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Abstract: Streamflow prediction is often a challenging issue for snow dominated basins where proper
in-situ snow data might be limited and the snow physics is highly complex. The main aim of this study is
to propose an alternative modeling solution by considering both accessibility of the inputs and simplicity
of the model structure. We propose Wavelet Neural Network (WNN) model approach which takes
probabilistic snow cover area in order to produce probabilistic streamflow in the mountainous basins. For
the sake of the accessibility of the input data, snow probability maps are produced from cloud-free images
of MODIS. The WNN model is trained and tested with observed hydro-meteorological data. Also, Multi-
Layer Perceptron Model (MLP) is used as a benchmark model. The approach is tested in a snow-dominated
headwater (in altitude from 1559 to 3508 m) of Murat River which has a great importance as being one of
the main tributaries of Euphrates River. According to the results, the approach is capable of detecting snow
distribution in the area of interest and WNN is promising to generate probabilistic streamflow predictions.

Keywords: Snowmelt modeling, Wavelet Neural Network, Euphrates River Basin, Streamflow prediction,
Satellite snow data

Daghk Havzalarda Uydu Kar Verisi ve Dalgacik Sinir Ag1 Tabanh Olasihikli Akim Modelleme
Yaklasim

Oz: Kar baskin havzalardaki akarsu akim tahminleri, uygun arazi kar verilerinin smirli olusu ve kar
fiziginin oldukga karmasik olmasi nedeniyle genellikle zorlayici bir konudur. Bu ¢aligmanin temel amact
hem girdilerin erisilebilirligini hem de model yapisinin basitligini goz oniinde bulundurarak alternatif bir
modelleme ¢oziimii dnermektir. Onerilen Dalgacik Sinir Ag1 (DSA) modeli yaklasimi, nehir akimlart
iretmek icin olasilikli karla kapli alanlari girdi alarak daglik havzalarda olasilikli akim tahminleri
iiretebilmektedir. Girdi verilerinin erisilebilirligi adina, MODIS'in bulutsuz goriintiilerinden kar olasilig1
haritalar tiretilmektedir. DSA modeli, gdzlenmis hidro-meteorolojik verilerle egitilmis ve test edilmistir.
Ayrica, Cok-Katmanli Perseptron Modeli (CKPM) de kiyaslama modeli olarak kullanilmistir. Yaklagim,
Firat Nehri'nin ana kolu olarak biilylik 6nem tagityan Murat Nehri'nin kar baskin iist havzasinda (1559 ila
3508 m yiikseklikte) test edilmistir. Sonuglara gére, DSA yaklagimi ilgi alanindaki kar dagilimini tespit
ederek olasilikli akim tahminleri iiretme imkan1 saglamaktadir.

Anahtar Kelimeler: Kar erimesi modelleme, Dalgacik Sinir Ag1, Firat Nehri havzasi, Akim tahmini, Uydu
kar verisi
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1. INTRODUCTION

Predicting snowmelt runoff necessitates estimating snow components in mountainous
catchments. Observation network is rather limited in many mountainous catchments, although
dense station network is advised for proper measurement (WMO, 2008). This situation
accelerated the use of remote sensing techniques and satellite data in snow hydrology studies. The
satellite-based monitoring and processing of snow cover are well-known techniques. Snow can
be detected by optical satellites and processed in different algorithms. There are variety of
satellites among which MODIS (Moderate Resolution Imaging Spectroradiometer) with
visible/near infrared sensors on Terra and Aqua platforms provides processed Snow Cover Area
(SCA) products since early 2000s with different spatial resolutions (Hall, et al. 2006). There are
number of studies on the validation and use/application of these products in the world and in
Turkey (Tekeli et al., 2005; Hall & Riggs, 2007; Parajka & Bloschl, 2008; Sorman et al., 2009;
Sensoy & Uysal, 2012; Kraj¢i et al., 2014; Finger et al., 2015; Uysal et al., 2016). On the other
hand, snow cover data does not represent the actual amount of water stored in a snowpack,
therefore snow cover data is usually used together with hydrological tools to get snowmelt
and/runoff depending on the purpose of applications.

The use of SCA in different hydrological applications requires a systematic and continuous
mapping of snow however in general there are discontinuities in satellite data set due to various
realities as the presence of cloud cover in optical microwave satellites, cost and time constraints
of acquiring and processing satellite data depending on the scale of the basin. Moreover,
characterization of snow dynamics may require a general overview of snow conditions in the
basin. In such circumstances probabilistic analysis of satellite snow cover data based on long term
time series of available satellite observations would be a beneficial data source.

Alternative to conceptual modeling approach, Artificial Neural Networks (ANN) as one of
the machine learning models are sometimes preferable for solving large scale problems such as
pattern recognition, nonlinear modeling, classification, association etc. Contrary to conceptual
models, data-driven models require little knowledge of the physical processes modelled and rely
on the data describing input and output characteristics, based on which they are able to generalize
the process (Daliakopoulos & Tsanis, 2016). ANN as a multi-parameter nonlinear function that
can be calibrated to simulate the behavior of a known dataset (Solomatine, 2002) can overcome
practical limitations as lack of adequate historical data in ungaged or poorly gaged basins in regard
to a mathematical point of view instead of physical reasoning. Different types of ANN models
were applied to increase the performance of the rainfall-runoff modeling and streamflow
prediction in the recent literature including snow hydrology (Daliakopoulos & Tsanis, 2016;
Uysal et al., 2016; Fahimi et al., 2017). Moreover, ANNS can provide superior results when used
with different memory structures and decomposition techniques. The wavelet transform is one of
the powerful mathematical tools that provides both time and frequency representation of an
analyzed nonlinear signal in the time domain (Daubechies, 1992). A signal can be decomposed
to dilations and translations parameters, and then information in the signal is presented by these
parameters in the form of frequencies (Al-geelani et al., 2012). There are several applications in
literature which use WNN models to improve the modeling results such as structural system
identification (Adeli et al., 2006), traffic flow modeling (Jiang et al., 2005), time-series prediction
(Chen et al., 2006), groundwater level forecasting (Adamowski and Chan, 2011), river water
temperature forecasting (Graf et al., 2019).

Over the last few years, probabilistic runoff forecasts have become more popular in hydrology
primarily in studies that have focused on flood forecasting (Pappenberger et al., 2005; Verbunt et
al., 2007; Fundel & Zappa, 2011; Ramos et al., 2013; Dale et al., 2014; Jorg-Hess et al., 2015;
Sorman et al., 2019) since they have an advantage of representing the uncertainty of
meteorological inputs. Moreover, snow is an essential component of hydrological cycle in
mountainous regions and several studies have found that including remotely sensed snow data
successfully improves probabilistic runoff predictions.
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In this study we introduce probabilistic runoff modeling using the benefit of snow extent
fostering on the prior data set of satellite snow cover of MODIS and data driven modeling
approach with wavelet decomposition (WNN) in a relatively less studied and data sparse
mountainous headwaters of Euphrates Basin. The results are also compared with a benchmark
Multi-Layer Perceptron (MLP) model which represents ANN-only approach.

2. MATERIALS AND METHOD

The proposed probabilistic runoff modelling approach is comprised of two major steps:

0] Extraction of snow maps based on probability analysis of archived satellite snow
extent data,

(i) Development of a data driven model based on neural network and wavelet
decomposition making use of snow maps produced from the previous step as one of
the main forcing inputs.

The approach is shown by a flow chart in Figure 1 and the details of the materials and method

are described in this section.

Satellite Snow
Data

Prediction

Meteorological data

Figure 1:
Probabilistic runoff modeling schematic

2.1. Study Area

Modeling the amount and timing of runoff at the headwaters of Euphrates River has great
importance for the operation of downstream reservoirs in the Eastern Anatolia, Turkey. The Upper
Murat Basin (hereinafter, Murat Basin) located in the upper part of Murat River Basin having the
drainage area of 40,000 km?. The study basin lies within the longitudes 42° 00’ E to 43° 50’ E and
latitudes 39° 10’ N to 40° 00> N. It has a drainage area of 5,910 km? and its elevation ranges in
altitude from 1559 to 3508 m. The main land cover types are pasture (32.6%), agriculture (36.1%),
bareland (30.8%) and the others (urban, forest, lakes etc., 0.6%). The location and elevation
ranges of Murat Basin along with the observation network are provided in Figure 2. Murat Basin
is controlled by stream gauging station of E21A022 at Tutak location. Table 1 describes a
summary of basin topographic properties.

Since the topography is rough, the catchment has a scarce observation network. There is only
one meteorological station (Agri at 1632 m) to record daily precipitation (P) and temperature (T)

1141



Uysal G. and Sensoy A.: Prb. Runoff Modl. App.in Mountns. Basins Basd. on Satll. Snow Dat. and Wavelet

in the catchment as shown in Figure 2. In this study, a year period is defined as a water-year
concept that starts at 1% of October of the previous year and ends on 30" September of the current
year. Average annual precipitation and temperature values are 522 mm and 6.2 °C, respectively,
for the long-term records. The variation of annual average P and T values along with the years
are shown in Figure 3 for the period of probabilistic snow extent analysis. Discharge data is
available for the water-years of 2001-2013 and 2015 (2014-water year streamflow data is
missing).
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Figure 2:
Location, digital elevation model and the observation network of The Upper Murat Basin

Table 1. Topographic properties of the basin

Zone Elevation Range Area Area Hypsometric
(m) (km?) (%) mean elevation
(m)
A - - - -
B 1559-1900 1762 29.8 1725
C 1900-2300 2205 37.3 2100
D 2300-2900 1779 30.1 2475
E 2900-3508 166 2.8 3080
Whole 1559-3508 5912 100.0 2125
catchment
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Figure 3:

Average annual precipitation and temperature records of Agri station
2.2. Satellite snow cover data

MOD10A1 (Terra) and MYD10A1 (Aqua) products are being produced and distributed by
the NASA Distributed Active Archive Center (DAAC) located at the National Snow and Ice Data
Center (NSIDC). MODIS Reprojection Tools is used to tile the images. The tiled images were
then reprojected to World Geodetic System 1984 (WGS84), Universal Transverse Mercator
(UTM) Zone 37 with a cell size of 500 m.

The MODIS snow-mapping algorithm is fully automated and is based on the Normalized
Difference Snow Index (NDSI) with a set of thresholds (Hall et al., 2002). Based on NDSI and
threshold values, snow cover pixels are separated from non-snowy areas using Eq. (1).

MODISB4 - MODISB6

NDSI =
MODISgs + MODISg,

1)

Depletion of snow is revealed in terms of percentage of the snow cover area along with a
time horizon for each time period (mainly day, or sometimes 7-days).

2.3. Snow probability maps

Probability of snow occurrence is calculated using daily SCA images and pixels are
classified as snow, no snow and cloud (including undetermined pixels). Then, each SCA image
is reclassified such that snow or cloud observations are equal to one, and all other attributes are
equal to zero to derive a probability map. Probability of snow for a pixel is calculated as:

2i=15(t)

— 2
n— Xz Cepy

Py =

where t stands for day, S and C stands for observations of snow and cloud, respectively, n
stands for the total observation period in years.

Optical satellites suffer from cloud coverage and therefore images are pre-processed before
to be used in the probability analysis. Filtering process (such as temporal, spatial, elevation) is
used to remove cloud cover from the images (Sorman & Yamankurt, 2011). Since the method is
capable of eliminating cloud cover and can provide binary snow/no snow areas, Equation 2 is
updated with no cloud component in the denominator.
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2.4. Wavelet neural network (WNN) model

Acrtificial Neural Network (ANN) has been developed based on the inspiration of biological
neural network of the human brain. Basically, it is characterized by its architecture that represents
the pattern of connection between nodes, method of determining the connection weights, and the
activation function (Haykins, 2009). Multi-Layer Perceptron (MLP) is a form of feedforward
network that has interconnected neurons arranged into three layers: input layer, a hidden layer
and an output layer and uses backpropagation algorithm in the training stage. Moreover, MLP-
ANN models are the most applied ANN types in hydrology field (Maier & Dandy, 2000; Zhao et
al., 2005; Maier et al., 2010). A node is a processor, which is connected to the others by weights,
whereas the nodes are generally arranged in layers. The output of an individual neuron (weighted
sum of all its inputs), is obtained by the following equation:

Ny; =f <Z(Wijxi - bij)) (3)
i=0

where, x; = (xq, ..., Xj, .., X)) aNd wi; = (Wyj, ..., Wij, ..., Wy ), x; is the information from
previous nodes, w;; represents the connection weight from the it" node in the preceding layer
to this node, where b;; is the bias, f is the activation function.

Activation function may be linear, threshold, logistic sigmoid, Gaussian or hyperbolic
tangent functions depending on type of the network and training algorithm used in the application.
Mainly sigmoid functions are used in rainfall-runoff processes due to having bounded, monotonic,
nondecreasing function that provides a graded, nonlinear response (ASCE, 2000). In this study,
sigmoid function is used for the hidden layer and linear transfer function is used for the output
layer. It is recommended to employ data preprocess (inputs and outputs) to have better
performance before training. Normalization eliminates sensitivity of the network for different
range of inputs. Considering that, firstly all inputs and outputs are normalized between [0.1 —0.9]
using Equation 4:

X = Xi — Xmin (4)

Xmax — Xmin

where, X stands for standardized data vector, x,,;, and x,,,, are minimum and maximum
values of the data set.

In this study, different than conventional MLP, two filters (i.e., low-pass filter and high-pass
filter) are used to decompose the original data series (here, some selected input vectors) into the
approximation and detailed subseries. 1-D wavelet decomposition is employed to perform a
single-level wavelet decomposition of input signals using wavelet family of ‘db1’. The names of
the Daubechies family wavelets are written doN, where N is the order, and db the "surname" of
the wavelet. Db1 also known as the Haar wavelet is the only orthogonal wavelet with linear phase.
The original time series is passed through high-pass and low-pass filters, and detailed coefficients
(cD1) and approximation coefficients (cAl) are obtained in Discrete Wavelet Transform (DWT).
Wavelet Neural Network (WNN), which is employed in this study, refers to rainfall-runoff
relationship by combining MLP and DWT (Figure 4). Besides, a MLP model that represents
ANN-only approach is used as a benchmark model. The models are coded using MATLAB
(R2019b, License number: 991708).
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Low pass filter

Xy

High pass filter

Input Layer Hidden Layer Output Layer

Figure 4:
Schematization of the WNN Model (X;...X;, stands for 1 to n number of input variables, A; and
D; stand for the approximation member and the detailed member of input variable X,
respectively and Y stands for the output variable)

MLP feedforward networks use gradient based training algorithms. In general, second-order
nonlinear optimization techniques are usually faster and more reliable. Thus, model is trained
using a well-known Levenberg-Marquart technique (Hagan & Menhaj, 1994) as it is more
powerful than the conventional gradient techniques. The training is accomplished according to
the weight update equation which takes the following general form as (Parisi et al., 1996):

Wni1 = Wp — [H + A]_lvwnE (5)

where, w,,,; and w,, are weights at (n + 1)** and nt" pass (epoch), H = JTJ, where J is
Jacobian matrix, A is momentum, V,,,,E is equal to the negative of the gradient error, E is learning
rate (avoids the training being trapped in a local minima instead of global minima).

Care must be taken to the generalization of the network for a given problem. Therefore, it is
very vital to prevent the network that of over familiarized with the calibration data set. In this
study, the training is stopped according to cross-validation using an independent test set. To that
end, 15% data are randomly selected from training set and training is stopped according to cross-
validation error. Since a generic method to estimate the model structure is not available, most of
them rely on trial and error approach. The network architectures (models) are derived similarly
by changing the network and analyzing the results in terms of error. It is also not desired to have
complex networks if one with less neuron and inputs give similar results. In this study, hydro-
meteorological data records are provided from an automated weather and flow measurement
station. Six hidden neurons are used in one single hidden layer. The network formulation is
defined below:

Q(n) = m(DP(n),AP(n), T(n),SCA(n)) (6)

where, Q, m,DP , AP ,T ,SCAand n stands for streamflow [m®/s], neural network model,
detailed member for total precipitation [mm], approximation member for total precipitation [mm],
air temperature [°C], snow cover area [%] and time index, respectively.

For the accuracy assessment, the model is tested with 4 goodness of fit criteria defined as the
coefficient of determination (R?), Nash-Sutcliffe Model Efficiency (NSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE) as denoted in equation 7-10:
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n

t=11Q5 — Q| (10)
n

MAE =

where, Q%, is modelled flows, Q¢ is observed flows, Q,, is average modelled flows, Q, is
average observed flows, n is the number of data sets.

2.5. Derivation of probabilistic snow depletion curves and employment in rainfall-
runoff models

The rainfall-runoff models are trained and tested using 12 years of observed daily MODIS
snow cover area percentage time-series (also known as snow depletion curves) together with
meteorological data sets. Snow Probability Map (SPM) for each day is derived using that of
achieved 12 years data as explained in Section 2.3. These maps show the probability of snow
occurrence in each pixel having 500 m cell resolution within the study area. Later, daily maps are
classified into six different classes (0, 0-0.25, 0.26-0.50, 0.51-0.75, 0.76-0.99 and 1). Reclassified
probability SCA percentages (P-SCA) are calculated for each day in between 15 January — 30 June
(mainly from full snow cover to no-snow period). Probabilistic time series data (also called as
probabilistic depletion curves, P-SDC) sets are generated using P-SCA values for each class.
Finally, P-SDCs are directly used in streamflow prediction part (2013-2015) which is not included
in the derivation of probability maps.

3. RESULTS AND DISCUSSIONS

3.1. Snow probability maps and extensive analyses

SPMs of Murat Basin are presented for 15-day time interval in Figure 5. Snow cover
considerably dominates the catchment until mid-March with high probability. Topographic
variation of snow cover that indicates the changes with respect to elevation, aspect, and slope is
a well-known analysis. Instead of the conventional snow cover maps, probabilistic snow cover is
evaluated to understand the characteristics of topographic variation in this area. The spatial pattern
of probabilistic snow cover is represented by elevation zones. The P-SCAs are derived for the
selected probabilities during the snowmelt season in Figure 6. Snow disappears in the lowest zone
first and highest zone last as expected. Results prove that elevation is an important factor that
should be considered during snow cover analysis in any probability class. The elevation Zone-C

1146



Uludag University Journal of The Faculty of Engineering, Vol. 25, No. 3, 2020

has similar values with that of basin average since it represents the hypsometric elevation of the

basin.

Snow depletion analysis (P-SDCs) is carried out with probabilistic snow cover values
(Figure 7). The lowest probability of snow on average basin scale indicates limited number of
days with full snow coverage before melting besides an early and relatively sharp melting starting
with the Mid-Feb; the highest probability of snow, however, shows extended accumulation period
with full coverage till mid-April and then relatively slow melting pattern lasting almost to the end

of June.

PSO

PSO

PSO

High : 1

Low : 0 667

PSO

o : 3 L
High : 1 ) ) High : 1
15 April Low . 0

Low : 0

PSO

PSO it
High : 0.667 'S o High : 0.364
Low 01 June
ow: 0 Low: 0

Figure 5:

Snow probability maps of Murat Basin for various dates (in between analysis period of 15
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Variation of P-SCA with respect to different elevation zone
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Figure 7:

Probabilistic snow depletion curves (P-SDCs) of Murat Basin with respect to different
probability classes and observed snow depletion curves (SDCs)

3.2. WNN model results of the training and testing periods

The WNN model is trained and tested in 2002-2008 and 2009-2012 water years, respectively,
with relatively high model performance against MLP model in such a mountainous basin as
shown in Figure 8 and Table 2. The calculated performances ensure an acceptable model by
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having NSE above 0.65 (Ritter & Muiioz-Carpena, 2013). MAE values are similar whereas
RMSE increases in training part due to one outlier peak observed at 2004. This peak presents a
real case according to the other downstream gauge.

Training Period (2002-2008 water years)

1000 ‘ |
|——Observed Runoff
@ 800 — |~ - -Modelled Runoff |
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g 400
5 200 ) § 4 r
. ‘ ‘ ‘ [ of WAy
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Test Period (2009;2012 water years)
[—Observed Runoff
@ 600 [ MOZZR:; Ruunnoc;f [
E
© 400
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o
0
01-Oct-2008 01-Oct-2009 01-Oct-2010 01-Oct-2011 30-Sep-2012
Figure 8:
Runoff predictions for training and testing periods (WNN model)
Table 2. Hydrological modeling performance
Performance Model R? NSE RMSE MAE (m3/s)
criteria (m3/s)
MLP 0.68 0.68 46.5 24.0
Training period
WNN 0.75 0.75 41.0 18.7
MLP 0.68 0.67 40.3 21.9
Testing period
WNN 0.74 0.72 37.0 18.5

3.3. Probabilistic runoff model results model results of the training and testing
periods

The developed and tested MLP and WNN models are regarded as prediction tool in this part.
2013 — 2015 which are not used in any part of training and testing is selected as the prediction
period for streamflow. These years are also excluded from P-SDC analyses as well. It is important
to note that 2014-water year streamflow data is missing due to technical data loss. The daily
streamflow values are predicted using P-SDC data sets together with perfect prediction data.
However, for the sake of a continuous model 2014 runoff values are still predicted but the
performances with respect to observed discharge are given for two years (2013 and 2015). The
WNN model results (P-SDC based streamflow predictions) are compared with observed
discharge Figure 9. The models are also employed with observed SCA (from MODIS) for the
same period and its results are denoted as “MODIS-SDC”. The statistical metrics for both models
(WNN and MLP) for different scenarios are given in Table 3 and Table 4. For this experiment
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only P>0.25, P>0.50 and P>0.75 classes are taken into account because of P>0 (overestimates by
capturing all snow-covered pixels) and P=1.0 (underestimates by capturing very few snow
covered pixels) represents very unusual conditions. This experiment indicates the capability of
the model with purely observed satellite data in contrast to P-SDCs. According to performances,
it can be stated that QP50 and QP75 (stands for P-SDC>0.50 and P-SDC>0.75) present a notable
performance metric in comparison with MODIS-SDC modelling result.
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Figure 9:
Probabilistic runoff estimation for the water years of 2013, 2014, 2015 (WNN model)

Table 3. MLP modeling performances for the water years of 2013 and 2015

Scenario R? NSE RMSE MAE (m3/s)
(m3/s)

MODIS-SDC 0.62 0.38 36.9 25.7
QP25 0.60 0.52 38.4 26.5
QP50 0.59 0.50 39.0 27.1
QP75 0.54 0.42 44.0 29.3

Table 4. WNN modeling performances for the water years of 2013 and 2015

Scenario R? NSE RMSE MAE (m3/s)
(m3/s)

MODIS-SDC 0.73 0.58 30.4 16.1
QP25 0.70 0.66 38.0 194
QP50 0.68 0.66 34.1 18.1
QP75 0.67 0.65 30.1 16.3
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4. CONCLUSION

This study attempts to find alternative and practical approaches to predict runoff in a
probabilistic sense for a data scarce poorly gauged mountainous catchment. Remote sensing data
sets gathered from satellite are useful but not always available for several reasons. Making use of
relatively long data records of satellite snow extent, snow cover dynamics are evaluated as daily
probabilistic snow cover maps. Then these snow cover maps are converted to probabilistic snow
depletion curves to indicate snow covered area percentages as time-series for several probability
classes. A data driven method enhanced with wavelet analysis is preferred to be coupled with
satellite data. Also, a benchmark model (multi-layer perceptron) which stands for a conventional
neural network model is employed and the results are compared with the proposed WNN model.
Several metrics such as coefficient of determination, Nash-Sutcliffe model efficiency, root mean
square error and mean absolute error are used to quantify the performances. The method is trained
and tested with relatively high model performances and then probabilistic runoff predictions are
obtained and compared with observed data. According to prediction scenarios, the suggested
approach provides probabilistic runoff predictions in a range consisted with observed values of
runoff. The study shows that the probabilistic snow cover maps derived from satellite data can be
used as a valuable data source with spatial and temporal coverage for such a data scarce region.
Moreover, they can directly be utilized in a data driven modeling for short or medium range
ensemble runoff forecasts in a probabilistic sense when coupled with numerical weather
prediction data.
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