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1. Introduction and Preliminary

Let A denote the class of all functions of the form

f(z) = z +

∞∑
m=2

amz
m, z ∈ U, (1)

which are analytic in open unit disk U := {z ∈ C : |z| < 1} and satisfy the normalization conditions f(0) = 0
and f ′(0) = 1. Let S be the subclass of A consists of univalent functions in U. Further suppose that S∗ is
subclass of functions of A which are starlike in U, that is f satisfy the subsequent conditions:

Re

{
zf ′(z)

f(z)

}
> 0, ∀z ∈ U (2)
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Let C∗ is subclass of functions of A which are convex in U, that is f satisfy the following conditions:

Re

{
(zf ′(z))′

f ′(z)

}
= Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, ∀z ∈ U (3)

For analytic functions f and g in U we say that the function f is subordinate to the function g and written
as

f(z) ≺ g(z)

If there exists a Schwarz function w which is analytic in U and w(0) = 0, |w(z)| < 1, such that f(z) = g(w(z))
Further, if g is the function which is univalent in U, then it becomes

f(z) ≺ g(z); z ∈ U⇔ f(0) = g(0) and f(U) ⊂ g(U)

Now we de�ne P the class of analytic function with positive real part which is given as

p(z) = 1 +
∞∑

m=1

pmz
m; Re(p(z)) > 0, z ∈ U.

De�nition 1.1. An analytic function h with h(0) = 1 belongs to the class P [M,N ], with −1 ≤ N < M ≤ 1,
if and only of

h(z) ≺ 1 +Mz

1 +Nz
.

The class P [M,N ] of analytic functions was introduced and studied by Janowski [6], who showed that
h ∈ P [M,N ] if and only if there exists a function p ∈ P , such that

h(z) =
(M + 1)p(z)− (M − 1)

(N + 1)p(z)− (N − 1)
, z ∈ U.

De�nition 1.2. [6] (i) A function f ∈ A is in the class S∗[M,N ], with −1 ≤ N < M ≤ 1, if and only if

zf ′(z)

f(z)
≺ 1 +Mz

1 +Nz
. (4)

(ii) A function f ∈ A is in the class C∗[M,N ], with −1 ≤ N < M ≤ 1, if and only if

1 +
f ′′(z)

f ′(z)
≺ 1 +Mz

1 +Nz
.

De�nition 1.3. The q-number [m]q de�ned in [15] for q ∈ (0, 1), is given by

[m]q :=


1− qm

1− q
, if m ∈ C,

m−1∑
k=0

qk = 1 + q + q2 + · · ·+ qm−1, if m ∈ N := {1, 2, . . . }.

De�nition 1.4. [15] The q-derivative Dqf of a function f is de�ned as

Dqf(z) :=


f(z)− f(qz)

(1− q)z
, if z ∈ C \ {0},

f ′(0), if z = 0,

provided that f ′(0) exists, and 0 < q < 1.
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From the De�nition 1.4 it follows immediately that

lim
q→1

Dqf(z) = lim
q→1

f(z)− f(qz)

(1− q)z
= f ′(z).

For a function f ∈ A which has the power expansion series of the form (1.1), it is easy to check that

Dqf(z) = 1 +

∞∑
m=2

[m]qamz
m−1, z ∈ U,

as it was previously de�ned by Srivastava and Bansal [14], although the q-derivative operator Dq was pre-
sumably �rst applied by Ismail et. al. [5] to study a q-extension of the class S∗ of starlike functions in U
(see [5], [3], [13]).

De�nition 1.5. A function f ∈ A is in the class S∗q if and and only if∣∣∣∣ z

f(z)
Dqf(z)− 1

1− q

∣∣∣∣ < 1

1− q
, z ∈ U. (5)

It is observed that, as q → 1− the closed disk∣∣∣∣w − 1

1− q

∣∣∣∣ < 1

1− q

becomes the right-half plane and the class S∗q of q-starlike functions diminishes to the acquainted class S∗.
Consistently, by with the principle of subordination among analytic functions, we can rewrite the inequality
(5) as

z

f(z)
Dqf(z) ≺ 1 + z

1− qz
. (6)

One way to generalize the class S∗[M,N ] of De�nition 1.2 is to replace in (4) the function (1 +Mz)/(1 +
Nz) by the function (1+z)/(1−qz) which is involved in (6). The appropriate de�nition of the corresponding
q-extension S∗q [M,N ] is speci�ed below.

De�nition 1.6. A function f ∈ A is said to be in the class S∗q [M,N ] if and only if

zDqf(z)

f(z)
=

(M + 1)Q(z)− (M − 1)

(N + 1)Q(z)− (N − 1)
, z ∈ U, (7)

where
Q(z) =

1 + z

1− qz
which by using the de�nition of the subordination can be written as follows:

zDqf(z)

f(z)
≺ φ(z),

where

φ(z) :=
(M + 1)z + 2 + (M − 1)qz

(N + 1)z + 2 + (N − 1)qz
, −1 ≤ N < M ≤ 1, q ∈ (0, 1).

Remark 1.1. (i) It is easy to check that

lim
q→1−

S∗q [M,N ] = S∗[M,N ].

Also, S∗q [1,−1] =: S∗q , where S∗q is the class of functions introduced and studied by Ismail et. al [5].
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(ii) If w is a Schwarz function, from the de�nition of Q we get that∣∣∣∣Q(z)− 1

1− q

∣∣∣∣ < 1

1− q
, z ∈ U,

and from (7) it follows

Q(z) =
(N − 1)

zDqf(z)
f(z) − (M − 1)

(N + 1)
zDqf(z)
f(z) − (M + 1)

, z ∈ U.

From these computations we conclude that a function f ∈ A is in the class S∗q [M,N ], if and only if∣∣∣∣∣∣
(N − 1)

zDqf(z)
f(z) − (M − 1)

(N + 1)
zDqf(z)
f(z) − (M + 1)

− 1

1− q

∣∣∣∣∣∣ < 1

1− q
, z ∈ U.

In itâ��s special case when M = 1 − 2β and N = −1, with 0 ≤ β < 1, the function class S∗q [M,N ]
reduces to the function class S∗q (β) which was presented and deliberated by Agrawal and Sahoo [1].

(iii) By means of the well-known Alexanderâ��s theorem [2], the class C∗q [M,N ] of q-convex functions
can be de�ned in the following way:

f ∈ C∗q [M,N ]⇔ zDqf(z) ∈ S∗q [M,N ].

The con�uent hypergeometric function in the series form is given by

F (ξ; η; z) =

∞∑
m=0

(ξ)mz
m

(η)mm!
; ∀z ∈ C,

where η is neither zero nor a negative integer and the series is convergent for ξ, η. Now the generalized
con�uent hypergeometric function (normalized function) is de�ned as

zF (ξ; η; z) =

∞∑
m=0

(ξ)mz
m+1

(η)mm!
(By using convolution of two functions)

= z +
∞∑

m=2

(ξ)m−1z
m

(η)m−1(m− 1)!
, (8)

where (β)m is the Pochhammer symbol de�ned as

(β)m =

{
1 if m = 0

β(β + 1)(β + 2) . . . (β +m− 1) if m ∈ N

≡ Γ(β +m)

Γβ

and
(β)m+k = (β)m(β +m)k = (β)k(β + k)m.

In this paper we determine su�cient conditions for q-starlike functions and q-convex functions associated
with con�uent hypergeometric function by using following su�cient conditions obtained by Srivastava [15]:

Lemma 1.1. [15] A function f ∈ A is in the class S∗q [M,N ], if it satisfying the following condition

∞∑
m=2

(2q[m− 1]q + |(N + 1)[m]q − (M + 1) |)|am| < |N −M | (9)

Lemma 1.2. [15] A function f ∈ A is in the class C∗q [M,N ], if it satisfying the following condition

∞∑
m=2

[m]q(2q[m− 1]q + |(N + 1)[m]q − (M + 1) |)|am| < |N −M | (10)
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2. Main Results

Theorem 2.1. Let Ej, j ∈ {1, 2}, be de�ned as follows:
(i) If ξ > 0 and γ > 0, then E1 is given by

E1(ξ, γ, q) :=
1

1− q

{(
q +N + 2 +M(1− q)

)
F (ξ; γ; 1)

− (N + 3)qF (ξ; γ; q)− (M +N + 2)(1− q)
}
.

(ii) If ξ,∈ C \ {0} and γ > 0, then E2 is given by

E2(ξ, γ, q) :=
1

1− q

{(
q +N + 2 +M(1− q)

)
F (|ξ|; γ; 1)

− (N + 3)qF (|ξ|; γ; q)− (M +N + 2)(1− q)
}
.

If for any j ∈ {1, 2} the inequality
Ej(ξ, γ, q) < |N −M |

holds, then function zF (ξ; γ; z) belongs to the class S∗q [M,N ].

Proof. Since

zF (ξ; γ; z) = z +

∞∑
m=2

(ξ)m−1
(γ)m−1(m− 1)!

zm, z ∈ U,

according to Lemma 1.1, any function f ∈ A is in the class S∗q [M,N ] if it satis�es the inequality (9). Then,
for f(z) := zF (ξ; γ; z) it is su�cient to show that (9) holds, for

am =
(ξ)m−1

(γ)m−1(m− 1)!
, and [m]q =

1− qm

1− q
.

Using the triangle's inequality we get

∞∑
m=2

(2q[m− 1]q + |(N + 1)[m]q − (M + 1)|)|am|

≤
∞∑

m=2

2q
1− qm−1

1− q
|am|+

∞∑
m=2

(N + 1)
1− qm

1− q
|am|+

∞∑
m=2

(M + 1)|am|

=

∞∑
m=2

(
2q + (N + 1)

1− q
+ (M + 1)

)
|am| −

∞∑
m=2

(N + 3)qm

1− q
|am|. (11)

Case (i) If ξ > 0 and γ > 0, from (11) we get

∞∑
m=2

(2q[m− 1]q + |(N + 1)[m]q − (M + 1)|)|am|

≤
(

2q + (N + 1)

1− q
+ (M + 1)

) ∞∑
m=2

(ξ)m−1
(γ)m−1(m− 1)!

− N + 3

1− q

∞∑
m=2

(ξ)m−1q
m

(γ)m−1(m− 1)!

=
1

1− q

{(
q +N + 2 +M(1− q)

)(
F (ξ; γ; 1)− 1

)
− (N + 3)q

(
F (ξ, η; γ; q)− 1

)}
=

1

1− q

{(
q +N + 2 +M(1− q)

)
F (ξ; γ; 1)− (N + 3)qF (ξ; γ; q)

− (M +N + 2)(1− q)
}

=: E1(ξ, γ, q),
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and the assumption of the theorem implies (9), that is zF (ξ; γ; z) ∈ S∗q [M,N ].
Case (ii) If ξ ∈ C \ {0}, γ > 0, from (11) we have

∞∑
m=2

(2q[m− 1]q + |(N + 1)[m]q − (M + 1)|)|am|

≤
(

2q + (N + 1)

1− q
+ (M + 1)

) ∞∑
m=2

∣∣∣∣ (ξ)m−1
(γ)m−1(m− 1)!

∣∣∣∣− N + 3

1− q

∞∑
m=2

∣∣∣∣ (ξ)m−1q
m

(γ)m−1(m− 1)!

∣∣∣∣
=

(
2q + (N + 1)

1− q
+ (M + 1)

) ∞∑
m=1

|(ξ)m|
(γ)mm!

− N + 3

1− q
q

∞∑
m=1

|(ξ)m|qm

(γ)mm!
. (12)

Since |(a)n| ≤ (|a|)n, from (12), we deduce that

∞∑
m=2

(2q[m− 1]q + |(N + 1)[m]q − (M + 1)|)|am|

≤
(

2q + (N + 1)

1− q
+ (M + 1)

) ∞∑
m=1

(|ξ|)m
(γ)mm!

− (N + 3)q

1− q

∞∑
m=1

(|ξ|)mqm

(γ)mm!

=
1

1− q

{(
q +N + 2 +M(1− q)

)(
F (|ξ|; γ; 1)− 1

)
− (N + 3)q

(
F (|ξ|; γ; q)− 1

)}

=
1

1− q

{(
q +N + 2 +M(1− q)

)
F (|ξ|; γ; 1)

− (N + 3)qF (|ξ|; γ; q)− (M +N + 2)(1− q)
}

=: E2(ξ, η, γ, q).

and the assumption of the theorem implies (9), that is zF (ξ; γ; z) ∈ S∗q [M,N ].

For the special case M = 1− 2β, 0 ≤ β < 1, and N = −1, we have S∗q [1− 2β,−1] =: S∗q (β) and Theorem
2.1 reduces to the following result:

Corollary 2.1. Let E∗j , j ∈ {1, 2}, be de�ned as follows:
(i) If ξ > 0 and γ > 0, then E∗1 is given by

E∗1(ξ, η, γ, q) :=
1

1− q

{
2
(
1− β(1− q)

)
F (ξ; γ; 1)

− 2qF (ξ; γ; q)− 2(1− β)(1− q)
}
.

(ii) If ξ ∈ C \ {0} and γ > 0, then E∗2 is given by

E∗2(ξ, η, γ, q) :=
1

1− q

{
2
(
1− β(1− q)

)
F (|ξ|; γ; 1)

− 2qF (|ξ|; γ; q)− 2(1− β)(1− q)
}
.

If for any j ∈ {1, 2} the inequality
E∗j (ξ, γ, q) < 2(1− β)

holds for 0 ≤ β < 1, then function zF (ξ; γ; z) belongs to the class S∗q (β).
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For β = 0 the above corollary gives us the next special case:

Example 2.1. Let Ẽj, j ∈ {1, 2}, be de�ned as follows:
(i) If ξ > 0 and γ > 0, then Ẽ1 is given by

Ẽ1(ξ, γ, q) =
1

1− q
{2F (ξ; γ; 1)− 2qF (ξ; γ; q)− 2(1− q)} .

(ii) If ξ ∈ C \ {0} and γ > 0, then Ẽ2 is given by

Ẽ2(ξ, γ, q) :=
1

1− q
{2F (|ξ|; γ; 1)− 2qF (|ξ|; γ; q)− 2(1− q)} .

If for any j ∈ {1, 2} the inequality
Ẽj(ξ, γ, q) < 2

holds, then function zF (ξ; γ; z) belongs to the class S∗q (0).

Theorem 2.2. Let Gj, j ∈ {1, 2}, be de�ned as follows:
(i) If ξ > 0 and γ > 0, then G1 is given by

G1(ξ, γ, q) :=
1

(1− q)2
{(
N + 2 + q +M(1− q)

)
F (ξ; γ; 1)

−
(
M(1− q) + 2N + 5 + q

)
qF (ξ; γ; q) + (N + 3)q2F (ξ; γ; q2)

− (M +N + 2)(1− q)2
}
.

(ii) If ξ ∈ C \ {0} and γ > 0, then G2 is given by

G2(ξ, γ, q) :=
1

(1− q)2

{(
N + 2 + q +M(1− q)

)
F (|ξ|; γ; 1)

−
(
M(1− q) + 2N + 5 + q

)
qF (|ξ|; γ; q) + (N + 3)q2F (|ξ|; γ; q2)

− (M +N + 2)(1− q)2
}
.

If for any j ∈ {1, 2} the inequality
Gj(ξ, γ, q) < |N −M |

holds, then function zF (ξ; γ; z) belongs to the class C∗q [M,N ].

Proof. Since, according to Lemma 1.2 any function f ∈ A belongs to the class C∗q [M,N ] if it satis�es the
inequality (10) for

am =
(ξ)m−1

(γ)m−1(m− 1)!
, and [m]q =

1− qm

1− q
.
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Using �rst the triangle's inequality, we have

∞∑
m=2

[m]q
(
2q[m− 1]q +

∣∣(N + 1)[m]q − (M + 1)
∣∣)|am|

≤
∞∑

m=2

2q[m]q[m− 1]q|am|+
∞∑

m=2

(N + 1)[m]q|[m]q|am|+
∞∑

m=2

(M + 1)[m]q|am|

=
∞∑

m=2

2q
1− qm

1− q
1− qm−1

1− q
|am|+

∞∑
m=2

(N + 1)
1− qm

1− q
1− qm

1− q
|am|

+
∞∑

m=2

(M + 1)
1− qm

1− q
|am|

=
∞∑

m=2

(
2q + (N + 1) + (M + 1)(1− q)

(1− q)2

)
|am|

−
∞∑

m=2

(
(M + 1)(1− q) + 2(N + 1) + 2q + 2

(1− q)2

)
qm|am|+

∞∑
m=2

(
2 + (N + 1)

(1− q)2

)
q2m|am|

=
q +N + 2 +M(1− q)

(1− q)2
∞∑

m=2

|am| −
M(1− q) + 2N + 5 + q

(1− q)2
∞∑

m=2

qm|am|

+
N + 3

(1− q)2
∞∑

m=2

q2m|am|. (13)

Case (i) If ξ > 0 and γ > 0, from (13) we obtain

∞∑
m=2

[m]q
(
2q[m− 1]q +

∣∣(N + 1)[m]q − (M + 1)
∣∣)|am|

≤ q +N + 2 +M(1− q)
(1− q)2

∞∑
m=2

(ξ)m−1
(γ)m−1(m− 1)!

+
N + 3

(1− q)2
∞∑

m=2

(ξ)m−1
(γ)m−1(m− 1)!

q2m

− M(1− q) + 2N + 5 + q

(1− q)2
∞∑

m=2

(ξ)m−1
(γ)m−1(m− 1)!

qm

=
q +N + 2 +M(1− q)

(1− q)2
∞∑

m=1

(ξ)m
(γ)mm!

+
N + 3

(1− q)2
q2
∞∑

m=1

(ξ)m
(γ)mm!

q2m

− M(1− q) + 2N + 5 + q

(1− q)2
q
∞∑

m=1

(ξ)m
(γ)mm!

qm

=
q +N + 2 +M(1− q)

(1− q)2
(F (ξ; γ; 1)− 1) +

(N + 3)q2

(1− q)2
(F (ξ; γ; q2)− 1)

− M(1− q) + 2N + 5 + q

(1− q)2
q(F (ξ; γ; q)− 1)

=
1

(1− q)2

{(
N + 2 + q +M(1− q)

)
F (ξ; γ; 1)

−
(
M(1− q) + 2N + 5 + q

)
qF (ξ; γ; q) + (N + 3)q2F (ξ; γ; q2)

− (M +N + 2)(1− q)2
}

=: G1(ξ, γ, q).
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Therefore, the assumption of the theorem implies (10), hence zF (ξ; γ; z) ∈ C∗q [M,N ].
Case (ii) If ξ ∈ C \ {0}, γ > 0, then the inequality (13) leads to

∞∑
m=2

[m]q
(
2q[m− 1]q +

∣∣(N + 1)[m]q − (M + 1)
∣∣)|am|

≤ q +N + 2 +M(1− q)
(1− q)2

∞∑
m=2

∣∣∣∣ (ξ)m−1
(γ)m−1(m− 1)!

∣∣∣∣+
N + 3

(1− q)2
∞∑

m=2

∣∣∣∣ (ξ)m−1
(γ)m−1(m− 1)!

q2m
∣∣∣∣

− M(1− q) + 2N + 5 + q

(1− q)2
∞∑

m=2

∣∣∣∣ (ξ)m−1
(γ)m−1(m− 1)!

qm
∣∣∣∣

=
q +N + 2 +M(1− q)

(1− q)2
∞∑

m=2

|(ξ)m−1|
(γ)m−1(m− 1)!

+
N + 3

(1− q)2
∞∑

m=2

|(ξ)m−1|
(γ)m−1(m− 1)!

q2m

− M(1− q) + 2N + 5 + q

(1− q)2
∞∑

m=2

|(ξ)m−1|
(γ)m−1(m− 1)!

qm.

Since (a)n| ≤ (|a|)n, the above inequality implies

∞∑
m=2

[m]q
(
2q[m− 1]q +

∣∣(N + 1)[m]q − (M + 1)
∣∣)|am|

≤ q +N + 2 +M(1− q)
(1− q)2

∞∑
m=1

(|ξ|)m
(γ)mm!

+
N + 3

(1− q)2
q2
∞∑

m=1

(|ξ|)m
(γ)mm!

q2m

− M(1− q) + 2N + 5 + q

(1− q)2
q
∞∑

m=1

(|ξ|)m
(γ)mm!

qm

=
q +N + 2 +M(1− q)

(1− q)2
(F (|ξ|; γ, 1)− 1) +

(N + 3)q2

(1− q)2
(F (|ξ|; γ; q2)− 1)

− M(1− q) + 2N + 5 + q

(1− q)2
q(F (|ξ|; γ; q)− 1)

=
1

(1− q)2

{(
N + 2 + q +M(1− q)

)
F (|ξ|; γ; 1) + (N + 3)q2F (|ξ|; γ; q2)

−
(
M(1− q) + 2N + 5 + q

)
qF (|ξ|; γ; q)− (M +N + 2)(1− q)2

}
=: G2(ξ, γ, q).

It follows that the assumption of the theorem implies (10), hence zF (ξ; γ; z) ∈ C∗q [M,N ].

For the special case M = 1− 2β, 0 ≤ β < 1 and N = −1, we have C∗q [1− 2β,−1] =: C∗q (β), and Theorem
2.2 reduces to the following result:

Corollary 2.2. Let G∗j , j ∈ {1, 2}, be de�ned as follows:
(i) If ξ > 0 and γ > 0, then G∗1 is given by

G∗1(ξ, η, γ, q) :=
1

(1− q)2

{
2
(
1− β(1− q)

)
F (ξ; γ; 1)

− 2
(
2− β(1− q)

)
qF (ξ; γ; q) + 2q2F (ξ; γ; q2)− 2(1− β)(1− q)2

}
.
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(ii) If ξ ∈ C \ {0} and γ > 0, then G∗2 is given by

G∗2(ξ, γ, q) :=
1

(1− q)2

{
2
(
1− β(1− q)

)
F (|ξ|; γ; 1)

− 2
(
2− β(1− q)

)
qF (|ξ|; γ; q) + 2q2F (|ξ|; γ; q2)

− 2(1− β)(1− q)2
}
.

If for any j ∈ {1, 2} the inequality
G∗j (ξ, γ, q) < 2(1− β)

holds for 0 ≤ β < 1, then function zF (ξ; γ; z) belongs to the class C∗q (β).

For β = 0 the above corollary gives us the next example:

Example 2.2. Let G̃j, j ∈ {1, 2}, be de�ned as follows:
(i) If ξ > 0 and γ > 0, then G̃1 is given by

G̃1(ξ, γ, q) :=
1

(1− q)2

{
2F (ξ; γ; 1)− 4qF (ξ; γ; q)

+ 2q2F (ξ; γ; q2)− 2(1− q)2
}
.

(ii) If ξ ∈ C \ {0} and γ > 0, then G̃2 is given by

G̃2(ξ, γ, q) :=
1

(1− q)2

{
2F (|ξ|; γ; 1)− 4qF (|ξ|; γ; q)

+ 2q2F (|ξ|; γ; q2)− 2(1− q)2
}
.

If for any j ∈ {1, 2} the inequality
G̃j(ξ, γ, q) < 2

holds, then function zF (ξ; γ; z) belongs to the class C∗q (0).
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