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THE TRIPLE ZERO GRAPH OF A COMMUTATIVE RING
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ABSTRACT. Let R be a commutative ring with non-zero identity. We define
the set of triple zero elements of R by TZ(R) = {a € Z(R)* : there exist
b,c € R\{0} such that abc = 0, ab # 0, ac # 0, bc # 0}. In this paper, we
introduce and study some properties of the triple zero graph of R which is an
undirected graph TZT'(R) with vertices TZ(R), and two vertices a and b are
adjacent if and only if ab # 0 and there exists a non-zero element ¢ of R such
that ac # 0, be # 0, and abc = 0. We investigate some properties of the triple
zero graph of a general ZPI-ring R, we prove that diam(TZT'(R)) € {0,1,2}
and gr(TZT(R)) € {3, 0}

1. INTRODUCTION

Throughout this paper, all rings are commutative with identity and Z(R) denotes
the set of zero-divisors of a ring R. The concept of the zero-divisor graph of a
commutative ring was introduced by I. Beck ﬂgﬂ He let all elements of R be vertices
of the graph and his work was mostly concerned with coloring of rings. In [3],
all elements of a commutative ring R are vertices, and distinct vertices a and
b are adjacent if and only if ab = 0. This graph is denoted by I'g(R). Then D.F.
Anderson and P.S. Livingston [4] introduced a (induced) zero-divisor subgraph I'( R)
of I'g(R). The zero-divisor graph I'(R) introduced in [13] and [4] is as follows: Two
distinct vertices z,y € Z(R)* = Z(R)\{0} are adjacent if and only if zy = 0.
In [4], D.F. Anderson and P.S. Livingston have shown that I'(R) is connected with
diam(T'(R)) € {0,1,2,3} and gr((T'(R)) € {3,4,00}. The zero-divisor graph of a
commutative ring in the sense of Anderson—Livingston has been studied extensively

by several authors, , , , @, , . Since then, the concept of the zero-
divisor graph of ring has been playing a vital role in its expansion.
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We define the set of the triple zero elements of R by TZ(R) = {a € Z(R)* :
there exist b,c € R\{0} such that abc = 0, ab # 0, ac # 0, bc # 0}. It is clear
that every triple zero element of R is a zero-divisor of R, but the converse is not
true in general. For example, the element 2 is a zero-divisor of Zg, but clearly it
is not a triple zero element. In this paper, motivated from zero-divisor graphs, we
introduce the triple zero graph of a commutative ring. Our starting point is the
following definition: The triple zero graph of R is an undirected graph TZI'(R)
with vertices TZ(R). If two distinct elements a and b are adjacent, then (a,b) is
an edge and we will denote it by a ~ b. Two distinct vertices a and b are adjacent
if and only if ab # 0 and there exists an element ¢ € R\{0} such that ac # 0,
bc # 0 and abc = 0. The relation "~" is always symmetric, but neither reflexive
nor transitive in general. For instance, let R = Zgg. Then clearly 2, 3, 6 € TZ(R)
with 6 ~ 6, and also 2 ~ 3,2~ 9, but 3 =« 9.

Recall from [8] that I is said to be a 2-absorbing ideal of R if whenever a,b,c € R
and abe € I, then either ab € I or ac € I or be € I. As defined in [7], I is said to to
be a weakly 2-absorbing ideal of R if whenever a,b,c € R and 0 # abc € I, then
ab €I, ac €I, or be € I. From these definitions, note that {0} is always a weakly
2-absorbing ideal of R. If 0 is not a 2-absorbing ideal, then there are some triple
zero elements of R. The concept of (weakly) 2-absorbing ideals and the zero-divisor
graphs motivated us to define the triple zero divisor graph and also investigate the
relations between triple zero graph of a ring R and 2-absorbing ideals of R.

Among many results in this paper, in Section 2, we justify some properties of
the triple zero graph of commutative rings. In Theorem [I} we show that a proper
ideal I of a ring R is 2-absorbing if and only if TZI'(R/I) = (. In Theorem
we characterize triangle free triple zero graphs of general ZPI-rings. In [11],
the authors define 3-zero-divisor hypergraph regarding to an ideal with vertices
{z € R\I : xzyz € I for some y,z € R\I such that xy ¢ I, yz ¢ I, xz ¢ I} where
distinct vertices are adjacent if and only if xyz € I, 2y ¢ I, yz ¢ [ and 2z ¢ I. They
conclude that diameter of this graph is at most 4. In Section 3, we study the triple
zero graph of general ZPI-rings. The graph properties of the triple zero graph of
general ZPI-rings such as diameter and girth are investigated. We obtain that the
triple zero graph of a zero dimensional general ZPI-ring is always connected with
diameter at most 2 and girth 3 if it is determined. (Corollary . Furthermore, we
give some characterizations for the triple zero graph of Z,, where n > 1 and justify
the diameter and girth of TZT'(Z,,). (Theorem Theorem (14| and Corollary

For the sake of completeness, we state some definitions and notation used through-
out. Let G be a (undirected) graph. The order of G, denoted by |G/, is equal to the
cardinality of the vertex set. The graph G is connected if there is a path between any
two distinct vertices. For vertices a and b of G, we say that the distance between a
and b, d(a,b) is the length of a shortest path from a to b. If there is no path between
a and b, then d(a,b) = 0o, and d(a,a) = 0. A graph G is said to be totally discon-
nected if it has no edges. The diameter of G is defined by diam(G) = sup{d(a,bd) : a
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and b are vertices of G}. The girth of G, denoted by gr(G), is the length of a short-
est cycle in G. If G contains no cycles, then gr(G) = co. A cycle of length three is
commonly called a triangle. A triangle-free graph is an undirected graph in which
no three vertices form a triangle of edges. A graph G is complete if any two distinct
vertices are adjacent. The complete graph with n vertices will be denoted by K.
A complete bipartite graph is a graph G which may be partitioned into two disjoint
non-empty vertex sets A and B such that two distinct vertices are adjacent if and
only if they are in distinct vertex sets. We denote the complete bipartite graph by
K, where A and B are partitions with | A |= m and | B |= n. If one of the
vertex sets is a singleton, then we call G' a star graph. A star graph is clearly K ,,.
As usual, Z and Z,, will denote the integers and integers modulo n, respectively.
For general background and terminology, the reader may consult [10].

2. PROPERTIES OF THE TRIPLE ZERO GRAPH

Theorem 1. Let R be a commutative ring and I be a proper ideal of R. Then the
following statements hold:

(1) TZT(R/I) = 0 if and only if I is a 2-absorbing ideal of R.
(2) TZT(R) = 0 if and only if {0} is a 2-absorbing ideal of R.
(3) If (R, M) is a quasi-local ring with M? = 0, then TZT'(R) = 0.

Proof. Suppose that I is not a 2-absorbing ideal of R. Then there exist some
(not necessarily distinct) elements a,b, ¢ of R with abc € I but neither ab € I nor
ac € I nor be € I. Hence (a+ I)(b+ I)(c+I) = I but neither (a+I)(b+1) =1
nor (a + I)(c+1I) = I nor (b+I)(c+I) =1 Thus a,b,c € TZ(R/I); and so
TZT(R/I) # 0. Conversely, if TZT'(R/I) # 0, then there are some (not necessarily
distinct) elements a +I,b+ I,c+ I of R/I satisfying (a 4+ I)(b+ I)(c+I) = I but
neither (a+ I)(b+1I)=1Inor (a+I)(c+1I)=1nor (b+1I)(c+I)=1. 1Tt implies
that ab, ac,bc ¢ I and abe € I. Hence I is not a 2-absorbing ideal of R.

(2) It is clearly a particular case putting I =0 in (1).

(3) Suppose that (R, M) is a quasi-local ring with M2 = 0. Hence 0 is a 2-
absorbing ideal of R by [7, Corollary 3.3]. Thus TZI'(R) = () by (2). O

The following example shows that the converse of Theorem [1] (3) does not hold.

Example 2. Consider R = Zy X Zy. Then clearly TZT'(R) = () but since R has
two mazximal ideals 0 X Zo and Zo X 0, it is not a quasi-local Ting.

Let R = Z,[X]/(X™), where p is prime and n > 3. We denote a(X) as the
congruence class of polynomials congruent to a(X) mod (X™) . It is well-known that
an element of Z,[X]/ (X™) is of the form a(X) = ag+ a1 X +as X2+ - +a, X" of
degree k < n where a; € Z, for i € {1,2,...,k}. Now we determine the vertex set
of the graph TZ(Z,[X]/ (X™)).
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Theorem 3. Let a(X) = ag+a1 X +aas X2+ +ap X* € Z,[X]/ (X™) where n > 3.
Then a(X) is a vertex of the graph TZT(Z,[X]/ (X™)) if and only if ag = 0(mod p)
and of the form in one of the following types:

(1) ag=as=...=ax,—1=0and k <n-—2.
(2) aj#0forsomer=1,2,..,k—1land k <n-—1.

Proof. Let a(X) € TZ(Z,[X]/(X™)). Then there exists non-zero b(X), ¢(X) €
Zp[X]/ (X™) such that a(X)b(X)c(X) = O0mod (X™), a(X)b(X) # 0 mod (X"),
a(X)e(X) # 0 mod (X™) and b(X)e(X) # 0 mod (X™). Let b(X) = by + b1 X +
ba X2+ 4+ b X, e(X)=co+a X+ o X2 4+ -+ + ¢, X*® where b; and c, are the
first non-zero (i.e., bj,c, # 0(mod p)) coefficients in the polynomials b(X') and ¢(X),
respectively. Then the coefficient of X4, in the product a(X)b(X)c(X) is apbjcy.
Since a(X)b(X)c(X) = Omod (X™) and j,r < n, we must have agb;c; = 0(mod
p). Observe that since bj, ¢, are non-zero elements of Z,, we have b;c, # 0. Thus
ap = 0(mod p).

Case I. Suppose that a; = a2 = ... = ax_1 = 0. Then akaijjch" =
Omod (X™) which implies that k& + j + r = n. Since j,r > 1, we conclude that
k<n-2.

Case II. Suppose that a; # 0 for some i = 1,2,....k — 1. Then we show
that k can be n — 1. Assume that deg(a(X)) = k = n — 1. Then, clearly a(X)
X X = 0mod (X™) and X X # Omod (X™). Since a;X'X # Omod (X") where
i=1,2,...,k — 1, we conclude that a(X) X # 0mod (X™).

Conversely, assume that ag = 0 (modp). If (1) holds, then a(X) = axX* and
k <n—2. Then a(X) X7 X" = 0mod (X™) for all j,r > 1 such that j+r=n—k
but neither a(X) X7 = Omod (X™") nor a(X) X" = Omod (X") nor X/ X" =
Omod (X™) . Hence a(X) is a triple zero element of Z,[X]/ (X™) . Suppose that (2)
holds. We may assume that a; # 0 (mod p). Then a(X) X7 X" = 0mod (X") for
all j,» > 1 such that j +7 =n — 1. Since a1 X X7 # 0mod (X") and a1 X X" #
0mod (X", we conclude that a(X) X7 # 0mod (X™) and a(X) X" # Omod (X™) .
Thus a(X) is a triple zero element of Z,[X]/ (X™). O

Theorem 4. Let R = Z,[X]/(X?). Then TZT'(R) is a complete graph with p* —p
vertices, i.e., TZI'(R) = Kp2_,. In particular, if p =2, then TZT'(R) = K».

Proof. From Theorem the vertices of TZT'(Z,[X]/ (X?)) of the type nX + mX?,
where n,m are integers with 1 < n < p and 0 < m < p. Hence, the number
of the vertices of TZT'(Z,[X]/(X?)) is p> — p. Observe that all vertices of this
graph are adjacent, thus it is the complete graph K,._,. For p = 3, this graph is
illustrated by Figure 2. In the particular case, since X X (X + X?2) = 0 but X
X #0and X(X+X?) #0, X and (X + X?) are the only distinct adjacent vertices
of TZI‘(ZQ[X]/<X3>). O

We are unable to answer the following question which may be inspiring for the
possible other work:
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FIGURE 2. TZD(Z3[X]/(X?))

Question. Let R = Z,[X]/(X™) where p is a prime number and n > 3. Can
we have a general characterization for the triple zero graph of R?

We recall that an n-gon is a regular polygon with n sides. In the next example,
we show that there are triple zero graphs with cycles of arbitrary specified length.
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Example 5. Let T be an integral domain and n > 3 is an integer. Consider
R = T[Xl,XQ, s ,Xn]/(XlXQXg,X3X4X5, R ,Xn_anXl). Then TZF(R) s a
connected graph which has an n-gon, an n/2-gon and has triangles more than n.

Proof. Observe that X7 ~ Xo ~ X3, X3 ~ Xy ~ X5,--+, X1 ~ X, ~ X3
are some of the triangles, and it is easy to see that (X, + XpXpy1) ~ (X 4 +
XpXgy1) ~ Xk1o is another triangle for each k, where k is odd, and &k < n — 2.
Also X1 ~Xg~ -~ X1 ~Xjisann/2—gonand X1 ~Xg~ -~ X, 1~
X, ~ X is an n-gon. O

3. TRIPLE ZERO GRAPH OF GENERAL ZPI-RINGS

A ring is called a general ZPI-ring (resp. ZPI-ring) if each ideal (resp. each non-
zero ideal) I of R is uniquely expressible as product of prime ideals of R. Dedekind
domains are indecomposable general ZPI-rings. For a general background, the
reader may refer to |12]. In this section, we study the graph theoretical properties
of the triple zero graph for general ZPI-rings. First we need to prove the following
lemma which is a generalization of |8, Theorem 3.15].

Lemma 6. Let R be a zero dimensional Noetherian ring which is not a field. Then
the following statements are equivalent:

(1) R is a general ZPI-ring.

(2) If I is a 2-absorbing ideal of R, then I is a maximal ideal of R or I = M?
for some maximal ideal M of R or I = MM’ for some maximal ideals M,
M’ of R.

(3) If I is a 2-absorbing ideal of R, then I is a prime ideal of R or I = P? for
some prime ideal P of R or I = P(Q for some prime ideals P, Q of R.

Proof. (1)=(2) Let I be a 2-absorbing ideal of R. Since maximal ideals coincide
with prime ideals, /I = M for some maximal ideal M of R with M? C I or
VI =MnNM = MM for some maximal ideals M, M’ of R with MM’ C I
by [8, Theorem 2.4]. Thus, we have either I = M is maximal or I = M? for some
maximal ideal M of R or I = MM’ for some maximal ideals M, M’ of R.

(2)=(3) is straightforward.

(3)=(1) Suppose that (3) holds. Assume that there is an ideal J of R which
satisfies M2 C I C M. Then I is an M-primary ideal of R; so I is a 2-absorbing
ideal by |8, Theorem 3.1]. Hence I = M or I = M? from our assumption (3). Thus
there are no ideals properly between M and M?. From [12| (39.2) Theorem], R is
a general ZPI-ring. O

Theorem 7. Let R be a zero dimensional general ZPI-ring. Then TZT(R) = 0 if
and ony if either R is an integral domain or 0 = P? where P is a prime ideal of R
or 0 = PQ where P and Q are prime ideals of R.
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Proof. If R is an integral domain or 0 = P? where P is a prime ideal of R or 0 = PQ
where P and @ are prime ideals of R, then it is easy to verify that there is no triple
zero elements of R; so TZT'(R) = (). Conversely, suppose that TZI'(R) = (. Then
0 is a 2-absorbing ideal of R by Theorem From Lemma [ either 0 is prime,
0 = P? for some prime ideal P or 0 = PQ for some prime ideals P,Q of R, so we
are done. |

We recall that a special primary is an indecomposable general ZPI-ring which is
a local ring with maximal ideal M such that each proper ideal of R is a power of
M.

Lemma 8. [12] An indecomposable general ZPI-ring with identity is either a Dedekind
domain or a special primary ring.

Theorem 9. Let R be a general ZPI-ring and 0 = P3 where P is a prime ideal of
R such that P2 # 0. Then TZT(R) is a complete graph on |P| — |P2| vertices; i.e.
TZF(R) = K‘p|,|p2‘

Proof. Suppose that 0 = P3 where P is a prime ideal of R. It is well-known that a
ring R is indecomposable if and only if 1 is the only non-zero idempotent element
of R. Let 0 # a € R and a? = a. Hence a — a*? = a(1 —a) = 0 € P implies a € P
or (1—a) € P.If a € P, then we get 0 = a® = a® = a, a contradiction. Thus
(1—a) € P. Tt follows 0 = (1 —a)> =1-2a> +2a—a®>=1—a,and so a = 1.
Therefore, R is a indecomposable ring which is clearly not a domain as 0 = P3
and P is nonzero. Hence, we conclude from Lemma [§| that R is a special primary
ring. Let M be the unique maximal ideal of R. Since every ideal, in particular,
the zero ideal is a power of M, we have M C /0. Since 0 = P2, clearly we have
P=y0=M.

Now, we show that a is a vertex of TZT(R) if and only if a € P\P2. Let a be
a vertex of TZI'(R). Then, there exist b,c € R\{0} such that abc = 0, ab # 0,
ac#0,bc #0. If a ¢ P, then a is unit and bc = 0 which is a contradiction. Thus
TZ(R) C P. If a € P?, then since b € TZ(R) C P, we conclude ab € P? = 0,
a contradiction. Therefore, a € P\P2. Conversely, if a € P\P?, then the claim
follows from a® = 0 and a? € P? # 0. Suppose a and b are any two distinct
vertices. Since a?b = ab? = 0 and ab, a?,b? are nonzero, a and b are adjacent.
Thus, TZT'(R) is a complete graph on |P| — | P?| vertices. O

Theorem 10. Let 0 = P2Q where P and Q are prime ideals of a general ZPI-ring
R. Then TZT'(R) is a connected graph with diameter 2 and girth 3.

Proof. Suppose that 0 = P2Q. Let a be a vertex of TZT'(R). We show that a € Q\ P
ora € P\(P?UQ). Since a € TZ(R), there exist b,c € R\ P2Q such that abc € P?Q
and ab, be, ac ¢ P2Q. Hence, we have either a € Por b€ Por c € P,and a € Q or
beQorce@.

CaseI. Let a € PNQ.If a € P?, thena € P’NQ = P?>Q =0 as P? and Q are
coprime, a contradiction. So, assume that a € (P\P?)NQ.Ifb € P or ¢ € P, then
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ab = 0 or ac = 0, a contradiction. If b € Q\P and ¢ € Q\P, then we get abc ¢ P2Q
which is again a contradiction. Thus, TZ(R) C (P\Q) U (Q\P).

Case II. Let a € P\Q. Suppose that a € P2. If b € Q\P or ¢ € Q\P, then we
have either ab = 0 or ac = 0, a contradiction. If b,c € P\Q, then abc ¢ Q, and so
abc ¢ P2Q, a contradiction.

Therefore, we conclude that a € P\(P?U Q) or a € Q\P.

Observe that all pairs are adjacent except for the elements of Q\P. In fact, if an
element x € TZ(R) satisfies a1byz = 0, where a1, a2 € Q\P, we conclude that z €
P2 a contradiction. Thus TZI'(R) is a connected graph with diam(TZT'(R)) = 2
and gr(TZI'(R)) = 3. O

In the next theorem, we give a necessary and sufficient conditions for TZT'(R)
to be triangle free.

Theorem 11. Let R be a zero dimensional general ZPI-ring. TZT(R) is triangle
free if and only if one of the following statements is hold:

) R is an integral domain.

) 0= PQ for some distinct prime ideals P and Q of R.

) 0= P? for some prime ideal P of R.

) 0= P3 for some prime ideal P of R such that |P| =4 and |P?| = 2.

Proof. (=). We investigate the following cases separately.

Case I. Suppose that 0 is divisible by at least three prime ideals of R, say P, @
and T. Then p ~q~t where pe P, q € Q, t €T forms a triangle.

Case II. If 0 is divisible by P? and @, where P and Q are distinct prime ideals
of R, then we obtain the triangle p ~ g ~ kp, where p € P, ¢ € Q and 1 # k € R\Q.

Case III. Suppose that 0 = P", where P is prime and n > 3. If n = 3, then
this graph is complete by Theorem @ If 0 = P" (n > 4), then p ~ p?> ~ kp, where
p € P and 1 # k € R\P forms a triangle.

(<). If (1), (2) or (3) holds, then TZT'(R) = 0 by Theoremm If (4) holds, then
there are the only two vertices connected by an edge by Theorem |§|; so TZT'(R)
K. O

So we conclude the following result.

Corollary 12. The diameter of the triple zero graph of a zero dimensional general
ZPI-ring R is an element of {0,1,2} and the girth of the triple zero graph of R is
3 or undefined.

In the following result, we characterize the triple zero graph of Z,, and calculate
|TZT(Zy,)| cardinality of the vertex set for some particular cases.

Theorem 13. Let R = Z, where n is a positive integer. Then the following
statements hold:

(1) If n=p orn=p* orn = pq, then TZT(Z,) = 0.
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(2) If n = p® where p is prime, then TZT(Zy,) is a complete graph on p* — p
vertices.

(3) If n = p?q where p and q are distinct prime integers, then TZT(Z,) is a
connected graph with diameter 2 and girth 3.

Proof. (1) is clear by Theorem

(2) The vertices of TZI'(Zy) are kp, where k € Z3, = {k € Z : (k,p?) =
1,k < p?}. So the number of vertices can be calculated by Euler’s function ¢(p?) =
p(p — 1). Since (kp)(mp)(tp) = 0 for all k,m,t € Z;, and neither (kp)(mp) = 0
nor (kp)(tp) = 0 nor (mp)(tp) = 0, there is an edge between all vertices. Thus the
graph is complete; so it is Kp2_,,.

(3) Suppose that n = p?q. Then TZI'(Z,) is a connected graph with diameter
2 and girth 3 by Theorem Observe that the vertices of this graph are of the
form kq where k € Z;, = {k € Z: (k,p?) = 1, k < p*} and of the form sp where
s€Q={s€Z:(s,p) =(s,9 =1ands < pg}. So the number of vertices is
Q] + ¢(p?) = |Q| + p? — p. Moreover, the number of edges can be calculated as

K;' )+(p2—p)|9|- O

Theorem 14. Letn > 0 and R = Z,,. Then the following statements are equivalent:
(1) TZTZ,,) is triangle free.
(2) Either n =p, n = p* n = pq, orn =8, where p and q are distinct prime
integers.

Proof. We investigate the following cases separately.

Case 1. Suppose that n is divisible by at least three primes, say p, ¢, and r. Then
p~ q~ (n/pq) forms a triangle.

Case II. If n is divisible by p? and ¢, where p and ¢ are distinct prime integers,
then we obtain the triangle p ~ ¢ ~ kp, where (k,q) = 1 and k < pq.

Case III. Suppose that n = p™, where p is prime and n > 3. If n = 3, then this
graph is complete by Theorem [0] If n = p™, where n > 3, except from p = 2, then
p ~ p*> ~ kp, where (k,p) = 1, k < p"~3 forms a triangle. Thus, n = p, n = p?,
n =pq, or n = 8.

Conversely, if n = p, n = p* or n = pq, then TZT(Z,) = () by Theorem If
n = §, then 2 and 6 are the only vertices connected by an edge; and so the claim is
clear. O

So we conclude the following result which shows that TZT'(Z,,) is connected with
diameter at most 2.

Corollary 15. The diameter of the triple zero graph of Z,, is an element of {0,1,2}
and the girth of the triple zero graph of Z,, is 3 or undefined.

Now we can summarize these results by the table below. Let p and ¢ be distinct
prime integers and Q = {s € Z: (s,p) = (s,q) = 1 and s < pq}.
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TABLE 1. TZT'(Zy,) Summary Table
n Number of vertices Number of edges Diam | Girth Remarks
p or pZor pq 0 0 0 o |TZT(Z,)=10
8 2 1 1 00 2~6
2
P (p > 3) p*—p ( Por > 2 | 3 Ky
Q
p3q Q| +p?—p ( |2‘ > +(p°—p) |9 2 3 Connected
All others 2 3 Connected
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