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ABSTRACT 

The fundamental natural frequencies of curvilinear fiber composite doubly curved panels are optimized. Doubly curved 

panels are used in numerous components of the structural frames of aerospace vehicles. The variable stiffness performance 

is achieved by changing the fiber path to the curvilinear fiber path function in the composite structures. The structural 

model is developed based on the virtual work rule. The target is to attain the best fiber paths with maximum fundamental 

frequencies. An eight-layer composite doubly curved panel with two forms of boundary conditions is considered as an 

example in this research. The boundary conditions include; CCCC, FCFC. Von-Karman kinematic strain relations are 

utilized and the FSDT is used to generalize the equation for the doubly curved panel. Generalized Differential Quadrature 

(GDQ) theory of solution is applied to solve the differential governing equations of motion. Numerical results reveal the 
efficiency of the curvilinear fiber path concept on the frequencies of the doubly curved panel. The optimum fiber path 

function of each layer is offered for the free vibration study. 

 

Keywords: Doubly Curved Panel, Curvilinear Fiber Path, Generalized Differential Quadrature, Free Vibration, 

Optimization 

 

1. Introduction

It is interesting to design laminated panels of 

aerospace structures using curvilinear fibers instead 

of unidirectional ones, since by using a Variable 
Stiffness Composite Laminate (VSCL) the natural 

frequencies change, and vibrational resonance can 

be avoided [1]. The automated manufacturing of 

composite laminates allows panel fiber hardening to 
become an achievable and viable approach for 

weight reduction and structural performance 

enhancement in aircraft structures. With the wide 

use of composite fibers and automated fiber 

placement manufacturing technology for composite 
structures, the variable stiffness architecture has 

become more interesting for large scale applications 

in aircraft structures, and structural performance 

improvements in helicopter and missile 
applications. The vibration performance can be 

improved by tailoring the fiber path of different 
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layers.  Laminated composite doubly curved panels 

are used as the main components in aerospace 

industries (see Figure 1).  
 

 
Figure 1 Laminated composite skew and taper curved 

panels used in a missile structure 

 

The buckling and free-vibration experiments and 
study were performed by Ref [2] on constant and 

variable stiffness CFRP cylinders. Narita and 

Robinson [3] applied the Ritz based method for 
layer optimization of thin cylindrical laminates in 

order to maximize the frequencies. Serhat and 

Basdogan [4] optimized the fundamental frequency 
of panels in the lamination parameter domain via an 

optimization structure using the FE method. The 

research presented by Blom [5] and Blom et. at. 

[6,7] examine the fundamental natural frequencies 
of VSCL from flat panels to conical and cylindrical 

shells by means of numerical and experimental 

approaches. Structural studies are performed 
applying the FE program ABAQUS. 

Honda et al. [8] offered an optimization method to 

optimize frequencies however minimizing the 

curvatures of fibers. Tornabene et al. [9] 
investigated the vibration characteristics of doubly-

curved panels strengthened by the variable stiffness 

method. A sensitivity study done by Zhao et al. [10] 
showed that altering fiber functions can increase the 

frequencies of the plates. Wu and Lee [11] explored 

the frequency behavior of a conical shell through the 
curvilinear fiber concept, and attained varies of 7% 

and 20% in the first natural frequencies of panels 

with CCCC and SSSS boundary conditions, 

respectively. The maximization of the fundamental 
frequency of a composite cylindrical shell using a 

curvilinear fiber path is addressed by Luersen et. al. 

[12]. The fiber path equation parameters are 
optimized using a surrogate-based methodology. 

Hao et. al. [13] presents the buckling study for 

curvilinear fiber panels utilizing a combined 
procedure of exact modeling, isogeometric theory, 

and optimization for curvilinear fiber composite 

rectangular panels. 

The optimum lay-up design for the maximum first 
natural frequency of VSCL plates is examined by a 

layerwise optimization procedure by Houmat [14]. 

The thin plate concept is applied in combination 

with a p-element to determine the first natural 

frequencies of symmetrically and antisymmetric 
laminated composite plates. The optimization of a 

curvilinear fiber cylindrical shell for improved 

buckling load is studied by Pitton et. al. [15]. A 
procedure in terms of AI methods is proposed. The 

paper defines an optimization procedure established 

for the buckling optimization of thin-walled 

curvilinear fiber cylindrical shells exposed to axial 
load. Ameri et. al. [16] offerings an optimization 

procedure for composite cylindrical panels for the 

first natural frequency. The Globalized Bounded 
Nelder–Mead method is applied to calculate the 

optimized fiber orientations of composite 

cylindrical shells to find the maximum natural 
frequency. 

Maximization of first natural frequency by 

optimizing the path of fiber orientations is an 

extensively studied structural dynamic optimization 
problem [17–29].  

This paper applies the Generalized Differential 

Quadrature (GDQ) method and virtual work rule to 
study the variation of the fundamental frequencies 

of variable stiffness, composite, doubly curved 

panels with CCCC and FCFC boundary conditions. 
The fundamental natural frequencies of curvilinear 

fiber composite, doubly curved panels are 

optimized. The optimum curvilinear fiber layups are 

identified by applying the genetic algorithm (GA) 
optimization method. The optimized fundamental 

natural frequencies are compared with the reference 

unidirectional fiber layup. 
The Von-Karman strain-displacement relationship 

is employed in expressing the mathematical model 

of a doubly curved panel. The differential equation 

of motion of the composite, doubly curved panel is 
acquired applying the virtual work rule. Based on 

our earlier studies [20,21], spatial derivatives in the 

governing differential equation of motion are stated 
with the GDQ technique.  

The present study is the first time of using a direct 

GA method in optimizing the fundamental natural 
frequencies of variable stiffness laminate doubly 

curved panels with different boundary conditions. 
 

2. Governing Equation of Motions 

 
The composite doubly curved rectangular planform 

panel is presumed to be as the schematic view given 

in Figure 2. Based on Figure 2, an orthogonal fixed 

coordinate system (x, y, z) is positioned at the root 
of the panel with a planform length a and b, and 

thickness h. The red lines represent the curved fiber 

path that is varied along the x-axis. is the angle 
that the curvilinear fibers create with the x-axis. 
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Figure 2 Composite doubly curved panel geometry 

and the curvilinear fiber path  

 

The displacement domain of an arbitrary point (x, y, 

z) at time t on the panel ( , , )u v w  are indicated as, 
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where, ,  and  are the translations of mid-

plane in the x , y  and z  direction, respectively and 

x
, 

y
 are the rotations about the ,  axes. The 

strain-displacement relations are specified as 

following [20]; 
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In-plane moment and force resultants for a 

composite panel is obtained as, [20] 
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(3) 

 

The formulations for transverse shear based on 

shear force resultant is expressed as, 
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(4) 

 

where Aij, Bij, Dij are stiffness coefficients of 

composite laminate for in-plane, bending stretching 

coupling, bending and transverse shear stiffness and 

are extracted as, 
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where ki
2 is the shear correction factor and 

)(k

ij
Q


is the 

k-th layer transformed stiffness quantities. Moment 

of inertia expression is detailed as: 
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where ρ is the layer density.
 

The equation for the composite laminated panel is 

expressed as [21], 
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where the p is the external work. Eq. (9) is reached 

by rephrasing the Eq.  (8) based on the moment and 

force resultants: 
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Based on our previous research [20, 21], geometric 

mapping is considered for numerical integral 
calculations. By applying the suggested mapping 

method, the Cartesian domain is converted into a bi-

unit square domain.  

 

3. Generalized Differential Quadrature 

Method 

Based on the generalized differential quadrature 

method, r-th order derivative of a function f(ξ) with 

n discrete grid points may be defined as: 
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where ξi are discrete points in the domain and Cij
(r), 

fj are weighting parameters and function values at 

points, respectively. An obvious formulation for the 
weight parameters in terms of Lagrange polynomial 

formulation for first-order derivative, i.e. r =1, is as 

the following: 
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The subsequent recursive relationships are utilized 

for higher-order derivatives: 
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Based on Figure 3 partial derivates at a point (ξi ,ηj) 

are expressed as follows, where 
n  and 

n  represent 

grid numbers in ξ and η direction, respectively: 
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where r and s represent derivative orders respecting 

the variables ξ and η, respectively. 

 
 
Figure 3 Mesh grid scheme 

 

In Eqs. (15)-(17), the partial derivatives f and 

f are obtained utilizing DQM at grid point; 
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4. Solution Methodology  

 

In order to solve an eigenvalue problem for the 

frequency study of the doubly curved panel, the 

external force in Eq. (9) is omitted. By discretizing 
the panel domain into grid points and utilizing GDQ 

theory for computing partial derivatives at each grid 

point, and Gauss-Lobatto quadrature principle, it 
can be possible to calculate the integrals in virtual 

work. The matrix form  of the equation of motion 

can be stated as, 

 

0 MU KU  (20) 

 

where M specifies the mass matrix and 
..

U , K 

express the acceleration vectors and stiffness 
matrix, respectively.  

 

5. Variable Stiffness Description 

 

Figure 4 demonstrates the VSCL configuration 

presented by curvilinear fiber path functions. The 

functions of fiber path variation for each layup 

shape is presented in Eq. (21). The two design 

parameters 0T  and 1T  are essential to control the 

change of the fiber angle on the surface of the 

lamina. 

 

 
 

Figure 4 Curvilinear fiber paths 
 

For VSCL; 

0 1 0 1 0,
p

x
T T T T T

a  

 

(21) 

Where 

2 sin
2p
a

a R
R

 
 

(22) 

6. Optimization Strategy 

The goal of the optimization strategy is to maximize 

the first (fundamental) natural frequency of the 

doubly curved panel by optimizing the fiber path 
function. The stacking scheme for the present eight 

layers composite doubly curved panel is in the form 

of Eq. (23) and shown in Figure 5, 

 

1 2 3 4

1 1 2 2 3 3 4 4

0 1 0 1 0 1 0 1

/ / /

, / , / , / ,

sym

L L L L L L L L

sym
T T T T T T T T

  
(23) 

 

 
 
Figure 5 Stacking scheme for present eight layers 

composite cylindrical curved panel 

In the recommended optimization tactic, the 
composite doubly curved panel fundamental 

frequency is maximized. The cost function in the 

procedure is the fundamental frequency and the 
variables are improved to catch the maximized 

value of the first natural frequency.  

The start fiber angle ( 0T ) and the final fiber angle  

( 1T ) are the variables considered in the optimization 

procedure. The following are the definitions of the 
objective, constraints and variables in the present 

optimization procedure. 
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Objective       Fundamental Natural Frequency → 
Maximum 
 

Constraints 
 

For each layer [7]   

1 0
1 0 0

( )
cos ( ) 3.28

T T x
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a a
 

Optimum 
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After introducing and expressing the variables, 

constraints, and cost function of the optimization 
method, genetic algorithm (GA) [22] is considered 

to optimize the solutions. The GA MATLAB code 

is developed with the maximum number of 
generations of 200 and the population size of 110. 

7. Numerical Results  

The natural frequency optimization consequences 

are determined by utilizing the equations obtained 

for the composite doubly curved panel. The 
convergence study displays that a minimum number 

of elements in x,y, and z directions (nx, ny, nz) = (13, 

13, 5) is essential to offer a solid convergence. The 
accuracy of the developed computer code is judged 

by the following validation studies. 

 

7.1.  Structural Model Validation 
To endorse the curvilinear fiber model, the natural 

frequencies of the variable stiffness plate are 

compared with the outcomes of Ref. [23] in Table 

1. Table 1 displays the assessment of frequencies for 

SSSS and CCCC boundary conditions of the 

variable stiffness composite lamina and fiber path 

angles produced by 
0 1
,T T .

                 
Table 1 Comparison of natural frequencies of VSCL with curvilinear fibers 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

   

To validate the curved panel structural model, Table 

2 shows the fundamental natural frequencies 

computed with Ref [24] for cylindrical panel model 

with ap/R = 0.4, 0.2 with h = 1 mm and ap/R = 0.4,  

0.2 with h = 2.5 mm. The material properties are 

E=7 ×1010 Nm-2, ʋ = 0.33, ρ = 2778 kg m-3

 

 

 

 

 

 

 

 

 

 

 

 

 

VSCL plate 

 

Method 

Mode 

1 2 3 

0,45 / 45,60 / 0,45  

Simply supported  Ref [23] 358.488 589.9 960.361 
Present study 351.622 581.41 954.14 

Clamped  Ref [23] 579.398 821.532 1225.79 
Present study 579.745 822.601 1227.56 

  30,0 / 45,90 / 30,0  

Simply supported  Ref [23] 308.799 503.799 845.509 
Present study 307.62 504.11 846.79 

Clamped  Ref [23] 667.177 862.919 1234.64 
Present study 665.217 863.689 1238.5 

  90,45 / 60,30 / 90,45  

Simply supported  Ref [23] 329.688 539.407 886.392 
Present study 323.99 533.1 880.587 

Clamped  Ref [23] 710.77 912.183 1335.49 
Present study 709.46 915.47 1340.98 

 

Table 2 Comparison of first and second natural frequencies (rad/s) of a cylindrical panel structure 

  ap/R = 0.4  

h = 1 mm 

ap/R = 0.2  

h = 1 mm 

ap/R = 0.4  

h = 2.5 mm 

ap/R = 0.2 
h = 2.5 mm 

fundamental 

mode 

Ref [24] 1137.61 865.359 2044.97 1662.75 

Present study 1136.76 864.25 2036.16 1660 
 



JAV e-ISSN:2587-1676                                                                                                                   4 (2): 36-47 (2020) 

 42  

7.2. Results and Discussion 

The results section is separated into two sub-

sections. First, the frequency behavior of the doubly 

curved panel with rectangular planform and CCCC 
boundary condition is studied. Second, the doubly 

curved panel with FCFC boundary conditions is 

considered in frequency analysis. In each sub-
sections, the natural frequencies of the composite 

panels are maximized for the different boundary 

conditions by determining optimum fiber path 

angles by applying the GA algorithm. The stacking 
scheme for the present eight layers composite 

cylindrical curved panel with curvilinear fiber path 

is given in Eq. (23). The reference conventional 
unidirectional layup sequence for the sake of 

comparison is considered to be in the form of,  

1 2 3 4
/ / /

0 / 45 / 90 / 45

sym

sym

 
 

(24) 

Composite cylindrical panel geometries along with 

material characteristics are given in Table 3 based 

on the parameters defined in Table 3. 

 
Table 3 Geometric and material properties 

a=b=1 (m) E2=7.2 (GPa) G23=3.76 (GPa) 

h=a/100 G12=3.76 (GPa) 
12   =0.29 

E1=173 

(GPa) 

G13=3.76 (GPa) 
3

kg/m( )   =1540 

In the first sub-section, the first natural frequency of 

rectangular planform curved panel is maximized by 

curvilinear fiber concept using Genetic Algorithm 

(GA). For this aim, fiber angles (𝑇0
𝐿𝑖  , 𝑇1

𝐿𝑖 , 𝑖 =
1,2,3,4) for each composite layer are varied to 

achieve the best values. Due to symmetry in 

composite layers, fiber angles of the first four layers 

are considered in the optimization process. Figure 
6a-f illustrate the optimum variables of curvilinear 

fiber path parameters (𝑇0
𝐿𝑖  , 𝑇1

𝐿𝑖 , 𝑖 = 1,2,3,4) for 
four layers of the preferred doubly curved panel, as 

well as the maximum reachable natural frequencies 
using the optimum parameters deduced by 

optimization algorithm for doubly curved panel 

with curvature radius ratios of  
𝑅1

𝑎
= 2, 10, ∞ and 

𝑅2

𝑏
= 2, 10, ∞ for fully clamped rectangular panel, 

respectively. After the 10th generation, the fitness 

starts to converge to the optimal cost. Table 4 

compares the result of the maximum fundamental 
natural frequency of the VSCL composite panel 

calculated via optimization and unidirectional 

composite panel as a reference conventional 
configuration to prove the advantages of the 

variable stiffness concept. Table 4 gives the 

optimized layup sequence of the VSCL composite 

panel and the associated natural frequencies for 
different curvature radius ratios. The following 

results are deduced. 

The optimum fiber paths of the layers are diverse 

for VSCL panels with different width and length 
curvature radius ratios. With an increase in 

curvature radius ratios both in width and length 

dimensions from 
𝑅1

𝑎
,

𝑅2

𝑏
= 2 to 

𝑅1

𝑎
,

𝑅2

𝑏
= ∞ (as a flat 

plate), maximum fundamental natural frequency 

continuously decreasing. This trend is seen in both 
VSCL and unidirectional reference panels. The 

maximum fundamental natural frequency is 

achieved in VSCL panels with close to zero deg 

fiber angles in the first layer (𝑇0
𝐿1 =  𝑇1

𝐿1 ≈ 0°) in 

almost all case studies except 
𝑅1

𝑎
,

𝑅2

𝑏
= 2 which has 

(𝑇0
𝐿3 = 10°, 𝑇1

𝐿3 = 34°) in the first layer. The first 
layer is the layer with the highest distance from the 

neutral axis. The first layer and eighth layer are the 

same due to symmetry. By increasing the length 

curvature radius ratio 
𝑅2

𝑏
 and constant width ratio 

𝑅1

𝑎
, 

the second and the fourth layers in VSCL panels are 
very effective in achieving the highest fundamental 

frequencies. Larger initial fiber 𝑇0
𝐿2 , 𝑇0

𝐿4 and 

smaller final angles 𝑇1
𝐿2  , 𝑇1

𝐿4 are desirable. The 

highest advantages of applying VSCL concept is 

seen for panel with  
𝑅1

𝑎
,

𝑅2

𝑏
= 2,2  and 

𝑅1

𝑎
,

𝑅2

𝑏
= 10, ∞ 

with different percentages of 16% and 15.1%, 

respectively. The lowest advantages are seen for 

high curvature radius ratios 
𝑅1

𝑎
,

𝑅2

𝑏
= 10,10 and 

𝑅1

𝑎
,

𝑅2

𝑏
= ∞, ∞. It shows that the variable stiffness 

concept is more advantageous in low curved panels 
rather than high curved panels especially plates with 

fully clamped BCs.  
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Figure 6 Fundamental frequency optimization of doubly curved panel with CCCC BCs, 

a) R1/a=2, R2/b=2,  b) R1/a=2, R2/b=10,  c) R1/a=2, R2/b=∞,  

d) R1/a=10, R2/b=10,  e) R1/a=10, R2/b=∞ and  f) R1/a=∞, R2/b=∞  

 

 

 

 

 

 

(a) (b) 

(d) (c) 

(f) 
(e) 



JAV e-ISSN:2587-1676                                                                                                                   4 (2): 36-47 (2020) 

 44  

Table 4 Comparisons of the natural frequency of optimized curvilinear fiber and unidirectional fiber for rectangular 

CCCC panels 

1 2,
R R

a b
 

Max fundamental frequency 
with 

curvilinear fiber path 

 

Max fundamental frequency 
with 

Unidirectional layups 

Nat. Freq. 
Diff. 

 
 

2, 2 

10,34 / 75,50 / 0,53 / 88,45
sym

 

= 3630.8 rad/sec 

0 / 45 / 90 / 45
sym

 

= 3052.7 rad/sec 

 
16 % 

 

2,10 
0,0 / 75,6 / 0,87 / 46,32

sym

 

= 2323.6 rad/sec 

 

 

0 / 45 / 90 / 45
sym

 

=2137.2 rad/sec 

 

 

8.1 % 

 

2, ∞ 
0,0 , 46,10 , 0,77 , 45,37

sym

 

= 2206.4 rad/sec 

 

0 / 45 / 90 / 45
sym

 

= 1997.7 rad/sec 
 

 
9.5 % 

 

10, 10 
0,0 , 90,85 , 13,18 , 60,0

sym

 

= 1150 rad/sec 

 

0 / 45 / 90 / 45
sym

 

= 1131.1 rad/sec 

 
 

 

1.7 % 

 

10, ∞ 
0,0 , 45,2 , 0,0 , 45,90

sym

 

= 1049 rad/sec 

 

0 / 45 / 90 / 45
sym

 

= 891.1 rad/sec 

 

 

15.1 % 

 

∞, ∞ 
0,0 , 90,89 , 2,3 , 71,0

sym

 

= 706.44 rad/sec 
 

0 / 45 / 90 / 45
sym

 

= 689.7 rad/sec 
 

 
2.37 % 

 

In the second sub-section, the optimization results 

are given to investigate the effects of the VSCL 
concept on the fundamental natural frequency of 

doubly curved panels with different width and 

length curvature radius ratios and FCFC BCs. In 

Figure 7 and Table 5 It is found out that; 
In the same manner with fully clamped panel 

configuration, by increasing the curvature radius 

ratio maximum fundamental natural frequency 
constantly decreasing for both VASL and 

unidirectional concepts. The trend is the same for 

both CCCC and FCFC BCs. 

The maximum fundamental natural frequency is 

achieved in VSCL panels and FCFC BCs. with a 

constant fiber path angle of zero deg (𝑇0
𝐿1 =  𝑇1

𝐿1 =
0°) in the first layer and (𝑇0

𝐿2 = 45°, 𝑇1
𝐿2 ≈ 0°) in 

the second layer in almost all case studies. The two 
layers with the highest distance from the neutral 

axis.  

It is found that the VSCL concept in panels with 

high curvature radius ratios 
𝑅1

𝑎
,

𝑅2

𝑏
= 10, ∞  and 

𝑅1

𝑎
,

𝑅2

𝑏
= 10,10 gives the highest difference 

percentages 22.3% and 19.5% in frequency values 

over the unidirectional concept, respectively. 

Comparing the effect of the VSCL concept in 

different BCs. for fundamental natural frequency 
shows that FCFC BCs. gives the greater advantages 

over the fully clamped BCs.  

This type of composite optimization method could 

be applied in various kinds of plate geometries and 

configurations [25-27] to improve the mechanical 

performance of the structures.  
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Figure 7 Fundamental frequency optimization of doubly curved panel with FCFC BCs,  

a) R1/a=2, R2/b=2,  b) R1/a=2, R2/b=10,  c) R1/a=2, R2/b=∞,  
d) R1/a=10, R2/b=10,  e) R1/a=10, R2/b=∞ and  f) R1/a=∞, R2/b=∞  

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 5 Comparisons of natural frequency of optimized curvilinear fiber and unidirectional fiber for rectangular FCFC 

panels 

1 2,
R R

a b
 

Max fundamental frequency 
with 

curvilinear fiber path 

Max fundamental frequency 
with 

Unidirectional layups 

Nat. 
Freq. 

Diff. 

 
 

2, 2 

0,0 / 45,4 / 0,29 / 85,39
sym

 

.nat = 1952.6 rad/sec 

0 / 45 / 90 / 45
sym

 

.nat = 1789.5 rad/sec 

 
8.35 % 

 

2,10 
0,0 / 45,0 / 0,4 / 84,17

sym

 

= 1730.7 rad/sec 
 

0 / 45 / 90 / 45
sym

 

= 1513.7 rad/sec 

 

12.5 % 

 

2, ∞ 
0,0 , 45,0 , 0,4 , 90,0

sym

 

= 1721.9 rad/sec 

 

0 / 45 / 90 / 45
sym

 

= 1495 rad/sec 

 

 

13.2 % 

 
10, 10 

0,0 , 45,0 , 1,19 , 45,71
sym

 

= 966.9 rad/sec 

0 / 45 / 90 / 45
sym

 

= 777.7 rad/sec 
 

 
19.5 % 

 

10, ∞ 
0,0 , 45,2 , 0,14 , 45,90

sym

 

= 972.8 rad/sec 

 

0 / 45 / 90 / 45
sym

 

= 755.7 rad/sec 

 

 

22.3 % 

 

∞, ∞ 
0,0 , 45,0 , 0,2 , 90,0

sym

 

= 635 rad/sec 

0 / 45 / 90 / 45
sym

 

= 551.5 rad/sec 
 

 
13.15 % 

Conclusion 

 

In the present study, the influence of fiber path 

function on free vibration of VSCL composite 

doubly curved panel is examined for two forms of 

boundary conditions. The GDQ method and 
Hamilton’s principle are applied to study the 

variation of the fundamental frequencies of the 

variable stiffness composite panels. The genetic 
algorithm is applied to optimize the fundamental 

natural frequencies of curvilinear fiber composite 

panels. Genetic algorithm in a nonlinear constraint 

optimization problem is utilized to derive the 
optimum fiber angle orientation of each layer in an 

eight-layer variable stiffness panel. 
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