.

(17) In 2013, Abstract of Park [41]: “In 2005, Ben-El-Mechaiekh, Chebbi, and Florenzano obtained a
generalization of Ky Fan’s 1984 KKM theorem on the intersection of a family of closed sets on non-compact
convex sets in a topological vector space. They also extended the Fan-Browder fixed point theorem to
multimaps on non-compact convex sets. In 2011, Chebbi, Gourdel, and Hammami introduced a generalized
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coercivity type condition for multimaps defined on topological spaces endowed with a generalized convex
structure and extended Fan’s KKM theorem. In this paper, we show that better forms of above-mentioned
theorems can be deduced from a KKM theorem on abstract convex spaces in Park’s sense.”

(18) In 2014, Fakhar and Zafarani [20] gave the definition of L-convex spaces and then wrote: “If Γ as
the above definition, verifies the additional condition: For each A, B ∈ F(X), A ⊆ B implies Γ(A) ⊆ Γ(B),
then the pair (X,Γ) is what called by Park and Kim [46], a G-convex spaces. Recently, Park [49] has removed
the above condition and considered the G-convex space (X,D; Γ), where D need not be a subset of X. If
D = X, then a G-convex space in [49] is an L-convex space. . . . It is clear that, the notion of L-convex
spaces includes the G-convex spaces of Park and Kim [46].”

This paper [20] has some incorrect statements: As we have noted several times, our G-convex spaces
were (X,D; Γ) from the beginning, and hence L-spaces (X,Γ) can not include them. Moreover, the class
KC(X,Y ) was introduced by ourselves, and we showed that A(X,Y ) ⊂ Aκc (X,Y ) ⊂ KC(X,Y ), where A is
approachable maps.

(19) In 2015, Abstract of Park [42]: “Recently, Kulpa and Szymanski published an article entitled ‘Some
remarks on Park’s abstract convex spaces’ [Top. Meth. Nonlinear Anal. 44(2) (2014) 369–379]. The present
short note is to trace out the history of that article and to respond to some remarks given there.”

Actually, some of their remarks are inadequate.

(20) In 2018, Altwaijry, Ounaies and Chebbi [1]: “We note also that to define the structure of L-convexity,
we do not require that Γ satisfies a monotony type condition, i.e. if A ⊂ B, then Γ(A) ⊂ Γ(B) as it is used
by Park and Kim in [46] to define G-convex spaces and by many other papers in the literature dealing with
G-convex spaces.”

This statement is definitely incorrect. Since 1998, scores of papers on G-convex spaces adopted new
definition without the monotonicity. Certain authors adopting the monotonicity can erase it in order to
improve their results since it does not needed. Some of them also could not recognize the difference between
triples and pairs.

Note that our 1993 paper, a quarter century old, is still quoted in 2018 incorrectly.

4. Basic results of the KKM theory

Since we introduced the concept of abstract convex spaces in 2006 [31], its theory had been developed
rapidly by ourselves. For example, in our work [39] in 2010, we clearly derived a sequence of a dozen
statements which characterize the KKM spaces and equivalent formulations of the partial KKM principle.
As their applications, we added more than a dozen statements including generalized formulations of von
Neumann minimax theorem, von Neumann intersection lemma, the Nash equilibrium theorem, and the Fan
type minimax inequalities for any KKM spaces. Consequently, this paper unifies and enlarges previously
known several proper examples of such statements for particular types of KKM spaces.

Later in 2018, Altwaijry, Ounaies and Chebbi [1] gave L-space versions of the Fan-KKM Principle, a
Browder-Fan type fixed point theorem and some applications. In this section, their L-space results are
already well-known in much more generalized form for abstract convex spaces as in [39].

The following type of the KKM theorem for abstract convex spaces is known by ourselves [31] in 2006 as
follows:

Theorem 4.1. Let (E,D; Γ) be a partial KKM space (resp. a KKM space), and G : D ( E be a multimap
satisfying

(1) G has closed (resp. open) values; and
(2) ΓN ⊂ G(N) for any N ∈ 〈D〉 (that is, G is a KKM map).

Then {G(y)}y∈D has the finite intersection property. Further, if
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(3)
⋃
y∈M G(y) is compact for some M ∈ 〈D〉,

then we have
⋂
y∈DG(y) 6= ∅.

Theorem 4.2. Let (E,D; Γ) be an abstract convex space, and G : E ( D, H : E ( E maps satisfying
(1) for each x ∈ E, M ∈ 〈G(x)〉 implies ΓM ⊂ H(x); and
(2) E = G−(N) for some N ∈ 〈D〉.
(3) G− has open [resp. closed] values.

If (E,D; Γ) is a partial KKM space [resp. a KKM space], then H has a fixed point x0 ∈ E, that is, x0 ∈ F (x0).

Recall that Theorem 4.1 is the abstract form of Ky Fan’s 1961 KKM lemma and Theorem 4.2 originates
from the Fan-Browder fixed point theorem.

After giving L-space versions of Theorems 4.1 and 4.2, the authors of [1] stated: “The concept of KF-
majorization due to Borglin and Keiding in 1976 is then easily extended to L-spaces and a result on the
existence of a maximal element for such correspondence is deduced. As an application, we prove an equilib-
rium existence result for qualitative games defined in an L-space and an equilibrium result for an abstract
economy.”

However, there are too many generalizations of the Borglin-Keiding results. The results in [1] can be
easily extended to several types of abstract convex spaces and hence their application seems to be useless.

Actually, we have far reaching generalizations of the Borglin-Keiding results for abstract convex spaces
in [35]. Its abstract is as follows: In [35], KKM theorems or coincidence theorems on abstract convex spaces
are applied to obtain the Fan-Browder type fixed point theorems, existence of maximal elements, existence
of economic equilibria and some related results. Consequently, we obtain generalizations or improvements
of a number of known equilibria results, especially, in a recent work of Ding and Wang on the so-called
FC-spaces.

Finally, in this section, consider the following given in Chebbi et al. [8]:

Lemma 4.1. (Chebbi et al. [8]) Let (X,Γ) be an L-space, Z a nonempty subset of X and F : Z ( X a
KKM map with quasi-compactly closed values. Suppose that for some z ∈ Z, F (z) is quasi-compact. Then⋂
x∈Z F (x) 6= ∅.

This is a modification of the 1961 KKM lemma of Ky Fan. If we choose a quasi-compactly generated
topology (as in k-spaces) on X, then Lemma 4.1 is easily accessible. More generally, Lemma 4.1 can be
extended scores of examples for partial KKM spaces. But they are useless under the quasi-compactness.

5. Himmelberg type theorems for t.v.s.

In our previous survey [36] in 2008, we reviewed various generalizations of the Himmelberg fixed point
theorem within the category of topological vector spaces. We considered the Lassonde type, the Idzik type,
and the KKM type generalizations for Kakutani maps, and other types of generalizations for acyclic maps.
Finally, generalizations for various ‘better’ admissible maps on admissible almost convex domains to Klee
approximable ranges were discussed.

In this section, we recall some of them in order to compare with later results.
In our early work [24] in 1992, we obtained the following generalization of the Himmelberg fixed point

theorem:

Theorem 5.1. Let X and C be nonempty convex subsets of a Hausdorff locally convex t.v.s. E. Let F : X →
ca(X + C) be a compact u.s.c. multifunction. Suppose that one of the following conditions holds:

(i) X is closed and C is compact.
(ii) X is compact and C is closed.
(iii) C = {0}.

Then there is an x0 ∈ X such that Fx0 ∩ (x0 + C) 6= ∅.
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Example. 1. Here ca(X + C) denotes the set of all closed acyclic subsets of X + C.

2. Moreover, in case when ca(X + C) is replaced by the set cc(X + C) of all closed convex subsets of
X+C, Theorem 3.1 was obtained by Lassonde in 1983. Note that Case (iii) of Lassonde’s is the Himmelberg
fixed point theorem in 1972.

3. Note that Case (iii) implies the extension of the Himmelberg fixed point theorem for multimaps having
closed acyclic values as follows:

Corollary 5.2. Let X be a nonempty convex subset of a Hausdorff locally convex t.v.s. E. Let F : X → ca(X)
be a compact u.s.c. multifunction. Then there is an x0 ∈ X such that x0 ∈ Fx0.

Remark 5.3. 1. This is the extension of the Himmelberg fixed point theorem for multimaps having closed
acyclic values.

2. Recall that Corollary 5.2 implies a large number of historically well-known fixed point theorems due to
Brouwer, Schauder, Tychonoff, Kakutani, Ky Fan, Glicksberg, Mazur, Bohnenblust and Karlin, Hukuhara,
Browder, Singbal, and others; see [24].

Recall that we have introduced the following class of multimaps in several occasions:

Definition 5.4. Let X and Y be topological spaces. An admissible class Aκc (X,Y ) of maps T : X ( Y is
the one such that, for each compact subset K of X, there exists a map S ∈ Ac(K,Y ) satisfying S(x) ⊂ T (x)
for all x ∈ K; where Ac is consisting of finite compositions of maps in A, and A is a class of maps satisfying
the following properties:

(i) A contains the class C of (single-valued) continuous functions;
(ii) each F ∈ A is u.s.c. and compact-valued; and
(iii) for any polytope P , each F ∈ A(P, P ) has a fixed point.

It is well-known that the most of multimaps belong to admissible class.

We have the following generalization of Theorem 5.1 in [25]:

Theorem 5.5. Let X and C be nonempty convex subsets of a locally convex Hausdorff t.v.s. E, and F ∈
Ac(X,X + C) a compact multifunction. Suppose that one of the following conditions holds:

(i) X is closed and C is compact.
(ii) X is compact and C is dosed.
(iii) C = {0}.

Then there is an x0 ∈ X such that Fx0 ∩ (x0 + C) 6= ∅.

Since approachable maps A belong to A, we immediately have the following case (iii):

Corollary 5.6. (Ben-El-Mechaiekh [3]) If X is a nonempty convex subset of a locally convex topological
vector space and if Φ ∈ A(X) is upper semicontinuous with nonempty closed values, then Φ has a fixed point
provided Φ(X) is contained in a compact subset K of X.

Note that this is not appeared in [36]. Here A(X) denotes the class of approachable selfmaps on X.
It is well-known that A ⊂ Aκc ⊂ B. Moreover, every nonempty convex subset of a locally convex t.v.s. is
admissible; see below.
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6. Himmelberg type theorems for KKM spaces

In our previous work [37] in 2009, we established fixed point theorems for multimaps in abstract convex
uniform spaces. Our new results generalize corresponding ones in topological vector spaces (t.v.s.), convex
spaces due to Lassonde, c-spaces due to Horvath, and G-convex spaces due to Park. We showed that fixed
point theorems on multimaps of the Fan-Browder type, multimaps having ranges of the Zima-Hadžić type,
and multimaps whose ranges are Φ-sets or Klee approximable sets can be established in abstract convex
spaces or KKM spaces.

In this section, we introduce a few results in [37].

Definition 6.1. An abstract convex uniform space (E,D; Γ;U) is the one with a basis U of a uniform
structure of E.

A KKM uniform space (E,D; Γ;U) is a KKM space with a basis U of a uniform structure of E.
A KKM uniform space (E ⊃ D; Γ;U) is called an LΓ-space or locally Γ-convex space if D is dense in E

and, for each U ∈ U , the U -neighborhood U [A] := {x ∈ E : A ∩ U [x] 6= ∅} around a given Γ-convex subset
A ⊂ E is Γ-convex.

For abstract convex spaces, we have the following extension of the Himmelberg theorem due to ourselves
[37, Corollary 4.5]:

Theorem 6.2. Let (E ⊃ D; Γ;U) be a Hausdorff KKM LΓ-space and T : E ( E a compact u.s.c. map with
nonempty closed Γ-convex values. Then, T has a fixed point.

Corollary 6.3. Let (X,D; Γ) be an Hausdorff LG-space and T : X ( X a compact u.s.c. multimap with
closed Γ-convex values. Then T has a fixed point.

This is given in 2002.
Six years later in 2008, Ding [14] derived the class of locally FC-uniform spaces, and claimed that these

includes the classes of locally convex topological vector spaces, LC-spaces of Horvath, locally H-convex
uniform spaces of Tarafdar and locally G-convex spaces of Park as true subclasses.

The last statement is false as the following shows that our LG space is a quadruple (X,D; Γ;U) and his
one is a triple (X,U , {ψN}).

Corollary 6.4. (Ding [14]) Let (X,U , {ψN}) be a locally FC-uniform space, and F : X → 2X be a compact
upper semicontinuous set-valued mapping with closed values such that for each x ∈ X, F (x) is an FC-subspace
of X. Then F has a fixed point x0 ∈ X, i.e. x0 ∈ F (x0).

Corollary 6.5. Let X be a nonempty convex subset of a Hausdorff locally convex t.v.s. E. Let F : X → cc(X)
be a compact u.s.c. multifunction. Then there is an x0 ∈ X such that x0 ∈ Fx0.

This is the original Himmelberg theorem.

7. Himmelberg type theorems for admissible spaces

In our work [37] in 2009, we introduced particular types of subsets of abstract convex uniform spaces
adequate to establish our fixed point theory:

Definition 7.1. For an abstract convex uniform space (E,D; Γ;U), a subset X of E is said to be admissible
(in the sense of Klee) if, for each nonempty compact subset K of X and for each entourage U ∈ U , there
exists a continuous function h : K → X satisfying

(1) (x, h(x)) ∈ U for all x ∈ K;
(2) h(K) ⊂ ΓN for some N ∈ 〈D〉; and
(3) there exist continuous functions p : K → ∆n and φN : ∆n → ΓN with |N | = n + 1 such that

h = φN ◦ p.
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Definition 7.2. Let (E,D; Γ) be an abstract convex space, X a nonempty subset of E, and Y a topological
space. We define the better admissible class B of maps from X into Y as follows:

F ∈ B(X,Y ) ⇐⇒ F : X ( Y is a map such that, for any ΓN ⊂ X, where N ∈ 〈D〉 with the
cardinality |N | = n+1, and for any continuous function p : F (ΓN )→ ∆n, there exists a continuous function
φN : ∆n → ΓN such that the composition

∆n
φN−→ ΓN

F |ΓN
( F (ΓN )

p−→ ∆n

has a fixed point. Note that ΓN can be replaced by the compact set φN (∆n) ⊂ X.

The following is [37, Theorem 8.5]:

Theorem 7.3. Let (X,D; Γ;U) be an admissible abstract convex uniform space. Then any compact closed
map F ∈ B(X,X) has a fixed point.

There are lots of examples of admissible abstract convex uniform spaces and better admissible multimaps,
Therefore Theorem 7.3 has plenty of examples. Here we give only a few of them appeared in literature.

Recall that Ben-El-Mechaiekh et al. [4, 5] extended Himmelberg’s fixed point theorem replacing the
usual convexity in topological vector spaces by their L-convexity. They claimed the existence, under weak
hypotheses, of a fixed point for a compact approachable map and provided sufficient conditions under which
their result applies to maps whose values are convex in the abstract sense mentioned above.

They provided a generalization of the Himmelberg theorem to a class of uniform L-spaces as a main
theorem of [4, 5], but this follows from our Theorem 7.3:

Corollary 7.4. (Ben-El-Mechaiekh et al. [4, 5]) Assume that (X,U ,Γ) is a uniform L-space such that for
every U ∈ U , there exist two correspondences S : X ( X and T : X ( X (depending on U) satisfying:

(i) ∀x ∈ X, S(x) ⊂ T (x)
(ii) ∀x ∈ X, ∀A ∈ 〈S(x)〉,Γ(A) ⊂ T (x)
(iii) X =

⋃
{intS−1(y) : y ∈ X}

(iv) ∀x ∈ X, T (x) ⊂ U [x].
Assume also that Φ ∈ A(X,X) is u.s.c. with nonempty closed values. Then Φ has a fixed point, provided
Φ(X) is contained in a compact subset K of X.

Proof. Let U ∈ U be arbitrary but fixed and consider a cover of K by a finite collection {intS−1(yi)}ni=0

and a continuous partition of unity p = (pi)
n
i=0 subordinated to this cover. Applying condition (*) in the

definition of L-convexity [See Section 3, (3)] there exists a continuous function φN : ∆N → X such that
∀J ∈ 〈N〉, φN (∆J) ⊂ Γ({yi : i ∈ J}). Note that for every x ∈ K,

φN ◦ p(x) ∈ Γ({yi : x ∈ intS−1(yi)}) ⊂ Γ({yi : yi ∈ S(x)}) ⊂ T (x) ⊂ U [x].

Then h := φN ◦ p is continuous and (1) h(x) ⊂ U [x]; (2) h(K) ⊂ ΓN ; and (3) h is continuous. Therefore,
(X,U ,Γ) is admissible. Moreover, Φ ∈ B(X,X) is compact closed map. Hence it has a fixed point by
Theorem 7.3.

In the proof, note that Corollary 7.4 holds for B(X,X) instead of A(X,X). Moreover, we have a lot of
particular forms of Theorem 7.3. We list only some of them:

Corollary 7.5. (Park [27]) Let X be an admissible convex subset of a Hausdorff topological vector space E,
and let T ∈ B(X,X). If T is compact and closed, then T has a fixed point in X.

Corollary 7.6. (Park [26]) Let X be a nonempty convex subset of a Hausdorff locally convex topological
vector space E. Then, any closed compact map F ∈ B(X,X) has a fixed point.
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In 1999, Wu and Li [51] introduced the following:

Corollary 7.7. (Wu [51]) Let (X; {ΓA}) be a Hausdorff locally convex H-space and D a H-compact subset
of X . If T : X ( D is an u.s.c. multimap with closed acyclic values, then there exists a point x0 ∈ D such
that x0 ∈ T (x0).

8. Himmelberg type theorems for KC-maps

Motivated by our previous works on the KKM theory, Chang and Yen [7] in 1996 stated as follows:

Assume that X is a convex subset of a linear space and Y is a topological space. If S, T : X → 2Y are
two set-valued mappings such that T (coA) ⊂ SA for each finite subset A of X, then we call S a generalized
KKM mapping w.r.t. T , where coA denotes the convex hull of A. Let T : X → 2Y be a set-valued mapping
such that if S : X → 2Y is a generalized KKM mapping w.r.t. T then the family {Sx : x ∈ X} has the finite
intersection property (where Sx denotes the closure of Sx), then we say that T has the KKM property. Denote
KKM(X,Y ) = {T : X → 2Y | T has the KKM property}.

Remark 1. Generalized KKM mappings were first introduced by Park in 1989, and followed by some
others.

Many authors adopt the obsolete KKM class nowadays. For example, Amini-Harandi, Farajzadeh,
O’Regan and Agarwal [2] in 2009 followed our theory of abstract convex spaces implicitely, but still studied
the KKM class. However, we already extended this class to KC class on abstract convex spaces, and note
that we have also KO class as shown in Section 2.

In 2006, we derived the following in [31]:

Definition 8.1. For a given abstract convex space (E,D; Γ) and a topological space X, a map H : X ( E
is called a Φ-map (or a Fan-Browder map) if there exists a map G : X ( D such that

(i) for each x ∈ X, coΓG(x) ⊂ H(x); and
(ii) X =

⋃
{IntG−(y) : y ∈ D}.

Definition 8.2. For an abstract convex uniform space (E,D; Γ;U), a subset Z of E is called a Φ-set if, for
any entourage U ∈ U , there exists a Φ-map H : Z ( E such that Gr(H) ⊂ U . If E itself is a Φ-set, then it
is called a Φ-space. A point x ∈ E is called a U -fixed point of a map F : E ( E if F (x) ∩ U [x] 6= ∅. The
map F is said to have the almost fixed point property whenever it has a U -fixed point for each U ∈ U .

The following almost fixed point theorem and its corollaries are given by ourselves in [34]:

Theorem 8.3. Let (E,D; Γ;U) be an abstract convex uniform space and F ∈ KC(E,E) a compact map. If
F (E) is a Φ-set, then F has the almost fixed point property.

Corollary 8.4. Under the hypothesis of Theorem 8.3, further if (E,U) is separated and if F is closed, then
it has a fixed point.

This is quoted by Amini-Harandi, Farajzadeh, O’Regan and Agarwal [2] in 2009 as follows:

Corollary 8.5. Let (E,D; Γ;U) be an abstract convex uniform space, and F ∈ KKM(E,E) be a closed
compact map. If F (E) is a Φ-set, then F has a fixed point.

Actually, the authors restated some part of our papers without mentioning it.
In 2006, Ding [13, Theorem 3.2] obtained the following fixed point theorem:

Corollary 8.6. (Ding [13]) Let (X,U , {ϕN}) be a locally FC-space, and T ∈ KKM(X,X) be a u.s.c.
compact mapping with closed values. Then T has a fixed point in X.

More early, in 2001, Ding [10] obtained the following results similar to the Himmelberg fixed point
theorem:
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Corollary 8.7. (Ding [10]) Let (X,Γ,U) be a locally L-convex space, D be an L-compact subset of X. If
T ∈ KKM(X,D), then for each open entourage U ∈ U there exists xU ∈ E such that TxU ∩ U(xU ) 6= ∅,
where E is the compact L-convex subset of X containing D.

Corollary 8.8. (Ding [10]) Let (X,Γ,U) be a locally L-convex space, D be an L-compact subset of X, and
T ∈ KKM(X,D) be upper semicontinuous with closed values. Then T has a fixed point in X.

Since any subset of a locally G-convex space is a Φ-set [32], these are particular forms of Theorem 8.3
and Corollary 8.4, resp. Ding’s theorems are actually for maps in KKM(D,D) and hence can not generalize
the Himmelberg theorem. Moreover, throughout his paper, Ding claimed typical false statement that his
results generalize corresponding ones for G-convex spaces,

Corollary 8.9. (Chang and Yen [7]) Let X be a convex subset of a locally convex Hausdorff t.v.s. E, and
let T ∈ KKM(X,X). If T is compact and closed, then T has a fixed point in X.

The following should be a corollary of Theorem 7.3. But we put here since it stated for KKM:

Corollary 8.10. (Lin and Yu [22]) Let E be a topological vector space, let X be an admissible convex subset
of E, and let F ∈ KKM(X,X) be compact and closed; then F has a fixed point.

Recall that, for convex spaces, KKM = B for closed compact multimaps; see [26].

9. Unification of fixed points and minimax inequalities

In 2019, Shioji [50] showed a unified form of two fixed point theorems and a unified form of a fixed
point theorem and a minimax inequality. He also applied his results to show the existence of solutions of
generalized quasi-variational inequalities.

His results are given for a locally convex Hausdorff topological vector space. As a byproduct of the main
results of the present article, we show that Shioji’s main theorem can be extended to a Hausdorff KKM
LΓ-space as follows:

Theorem 9.1. Let (X; Γ;U) be a Hausdorff KKM LΓ-space. Let S : X ( X be a continuous multimap
such that, for each x ∈ X, Sx is a nonempty, closed, Γ-convex subset of X. Let A,B : X ( X be multimaps
such that

(1) for each x ∈ X, x ∈ Bx, Bx ⊂ Ax and X \Bx is Γ-convex,
(2) for each y ∈ X, A−1y is closed and Γ-convex,
(3) A is upper semicontinuous.

Then there exists x ∈ X such that x ∈ Sx and Sx ⊂ Ax.

Proof. We define a multimap T : X ( X by

Tx = {z ∈ Sx : Sx ⊂ Az} for each x ∈ X.

Let x ∈ X. Note that Tx = Sx∩
⋂
y∈SxA

−1y is closed and Γ-convex. We will show that Tx is nonempty. We
claim that the self multimap on Sx given by z 7→ Sx∩B−1z is a KKM map. Assume that the claim does not
hold. Then there exist N = {z1, . . . , zn} ⊂ Sx and z ∈ coΓN such that z /∈

⋃n
i=1(Sx ∩ B−1zi). Since Sx is

Γ-convex, we have z ∈ Sx. Hence zi ∈ X\Bz for each i = 1, . . . , n. Since X\Bz is Γ-convex, we have z /∈ Bz,
which is a contradiction. Thus we have shown the claim. Since Sx∩B−1z ⊂ Sx∩A−1z for each z ∈ Sx, the
self multimap of Sx given by z 7→ Sx ∩ A−1z is also a KKM-map. Hence, it is a closed-valued KKM map
on the compact partial KKM space Sx. Therefore, by Theorem 4.1, we have Tx = Sx ∩

⋂
y∈SxA

−1y 6= ∅.
Thus we have shown that Tx is nonempty.

Next, we show that T is upper semicontinuous. Let {(xα, zα)} ⊂ X × X be a net such that zα ∈ Txα
for each α and {(xα, zα)} converges to (x, z) ∈ X ×X. Since S is upper semicontinuous, we have z ∈ Sx.
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Let y be an arbitrary element of Sx. Since S is lower semicontinuous, there exist a subnet {xαβ} of {xα}
and a net {yβ} such that yβ ∈ Sxαβ for each β and {yβ} converges to y. By the upper semicontinuity of
S and A, we have y ∈ Az. Since y is an arbitrary element of Sx, we have Sx ⊂ Az, which yields z ∈ Tx.
Thus we have shown that T is upper semicontinuous. Note that X is also a Hausdorff KKM LΓ space and
T : X ( X is a compact u.s.c. map with nonempty closed Γ-convex values. Hence by Theorem 6.2, we find
that T has a fixed point x ∈ X, i.e., x ∈ Sx and Sx ⊂ Ax.

Corollary 9.2. (Shioji [50]) Let X be a nonempty, compact, convex subset of a locally convex Hausdorff
topological vector space. Let S : X ( X be a continuous multimap such that, for each x ∈ X, Sx is a
nonempty, closed, convex subset of X. Let A,B : X ( X be multimaps such that

(1) for each x ∈ X, x ∈ Bx, Bx ⊂ Ax and X \Bx is convex,
(2) for each y ∈ X, A−1y is closed and convex,
(3) A is upper semicontinuous.

Then there exists x ∈ X such that x ∈ Sx and Sx ⊂ Ax.

Corollary 9.3. Let (X; Γ;U) be a Hausdorff KKM LΓ-space such that Γ{x} = {x} for all x ∈ X. Let
A : X ( X be a multimap such that

(1) A is a surjection,
(2) for each y ∈ X, A−1y is closed and Γ-convex,
(3) A is upper semicontinuous.

Then there exists x ∈ X such that x ∈ Ax.

Proof. In Theorem 9.1, let S = 1X , the identity map of X, and Bx = X for all x ∈ X. Then the conclusion
of Theorem 9.1 follows.

10. Conclusion

In this article, we showed that a careless statement in [5] leads some people to write useless articles for
twenty years. In fact, the so-called L-structure or L-spaces have been studied by some authors. They have
several trivial misconceptions such as their L-spaces extend the well-known generalized convex (G-convex)
spaces. In order to clarify this matter and others, we show in this paper that our KKM theory on abstract
convex spaces implies typical results in L-spaces by several groups of authors. Main topics in this paper
are related to extensions of the Himmelberg fixed point theorem. Since our results in this paper show the
uselessness of L-spaces and , we cordially express that now is the proper time to give up the study on L-spaces
including FC-spaces.
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