
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 51 (4) (2022), 981 – 994

DOI : 10.15672/hujms.787479

Research Article

Some betweenness relation topologies induced by
simplicial complexes

Abd El Fattah El Atik∗, Ashgan Wahba

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Abstract
This article aims to create an approximation space from any simplicial complex by repre-
senting a finite simplicial complex as a union of its components. These components are
arranged into levels beginning with the highest-dimensional simplices. The universal set
of the approximation space is comprised of a collection of all vertices, edges, faces, and
tetrahedrons, and so on. Moreover, new types of upper and lower approximations in terms
of a betweenness relation will be defined. A betweenness relation means that an element
lies between two elements: an upper bound and a lower bound. In this work, based on
Zhang et al.’s concept, a betweenness relation on any simplicial complex, which produces
a set of order relations, is established and some of its topologies are studied.
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1. Introduction and preliminaries
Simplices are the building blocks of simplicial complexes. Finite simplicial com-

plexes are widely used to represent multidimensional objects, such as faces, which are
2-dimensional complexes, or graphs, which are 1-dimensional complexes. This means
that a 0-dimensional simplex is a point, a 1-dimensional simplex is a line segment, a
2-dimensional simplex is a filled triangle, and a 3-dimensional simplex is a tetrahedron.
Higher-dimensional simplices live comfortably in the Euclidean space of the appropriate
dimension. In other words, drawing them or imagining what they look like is not possible.
In general, a k-simplex S = [u0, u1, · · · , uk] is a convex hull of k + 1 affinely independent
of u0, u1, · · · , uk points in Rd, where k denotes the dimension of the simplex [20]. An
r-face is a convex hull of any subset of r + 1 vertices of the k-simplex [3, 9], r ≤ k. The
0-face, 1-face, and 2-face, for example, are points, edges, and triangles of the k-simplex,
respectively, where the k-face is the k-simplex. The boundary of an n-simplex is made of
n + 1 simplices of the n − 1 dimension. For instance, a 1-simplex has two 0-simplicies as
boundaries, a 2-simplex has three 1-simplicies as boundaries, and so on. The simplicial
complex σ is a finite class of simplices, in which each face belongs to σ and the intersection
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of two simplices S1, S2 ∈ σ is either empty or a face of both. A simplicial complex σ is
n-dimensional if the highest dimension of its simplices is n [3, 9, 22].

A collection τ of a nonempty set X is said to be a topology [14] on X if X, ∅ ∈ τ , a
finite intersection of elements of τ belongs to τ , and an arbitrary union of elements of τ
belongs to τ . For two topologies τ1 and τ2 on X, if τ1 ⊆ τ2, then τ2 is finer than τ1. The
intersection of a collection of topologies on the same set is a topology, while their union
is not always a topology. The collection B ⊆ τ is a basis for τ on X if each element of τ
is a union of elements in B. Furthermore, S ⊆ τ is a subbase for τ on X if each element
belongs to τ is a union of intersections of elements of S. Although

∪
i∈I

τi of a collection

of topologies {τi}i∈I on X is not a topology, in general, the supremum [21] of topologies
{τi}i∈I , which is considered the coarsest topology on X and finer than topologies {τi}i∈I ,
denoted by

∨
i∈I

τi, is assured to exist. Obviously, this can be represented as
∪

i∈I
τi ⊆

∨
i∈I

τi.

The equality holds if and only if
∪

i∈I
τi is a topology on X. Moreover,

∪
i∈I

τi is a subbase

of
∨

i∈I
τi. In Alexandroff spaces [1], each open set means a smallest open set which is the

intersection of all open sets.
A betweenness relation is a multiple of order three, which was introduced by Pasch [15]

and Klein [12] and investigated by several researchers [2, 4, 10, 11, 19]. In [5], Düvelmeyer
and Wenzel have studied the betweenness relation and its relationship with binary rela-
tions. Recently, Zhang et al. [21] have defined the betweenness relation as a set of order
relations and studied a set of persuasive topologies. Furthermore, Lashin et al. in [13]
have generated other topologies using a general binary relation. Some researchers have
used a topology to represent structures such as fractals [6,8] and nanotopology with ideals
and graphs [7] in terms of binary relations.

Throughout this paper, a set of simplices of a simplicial complex is presented as a
universal set Uσ, which is used to establish new types of approximation spaces beginning
with its highest-dimensional components. A special kind of a binary relation called R∆(<)
on Uσ is constructed. For each pair of two distinct points x, y ∈ Uσ, x is the upper bound
of y, denoted as y ≤ x if the dimension of y is less than the dimension of x. Moreover,
some properties of R∆(<) are investigated. Finally, a new approximation space ∆ of a
simplicial complex via the betweenness relation on Uσ is introduced. Some properties of
∆ are obtained and some examples are considered.
Definition 1.1. [3] A k-simplex S is a set of independent abstract vertices [u0, u1, · · · , uk]
that constitutes a convex hull of k + 1 points; an r-face is an r-simplex [uj0 , uj1 , · · · , ujr ]
whose vertices are a subset of [u0, u1, · · · , uk] with cardinality r + 1.
Definition 1.2. [3] The finite simplicial complex σ is a finite set of simplices that satisfies
the following conditions:

(i) Any face of a simplex from σ is also in σ.
(ii) The intersection of any two simplices S1, S2 ∈ σ is a face of both S1 and S2.

Definition 1.3. [16,17] Let U be a finite universal set and R an equivalence relation on U .
U/R = {[x]R : x ∈ U} denotes the family of equivalence classes of R. Then, the pair (U, R)
is called an approximation space. For any X ⊆ U , the lower and upper approximations of
X are defined, respectively, by the following:

R(X) = {x ∈ U : [x]R ⊆ X},

R(X) = {x ∈ U : [x]R ∩ X ̸= ∅}.

From Pawlak’s definition, X is said to be rough if R(X) ̸= R(X).
Definition 1.4. [18] A ternary relation B∆ on an approximation space (Uσ, R∆(<))
((Uσ, ∆), for short) is a betweenness relation if the following hold:
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(i) Symmetric: (u, v, w) ∈ B∆ ⇔ (w, v, u) ∈ B∆ for any u, v, w ∈ Uσ.
(ii) Closure: (u, v, w) ∈ B∆ ∧ (u, w, v) ∈ B∆ ⇔ v = w for any u, v, w ∈ Uσ.
(iii) End-point transitivity: ((o, u, v) ∈ B∆ ∧ (o, v, w) ∈ B∆) ⇒ (o, u, w) ∈ B∆ for any

o, u, v, w ∈ Uσ.

2. Order relations on complexes and their topologies
In this section, we approximate finite simplicial complexes of different dimensions to

topological structures.

Definition 2.1. Let σ be a simplicial complex. Each k-simplex approximates to an
element in the universal set Uσ. Moreover, each 0-simplex in σ transforms into vi in Uσ,
each 1-simplex in σ transforms into ej in Uσ, each 2-simplex in σ transforms into fk in Uσ,
each 3-simplex in σ transforms into tm in Uσ, and so on. Then, Uσ can be written as Uσ =
{vi : i ∈ I1} ∪{ej : j ∈ I2} ∪{fk : k ∈ I3} ∪{tm : m ∈ I4} ∪ · · · , where I1, I2, I3, I4, · · · are
indices. The approximation space (Uσ, ∆) begins with its highest-dimensional simplices.

Definition 2.2. The relation R∆ on Uσ is called a preorder if the following conditions
hold:

(i) xR∆x, ∀ x ∈ Uσ.
(ii) If xR∆y and yR∆z, then xR∆z.

It is called a total order if for any u, v ∈ Uσ either uR∆v or vR∆u.

Now, we give an order relation R∆(<) on Uσ of a simplicial complex σ.

Definition 2.3. The order relation R∆(<) is reflexive on Uσ and has the form R∆(<) =
{(x, y) : x, y ∈ Uσ and y < x}, where y < x means that x has a dimension greater than
y and x is an upper bound of y. Also, a ∈ Uσ is called a minimum element related to
R∆(<) if a R∆(<) x, ∀ x ∈ Uσ, where a R∆(<) x means that a is in a relation with x
with respect to R∆(<). In other words, a is an upper bound for all elements of Uσ.

In the following, the order relation R∆(<) is used to construct a topology τR∆(<) from
a simplicial complex σ whose approximation space is (Uσ, ∆).

Definition 2.4. Let V ⊆ Uσ. V is called an upper set if for all x, y ∈ Uσ, x ∈ V such
that x R∆(<) y; then, y ∈ V .

Definition 2.5. The right neighborhood of any element x ∈ Uσ is defined by xR∆(<) =
{y ∈ Uσ : x R∆(<) y}. Moreover, the collection {xR∆(<) : x ∈ Uσ} forms a basis BR∆(<)
for a topology called τR∆(<). xR∆(<) is said to be the smallest neighborhood (or smallest
upper set) of x with respect to τR∆(<).

Proposition 2.6. BR∆(<) is a basis for the topology τR∆(<) on Uσ.

Proof. Let Uσ =
∪

x∈Uσ

xR∆(<), using Definition 2.5. Then, for each x ∈ Uσ, we put B =

xR∆(<) and so Uσ =
∪

{B : B ∈ BR∆(<)}. To prove that BR∆(<) is a basis for τR∆(<), it
is sufficient to prove that τR∆(<) is a topology on Uσ. It is clear that Uσ, ∅ ∈ τR∆(<) since
∅ =

∪
{B : B ∈ ∅ ⊆ BR∆(<)}. Now, let {Gi : i ∈ I} be a collection of members of τR∆(<).

Then, each Gi =
∪

x∈Uσ

xR∆(<), x ∈ Gi, for each i. So, each Gi is a union of members of

BR∆(<). Therefore,
∪

i∈I
Gi is a union of members of BR∆(<). In the same way, G1 ∩ G2 is

a union of members of BR∆(<), for each G1, G2 ∈ τR∆(<). �

Now, the topologies in terms of upper sets in Definition 2.4 are established from Exam-
ples 2.7, 2.8, and 2.9.
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Figure 1. The 2-simplicial complex σ1 and its approximation space ∆1.

Example 2.7. In Figure 1, σ1 has only one 2-simplex, three 1-simplices, and three 0-
simplices. The universal set is Uσ1 = {v1, v2, v3, e1, e2, e3, f1}. Let (Uσ1 , ∆1) be an
approximation space of a simplicial complex σ1 in Figure 1. The order relation R∆1(<)
on Uσ1 is as follows:

R∆1(<) ={(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (f1, e1), (f1, e2),
(f1, e3), (f1, v1), (f1, v2), (f1, v3), (e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v1),
(e3, v3)}. It is clear thatf1 is the minimum element in R∆1(<).

Right neighborhoods (smallest upper sets) of Uσ1 are as follows:
f1R∆1(<) = {f1, e1, e2, e3, v1, v2, v3}, v1R∆1(<) = {v1},
e1R∆1(<) = {e1, v1, v2}, v2R∆1(<) = {v2},
e2R∆1(<) = {e2, v2, v3}, v3R∆1(<) = {v3}.
e3R∆1(<) = {e3, v1, v3},

The basis is BR∆1 (<) = {Uσ1 , ∅, {e1, v1, v2}, {e2, v2, v3}, {e3, v1, v3}, {v1}, {v2}, {v3}},
and the topology is τR∆1 (<) = {Uσ1 , ∅, {e1, v1, v2}, {e2, v2, v3}, {e3, v1, v3}, {v1}, {v2}, {v3},

{e1, e2, v1, v2, v3}, {e1, e3, v1, v2, v3}, {e1, v1, v2, v3}, {e2, e3, v1, v2, v3}, {e2, v1, v2, v3},
{e3, v1, v2, v3}, {v1, v2, v3}, {v1, v2}, {v1, v3}, {v2, v3}, {e1, e2, e3, v1, v2, v3}}.

Example 2.8. In Figure 2, σ2 has two 2-simplices, six 1-simplices, and five 0-simplices.
The universal set is Uσ2 = {v1, · · · v5, e1 · · · e6, f1, f2}. Let (Uσ2 , ∆2) be an approximation
space of a simplicial complex σ2 in Figure 2. The order relation R∆2(<) on Uσ2 is as follows:

R∆2(<) ={(f1, f1), (f2, f2), (e1, e1), (e2, e2), (e3, e3), (e4, e4), (e5, e5), (e6, e6), (v1, v1),
(v2, v2), (v3, v3), (v4, v4), (v5, v5), (f1, e1)(f1, v1), (f1, v2), (f1, e2), (f1, v3),
(f1, e3), (e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v1), (e3, v3), (f2, e4), (f2, v3),
(f2, v5), (f2, e5), (f2, v4), (f2, e6), (e4, v3), (e4, v5), (e5, v3), (e5, v4), (e6, v4),
(e6, v5)}. It is clear that there is no minimum element in R∆2(<).
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Figure 2. The 2-simplicial complex σ2 and its approximation space ∆2.

Right neighborhoods (smallest upper sets) of Uσ2 are as follows:
f1R∆2(<) = {f1, e1, e2, e3, v1, v2, v3}, e6R∆2(<) = {e6, v4, v5},
f2R∆2(<) = {f2, e4, e5, e6, v3, v4, v5}, v1R∆2(<) = {v1},
e1R∆2(<) = {e1, v1, v2}, v2R∆2(<) = {v2},
e2R∆2(<) = {e2, v2, v3}, v3R∆2(<) = {v3},
e3R∆2(<) = {e3, v1, v3}, v4R∆2(<) = {v4},
e4R∆2(<) = {e4, v3, v5}, v5R∆2(<) = {v5}.
e5R∆2(<) = {e5, v3, v4},

The basis is B∆2 (<) = {Uσ2 , ∅, {f1, e1, e2, e3, v1, v2, v3}, {f2, e4, e5, e6, v3, v4, v5},

{e1, v1, v2}, {e2, v2, v3}, {e3, v1, v3}, {e4, v3, v5}, {e5, v3, v4}, {e6, v4, v5}, {v1}, {v2}, {v3},
{v4}, {v5}}. A union of members of BR∆2 (<) gives a topology τR∆2 (<).

Example 2.9. In Figure 3, σ3 has only one 3-simplex, four 2-simplices, six 1-simplices,
and four 0-simplices. The universal set is Uσ3 = {v1, · · · v4, e1, · · · e6, f1, · · · f4, t1}. Let
(Uσ3 , ∆3) be an approximation space of a simplicial complex σ3 in Figure 3. The order
relation R∆3(<) on Uσ3 is as follows:

R∆3(<) ={(t1, t1), (f1, f1), (f2, f2), (f3, f3), (f4, f4), (e1, e1)(e2, e2), (e3, e3), (e4, e4),
(e5, e5), (e6, e6), (v1, v1), (v2, v2), (v3, v3), (v4, v4), (t1, f1), (t1, f2), (t1, f3),
(t1, f4), (t1, e1), (t1, e2), (t1, e3), (t1, e4), (t1, e5), (t1, e6), (t1, v1), (t1, v2),
(t1, v3), (t1, v4), (f1, e1), (f1, e2), (f1, e5), (f1, v1), (f1, v2), (f1, v3), (f2, e3),
(f2, e4), (f2, e5), (f2, v1), (f2, v3), (f2, v4), (f3, e2), (f3, e3), (f3, e6), (f3, v2),
(f3, v3), (f3, v4), (f4, e1), (f4, e4), (f4, e6), (f4, v1), (f4, v2), (f4, v4), (e1, v1),
(e1, v2), (e2, v2), (e2, v3), (e5, v1), (e5, v3), (e3, v3), (e3, v4), (e4, v1), (e4, v4),
(e6, v2), (e6, v4)}. It is clear that t1 is the minimum element in R∆3(<).
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Figure 3. The 3-simplicial complex σ3 and its approximation space ∆3.

Right neighborhoods (smallest upper sets) of Uσ3 are as follows:
t1R∆3(<) = {t1, f1, f2, f3, f4, e1, e2, e3R∆3(<) = {e3, v3, v4},
e3, e4, e5, e6, v1, v2, v3, v4}, e4R∆3(<) = {e4, v1, v4},
f1R∆3(<) = {f1, e1, e2, e5, v1, v2, v3}, e5R∆3(<) = {e5, v1, v3},
f2R∆3(<) = {f2, e3, e4, e5, v1, v3, v4}, e6R∆3(<) = {e6, v2, v4},
f3R∆3(<) = {f3, e2, e3, e6, v2, v3, v4}, v1R∆3(<) = {v1},
f4R∆3(<) = {f4, e1, e4, e6, v1, v2, v4}, v2R∆3(<) = {v2},
e1R∆3(<) = {e1, v1, v2}, v3R∆3(<) = {v3},
e2R∆3(<) = {e2, v2, v3}, v4R∆3(<) = {v4}.

The basis is BR∆3 (<) = {Uσ3 , ∅, {f1, e1, e2, e5, v1, v2, v3}, {f2, e3, e4, e5, v1, v3, v4},

{f3, e2, e3, e6, v2, v3, v4}, {f4, e1, e4, e6, v1, v2, v4}, {e1, v1, v2}, {e2, v2, v3}, {e3, v3, v4},
{e4, v1, v4}, {e5, v1, v3}, {e6, v2, v4}, {v1}, {v2}, {v3}, {v4}}. A union of members of
BR∆3 (<) gives a topology τR∆3 (<).

3. A betweenness relation on complexes
In this section, Zhang’s concept of a betweenness relation [21] is used. This concept can

be used on approximation space ∆ of a simplicial complex σ. An explanation of Definition
1.4 according to the approximation space (Uσ, ∆) is given as follows.

Remark 3.1. (i) An element (u, v, w) means that v lies between u and w. For in-
stance, in Figure 1, each ej is between f1 and vi, where i, j ∈ {1, 2, 3}. In Fig-
ure 2, each ej is between fi and vk, where i ∈ {1, 2}, j ∈ {1, 2, 3, 4, 5, 6}, and



Some betweenness relation topologies induced by simplicial complexes 987

k ∈ {1, 2, 3, 4, 5}. In Figure 3, fi and ej are between t1 and vk, each fi is be-
tween t1 and ej , and each ej is between fi and vk, where i, k ∈ {1, 2, 3, 4} and
j ∈ {1, 2, 3, 4, 5, 6}.

(ii) If u, v ∈ Uσ, (u, v, u) ∈ B∆, then u = v. In other words, if we have two distinct
points u, v ∈ Uσ, then (u, v, u) is not in B∆.

(iii) If a triple (v, u, u) ∈ B∆, then (u, u, v) ∈ B∆.
(iv) The simplest betweenness relation is denoted by (B0)∆ and is of the form (B0)∆ =

{(u, v, w) ∈ U3
σ : u = v ∨ v = w}. It is called a minimum betweenness relation.

(ii), (iii), and (iv) can be represented as in Figures 4, 5, and 6, respectively.

Figure 4. Remark 3.1(ii)
Figure 5. Remark 3.1 (iii)

Figure 6. Remark 3.1 (iv)

Now, we investigate some basic characteristics for a betweenness relation on (Uσ, ∆).

Proposition 3.2. In any approximation space (Uσ, ∆), (B0)∆ is a subclass of B∆.

Proof. Assume that (B0)∆ * B∆. Then, there exists (x, y, z) ∈ (B0)∆ and (x, y, z) /∈ B∆.
So, either x = y or y = z is satisfied. If x = y, using Definition 1.4(ii), then (z, y, x) ∈ B∆,
and using (i), then (x, y, z) ∈ B∆ which gives a contradiction. Similarly, for y = z,
(x, y, z) ∈ B∆, which is also a contradiction. �
Proposition 3.3. Let (Uσ, ∆) be an approximation space. The ternary relation of the
form B∆(<) = {(x, y, z) ∈ Uσ

3 : x = y ∨ y = z ∨ x < y < z ∨ z < y < x is held } is a
betweenness by an order relation R∆(<).

Proof. It is sufficient to prove the conditions of betweenness.
(i) For any (x, y, z) ∈ B∆(<), x = y ∨ y = z ∨ x < y < z ∨ z < y < x implies that

z = y ∨ y = x ∨ z < y < x ∨ x < y < z. Therefore, (z, y, x) ∈ B∆(<).
(ii) If y = z, then (x, y, z) ∈ B∆(<) and (x, z, y) ∈ B∆(<). Conversely, assume that

(x, y, z), (x, z, y) ∈ B∆(<), where y and z are distinct. For the point (x, y, z), one
of the cases x = y, x < y < z, and z < y < x holds. Similarly, for (x, z, y), one
of the cases x = z, x < z < y, and y < z < x is satisfied. Therefore, there are
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four cases: x < y < z, x < z < y; x < y < z, y < z < x; z < y < x, x < z < y;
z < y < x, y < z < x. These cases lead to a contradiction and then y = z.

(iii) Consider that both (o, x, y) and (o, y, z) are in B∆(<). There are four cases:
i

′ . If o < x < y and o < y < z, then o < x < z, and so (o, x, z) ∈ B∆(<).
ii

′ . If o < x < y and z < y < o, this is impossible since y ̸= o.
iii

′ . If y < x < o and o < y < z, this is impossible since y ̸= o.
iv

′ . If y < x < o and z < y < o, then (o, x, z) ∈ B∆(<).

Therefore, we conclude that B∆(<) is a betweenness relation on Uσ. �
Remark 3.4. The definition of B∆(<) in Proposition 3.3 is equivalent to

B∆(<) = (B0)∆ ∪ {(x, y, z) ∈ Uσ
3 : x < y < z ∨ z < y < x}.

Example 3.5. Let (Uσ1 , ∆1) be an approximation space in Figure 1. Consider B′
∆1

(<) =
{(x, y, z) ∈ U3

σ1 : x < y < z ∨ z < y < x}; then,
B′

∆1(<) ={(v1, e1, f1), (v2, e1, f1), (v2, e2, f1), (v3, e2, f1), (v1, e3, f1), (v3, e3, f1),
(f1, e1, v1), (f1, e1, v2), (f1, e2, v2), (f1, e2, v3), (f1, e3, v1), (f1, e3, v3)}.

Therefore,
B∆1(<) =(B0)∆1 ∪ {(v1, e1, f1), (v2, e1, f1), (v2, e2, f1), (v3, e2, f1), (v1, e3, f1),

(v3, e3, f1), (f1, e1, v1), (f1, e1, v2), (f1, e2, v2), (f1, e2, v3), (f1, e3, v1),
(f1, e3, v3)}.

Example 3.6. Let (Uσ3 , ∆3) be an approximation space in Figure 3.
Consider B∗

∆3(<) ={(e1, f1, t1), (v1, e1, t1), (v1, f1, t1), (v1, e1, f1), (v2, e1, f1), (v2, e1, t1),
(v2, f1, t1), (e2, f1, t1), (v2, e2, f1), (v2, e2, t1), (v2, f1, t1), (v3, e2, f1),
(v3, e2, t1), (v3, f1, t1), (v1, e5, f1), (v1, e5, t1), (v1, f1, t1), (e5, f1, t1),
(v3, e5, f1), (v3, e5, t1), (v3, f1, t1), (v3, e3, f2), (e3, f2, t1), (v3, e3, t1),
(v3, f2, t1), (v4, e3, f2), (v4, e3, t1), (v4, f2, t1), (v1, e4, f2), (v1, e4, t1),
(v1, f2, t1), (v4, e4, f2), (v4, e4, t1), (v4, f2, t1), (v1, e5, f2), (e5, f2, t1),
(v1, e5, t1), (v1, f2, t1), (v3, e5, f2), (v3, e5, t1), (v3, f2, t1), (e2, f3, t1),
(v2, e2, f3), (v2, e2, t1), (v2, f3, t1), (v3, e2, f3), (v3, e2, t1), (v3, f3, t1),
(v4, e3, f3), (v4, e3, t1), (v4, f3, t1), (e6, f3, t1), (v2, e6, f3), (v2, e6, t1),
(v2, f3, t1), (v4, e6, f3), (v4, e6, t1), ((v4, f3, t1), (e1, f4, t1), (v1, e1, f4),
(v1, e1, t1), (v1, f4, t1), (v2, e1, f4), (v2, e1, t1), (v2, f4, t1), (v1, e4, f4),
(e4, f4, t1), (v1, e4, t1), (v1, f4, t1), (v4, e4, f4), (v4, e4, t1), (v4, f4, t1),
(e6, f4, t1), (v2, e6, f4), (v2, e6, t1), (v2, f4, t1), (v4, e6, f4), (v4, e6, t1)}.

Therefore, B∆3(<) is a union of three classes (B0)∆3 , B∗
∆3

(<), and {(z, y, x) ∈ U3
σ3 :

(x, y, z) ∈ B∗
∆3

(<)}.

4. Comparison between betweenness and order relations
In this section, a betweenness relation B∆(<) is represented as a class of order relations.

Theorem 4.1. Let B∆(<) be a betweenness relation in (Uσ, ∆). The binary relation
(Ox)∆ on Uσ is defined by (Ox)∆ = {(y, z) ∈ U2

σ : (x, y, z) ∈ B∆(<)} and the collection of
order relations on Uσ is {(Ox)∆ : x ∈ Uσ}. Then, for any distinct points x, y, and z in
Uσ, (y, z) ∈ (Ox)∆ if and only if (y, x) ∈ (Oz)∆.
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Proof. If (y, z) and (z, ℓ) are in (Ox)∆, then (x, y, z), (x, z, ℓ) ∈ B∆(<). Using condition
(iii) in Definition 1.4, (x, y, ℓ) ∈ B∆(<). Hence, (y, ℓ) ∈ (Ox)∆ and so (Ox)∆ is transitive.
We conclude that the collection {(Ox)∆}x∈Uσ is considered order relations on Uσ. Now, let
(y, z) ∈ (Ox)∆ imply that (x, y, z) ∈ B∆(<). Using condition (i) in Definition 1.4, (z, y, x)
∈ B∆(<) and then (y, x) ∈ (Oz)∆. Similarly, if (y, x) ∈ (Oz)∆, then (y, z) ∈ (Ox)∆. �

In Theorem 4.2, we deduce a betweenness relation from an order relation for (Uσ, ∆).

Theorem 4.2. Let {(Ox)∆}x∈Uσ be a class of order relations on Uσ and a relation for x
be (Bx)∆ = {(x, y, z) : (y, z) ∈ (Ox)∆}. So, B∆ =

∪
x∈Uσ

(Bx)∆ is a betweenness on Uσ.

Proof. Let (x, y, z) ∈ (Bx)∆. Using Theorem 4.1, there is (y, z) ∈ (Ox)∆ if and only if
(y, x) ∈ (Oz)∆, (z, y, x) ∈ (Bx)∆. So, (Bx)∆ satisfies a symmetric condition. To prove
a closure property of (Bx)∆, let (x, y, z) and (x, z, y) ∈ (Bx)∆ imply that (y, z), (z, y)
∈ (Ox)∆. But (Ox)∆ is antisymmetric and so y = z. Conversely, if y = z, then
(x, y, z), (x, z, y) ∈ (Bx)∆. To prove a transitivity, let both (x, y, z) and (x, z, ℓ) ∈ (Bx)∆
imply that (y, z) ∈ (Ox)∆ and (z, ℓ) ∈ (Ox)∆. Hence, (y, ℓ) ∈ (Ox)∆, which leads to
(x, y, ℓ) ∈ (Bx)∆. �

Remark 4.3. Let {(Ox)∆}x∈Uσ be a set of order relations. Then, the following hold:
(i) (x, y) ∈ (Ox)∆ for distinct points x, y ∈ Uσ, which means that x is a minimum

point in (Ox)∆,
∪

x∈Uσ

(Ox)∆ = Uσ
2.

(ii)
∩

x∈Uσ

(Ox)∆ = {(x, x) : x ∈ Uσ}.

5. Main results
In this section, we construct a topology on Uσ of (Uσ, ∆) induced by a betweenness

relation. For this aim, a right neighborhood of any y ∈ Uσ with respect to B∆(<) is
defined.

Definition 5.1. Let (Uσ, ∆) be an approximation space. Then,
(i) a right neighborhood of any y ∈ Uσ with respect to B∆(<) is ((Ry)x))∆,< =

{z ∈ Uσ : (x, y, z) ∈ B∆(<)};
(ii) a right neighborhood of any y ∈ Uσ with respect to (Ox)∆ is ((Ry)x)∆,< = {z ∈

Uσ : (y, z) ∈ (Ox)∆}.

Proposition 5.2. Let (Uσ, ∆) be an approximation space. Then, the properties that hold
for ((Ry)x)∆,<, ∀ x, y ∈ Uσ are as follows:

(i) y ∈ ((Ry)x)∆,<. (iv) ((Ry)x)∆,< ∩ ((Rx)y)∆,< = ∅ if and only
if x ̸= y.

(ii) ((Rx)x)∆,< = Uσ. (v)
∩

x∈Uσ

((Ry)x)∆,< = {y}.

(iii) x /∈ ((Ry)x)∆,< if and only if x ̸= y.

Proof. Using Remarks 3.1 and 3.4 and Definition 5.1, the proof is obvious. �

Note that the class ((Ry)x)∆,<, ∀ y ∈ Uσ is a basis for a topology called (τx)∆,<. In this
topology, the set ((Ry)x)∆,< is the smallest neighborhood of y. Each of these topologies
{(τx)∆,< : x ∈ Uσ} is induced by a betweenness relation B∆(<). Also, an order relation
(Ox)∆ is used to generate other topologies such as the topology of Lashin et al. in [13].

Theorem 5.3. Let (τx)∆,< be a topology equipped with B∆(<) on (Uσ, ∆) with cardinality
greater than 1. Then, (τx)∆,< is neither discrete nor indiscrete topology, ∀ x ∈ Uσ.
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Proof. It is clear that {∅, Uσ} ⊂ (τx)∆,< ⊂ P (Uσ), where P (Uσ) is the power set (also
considered a discrete topology) on Uσ. It is needed to prove that P (Uσ) ̸= (τx)∆,< ̸=
{∅, Uσ}, for x ∈ Uσ. Assume that {x} ∈ (τx)∆,<; then, {x} is the smallest neighborhood
of x with respect to (τx)∆,<. Also, ((R x)x)∆,< = Uσ is the smallest neighborhood of x
with respect to (τx)∆,<. Hence, {x} = Uσ, which contradicts the fact that the cardinality
of Uσ is greater than 1. So, P (Uσ) ̸= (τx)∆,<. Now, let y ∈ Uσ/{x}. Since ((R y)x)∆,<

contains y but does not contain x, ((R y)x)∆,< is a nonempty set and is not Uσ. Moreover,
since ((R y)x)∆,< ∈ (τx)∆,<, (τx)∆,< is not an indiscrete topology. �

Theorem 5.4. Let (Uσ, ∆) be an approximation space and (τx)∆,<, ∀ x ∈ Uσ be a topology
obtained by B∆(<). Then,

∩
x∈Uσ

(τx)∆,< = {∅, Uσ}.

Proof. Obviously, {∅, Uσ} ⊆
∩

x∈Uσ

(τx)∆,< is verified. Suppose that F ∈
∩

x∈Uσ

(τx)∆,< and

F ̸= ∅. If u ∈ F , then F ∈ (τu)∆,<. So, F is a neighborhood of u with respect to (τu)∆,<.
Since ((Ru)u)∆,< = Uσ is the smallest neighborhood of u with respect to (τu)∆,<, then
F = Uσ implies that

∩
x∈Uσ

(τx)∆,< = {∅, Uσ}. �

Example 5.5. In Example 3.5, the set of order relations (Ox)∆1 , ∀ x ∈ Uσ1 , which is
induced by a betweennees relation B∆1(<), is as follows:
(Of1)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (f1, e1), (f1, e2),
(f1, e3), (f1, v1), (f1, v2), (f1, v3), (e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v1), (e3, v3)},
(Oe1)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (e1, f1), (e1, e2),
(e1, e3), (e1, v1), (e1, v2), (e1, v3)},
(Oe2)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (e2, f1), (e2, e1),
(e2, e3), (e2, v1), (e2, v2), (e2, v3)},
(Oe3)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (e3, f1), (e3, e1),
(e3, e2), (e3, v1), (e3, v2), (e3, v3)},
(Ov1)∆1 = {(v1, v1), (v2, v2), (v3, v3), (f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, f1), (v1, e1),
(v1, e2), (v1, e3), (v1, v2), (v1, v3), (e1, f1), (e3, f1)},
(Ov2)∆1 = {(v1, v1), (v2, v2), (v3, v3), (e1, e1), (e2, e2), (e3, e3), (f1, f1), (v2, f1), (v2, e1),
(v2, e2), (v2, e3), (v2, v1), (v2, v3), (e1, f1), (e2, f1)},
(Ov3)∆1 = {(v1, v1), (v2, v2), (v3, v3), (e1, e1), (e2, e2), (e3, e3), (f1, f1), (v3, f1), (v3, e1),
(v3, e2), (v3, e3), (v3, v1), (v3, v2), (e2, f1), (e3, f1)}.

Right neighborhoods (smallest upper sets) for each x ∈ Uσ1 are as follows:
((R f1)f1)∆1,< = {f1, e1, e2, e3, v1, v2, v3}, ((R v1)f1)∆1,< = {v1},
((R e1)f1)∆1,< = {e1, v1, v2}, ((R v2)f1)∆1,< = {v2},
((R e2)f1)∆1,< = {e2, v2, v3}, ((R v3)f1)∆1,< = {v3}.
((R e3)f1)∆1,< = {e3, v1, v3},

Therefore, the basis is (βf1)∆1,< = {Uσ1 , ∅, {e1, v1, v2}, {e2, v2, v3}, {e3, v1, v3}, {v1},
{v2}, {v3}}, which is used to generate (τf1)∆1,<. Similarly, the bases for other points of
Uσ1 are as follows:
(βe1)∆1,< = {Uσ1 , ∅, {f1}, {e2}, {e3}, {v1}, {v2}, {v3}},
(βe2)∆1,< = {Uσ1 , ∅, {f1}, {e1}, {e3}, {v1}, {v2}, {v3}},
(βe3)∆1,< = {Uσ1 , ∅, {f1}, {e1}, {e2}, {v1}, {v2}, {v3}},
(βv1)∆1,< = {Uσ1 , ∅, {f1}, {e1, f1}, {e2}, {e3, f1}, {v2}, {v3}},
(βv2)∆1,< = {Uσ1 , ∅, {f1}, {e1, f1}, {e2, f1}, {e3}, {v1}, {v3}},
(βv3)∆1,< = {Uσ1 , ∅, {f1}, {e1}, {e2, f1}, {e3, f1}, {v1}, {v2}}.

From Example 5.5, we note the following:
(i) {x} /∈ (τx)∆,<, ∀ x ∈ Uσ.
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(ii) For any x ∈ Uσ, (τx)∆,< is neither a discrete nor an indiscrete topology.

(iii)
∩

x∈Uσ

(τx)∆,< = {∅, Uσ}.

Theorem 5.6. Let (τx)∆ be a topology obtained by (B0)∆ on (Uσ, ∆). Then,
∪

x∈Uσ

(τx)∆ =∨
x∈Uσ

(τx)∆ = P (Uσ).

Proof. It is clear that
∪

x∈Uσ

(τx)∆ ⊆
∨

x∈Uσ

(τx)∆ ⊆ P (Uσ). It is needed to prove that

P (Uσ) ⊆
∪

x∈Uσ

(τx)∆. Suppose that F ∈ P (Uσ). Then, either F = ∅ or F = Uσ. So,

F ∈
∪

x∈Uσ

(τx)∆. If F ̸= ∅ and F ̸= Uσ (take u ∈ Uσ/F ), then by Remark 3.1 (iv), we

get ((R y)u)∆ = {y} for any y ∈ F , while ((R y)u)∆ ∈ (τu)∆. Then, F =
∪

y∈F
{y} =∪

y∈F
((R y)u)∆ ∈ (τu)∆. It is deduced that F ∈

∪
x∈Uσ

(τx)∆. �

Theorem 5.6 is illustrated in Example 5.7.

Example 5.7. Let (Uσ1 , ∆1) be an approximation space in Figure 1; the set of order
relations (Ox)∆1 , for all x ∈ Uσ1 , which is induced by (B0)∆1 is as follows:
(Of1)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (f1, e1), (f1, e2),
(f1, e3), (f1, v1), (f1, v2), (f1, v3)},
(Oe1)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (e1, f1), (e1, e2),
(e1, e3), (e1, v1), (e1, v2), (e1, v3)},
(Oe2)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (e2, f1), (e2, e1),
(e2, e3), (e2, v1), (e2, v2), (e2, v3)},
(Oe3)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (e3, f1), (e3, e1),
(e3, e2), (e3, v1), (e3, v2), (e3, v3)},
(Ov1)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (v1, f1), (v1, e1),
(v1, e2), (v1, e3), (v1, v2), (v1, v3)},
(Ov2)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (v2, f1), (v2, e1),
(v2, e2), (v2, e3), (v2, v1), (v2, v3)},
(Ov3)∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3), (v3, f1), (v3, e1),
(v3, e2), (v3, e3), (v3, v1), (v3, v2)}.
Right neighborhoods are as follows:
((R f1)f1)∆1 = Uσ1 , ((R v1)f1)∆1 = {v1},
((R e1)f1)∆1 = {e1}, ((R v2)f1)∆1 = {v2},
((R e2)f1)∆1 = {e2}, ((R v3)f1)∆1 = {v3}.
((R e3)f1)∆1 = {e3},

Therefore, (βf1)∆1 = {Uσ1 , ∅, {e1}, {e2}, {e3}, {v1}, {v2}, {v3}}, which is used to con-
struct a topology (τf1)∆1 on Uσ1 .
Similarly, the bases for other points of Uσ1 are deduced:
(βe1)∆1 = {Uσ1 , ∅, {f1}, {e2}, {e3}, {v1}, {v2}, {v3}},
(βe2)∆1 = {Uσ1 , ∅, {f1}, {e1}, {e3}, {v1}, {v2}, {v3}},
(βe3)∆1 = {Uσ1 , ∅, {f1}, {e1}, {e2}, {v1}, {v2}, {v3}},
(βv1)∆1 = {Uσ1 , ∅, {f1}, {e1}, {e2}, {e3}, {v2}, {v3}},
(βv2)∆1 = {Uσ1 , ∅, {f1}, {e1}, {e2}, {e3}, {v1}, {v3}},
(βv3)∆1 = {Uσ1 , ∅, {f1}, {e1}, {e2}, {e3}, {v1}, {v2}}.

In Theorems 5.8, 5.9, and 5.10, necessary and sufficient conditions that
∨

x∈Uσ

(τx)∆,< =

P (Uσ) hold for B∆(<) are given.
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Theorem 5.8. Let (Uσ, ∆) be an approximation space. For any y ∈ Uσ, there is {xi}i∈I ,
where I is a finite index set, from Uσ such that (xi, y, z) ∈ B∆(<) and i ∈ I. Then, z = y
if and only if

∩
i∈I

((R y)xi)∆,< = {y}.

Proof. Let (xi, y, z) ∈ B∆(<), ∀ i ∈ I and z = y. Assume that z ∈
∩

i∈I
((Ry)xi)∆,<

implies that (xi, y, z) is in B∆(<) ∀ i ∈ I. Since z = y ∈ {y}, then
∩

i∈I
((Ry)xi)∆,< ⊆ {y}.

Using Proposition 5.2, we get {y} ⊆
∩

i∈I
((Ry)xi)∆,<. Therefore,

∩
i∈I

((Ry)xi)∆,< = {y}.

Conversely, if for any y ∈ Uσ, ∃ {xi}i∈I of Uσ and (xi, y, z) is in B∆(<), using Definition
5.1, we get z ∈ ((Ry)xi)∆,<, while

∩
i∈I

((Ry)xi)∆,< = {y}. Therefore, z = y. �

Theorem 5.9. Let (Uσ, ∆) be an approximation space and (τx)∆,< be a topology obtained
by B∆(<), for x ∈ Uσ. Then, ∀ x ∈ Uσ,

∨
x∈Uσ

(τx)∆,< = P (Uσ) if and only if B∆(<)

satisfies Theorem 5.8.

Proof. Suppose that
∨

x∈Uσ

(τx)∆,< = P (Uσ). Then, {y} ∈
∨

x∈Uσ

(τx)∆,< for any y ∈ Uσ.

Since
∪

x∈Uσ

(τx)∆,< is a subbase for
∨

x∈Uσ

(τx)∆,<, then there is {Fj}j∈J of Uσ such that

{y} ∈
∪

j∈J
Fj , where Fj is a finite intersection of elements of

∪
x∈Uσ

(τx)∆,<. Hence, we find

j0 ∈ J such that {y} = Fj0 and a finite set {wi : i ∈ I} of
∪

x∈Uσ

(τx)∆,< such that Fj0 =∩
i∈I

wi. Hence, {y} =
∩

i∈I
wi. Since wi ∈

∪
x∈Uσ

(τx)∆,< for each i ∈ I, ∃ xi ∈ Uσ such that wi ∈

(τxi)∆,<, then wi is a neighborhood of y with respect to (τxi)∆,<. Obviously, ((R y)xi)∆,<

is the smallest neighborhood of y with respect to (τxi)∆,<. Then, y ∈ ((R y)xi)∆,< ⊆ wi,
but {y} =

∩
i∈I

wi, and so
∩

i∈I
((R y)xi)∆,< = {y}. Therefore, B∆(<) satisfies Theorem 5.8.

Conversely, let B∆(<) satisfy Theorem 5.8. Then, for any y ∈ Uσ, there is a finite subset
{xi : i ∈ I} of Uσ such that

∩
i∈I

((Ry)xi)∆,< = {y}, but ((R y)xi)∆,< ∈ (τxi)∆,< ⊆
∨

x∈Uσ

(τx)∆,< for i ∈ I implies that {y} ∈
∨

x∈Uσ

(τx)∆,<. Therefore,
∨

x∈Uσ

(τx)∆,< = P (Uσ). �

Alexandroff spaces [1] are topological spaces, where each element is contained in the
smallest open set. In Alexandroff spaces, an arbitrary intersection of open sets is open.

Theorem 5.10. Let (Uσ, ∆) be an approximation space and (τx)∆,<, ∀ x ∈ Uσ be topolo-
gies obtained by B∆(<). Then,

∨
x∈Uσ

(τx)∆,< = P (Uσ) if and only if
∨

x∈Uσ

(τx)∆,< is an

Alexandroff topology.

Proof. If
∨

x∈Uσ

(τx)∆,< = P (Uσ), then it is clear that
∨

x∈Uσ

(τx)∆,< is Alexandroff.

Conversely, let
∨

x∈Uσ

(τx)∆,< be Alexandroff, then, for distinct points x and y in

Uσ, ((R y)x)∆,< ∈ (τx)∆,< ⊆
∨

x∈Uσ

(τx)∆,<. From Proposition 5.2, we know that∩
x∈Uσ

((R y)x)∆, < = {y}. Since
∨

x∈Uσ

(τx)∆,< is Alexandroff, it implies that {y} ∈∨
x∈Uσ

(τx)∆,< for any y ∈ Uσ. Hence,
∨

x∈Uσ

(τx)∆,< = P (Uσ). �

In Theorem 5.11, a betweenness relation must satisfy Theorems 5.8 and 5.9. Moreover,
a relationship between the topology τR∆(<) and topologies {(τx)∆,<}x∈Uσ is studied.

Theorem 5.11. Let (Uσ, ∆) be an approximation space and induce both topologies τR∆(<)
and (τu)∆,<, ∀ u ∈ Uσ. Then,
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(i) τR∆(<) ⊆
∨

u∈Uσ

(τu)∆,<;

(ii) τR∆ =
∨

u∈Uσ

(τu)∆,< if and only if R∆ = {(u, u) : u ∈ Uσ}.

Proof. (i) Since
∨

u∈Uσ

(τu)∆,< = P (Uσ), by Theorem 5.9, then τR∆(<) ⊆
∨

u∈Uσ

(τu)∆,<.

(ii) Let
∨

u∈Uσ

(τu)∆,< = P (Uσ). It is needed to prove that τR∆ = P (Uσ) if and only

if R∆ = {(u, u) : u ∈ Uσ}. If R∆ = {(u, u) : u ∈ Uσ} implies that {u} ∈ τR∆ ∀
u ∈ Uσ, then τR∆ = P (Uσ). On the other hand, if τR∆ = P (Uσ), then from a one-
one correspondence between order relations and topological spaces for Alexandroff
on Uσ, we get R∆ = {(u, u) : u ∈ Uσ}.

�
Example 5.12. From Examples 2.7 and 5.5, it is clear that τR∆1 (<) ⊆

∨
x∈Uσ1

(τx)∆1,<.

Example 5.13. If R∆1 = {(u, u) : u ∈ Uσ1}, where Uσ1 is shown in Figure 1, then
R∆1 = {(f1, f1), (e1, e1), (e2, e2), (e3, e3), (v1, v1), (v2, v2), (v3, v3)}. The set of right
neighborhoods is as follows:
f1 R∆1 = {f1}, v1 R∆1 = {v1},
e1 R∆1 = {e1}, v2 R∆1 = {v2},
e2 R∆1 = {e2}, v3 R∆1 = {v3}.
e3 R∆1 = {e3},

Obviously, if R∆1 = {(u, u) : u ∈ Uσ1}, then the corresponding betweenness relation is
(B0)∆1 . Also, τR∆1

=
∨

x∈Uσ1

(τx)∆1 .

Theorem 5.14. Let (Uσ, ∆) be an approximation space and induce both topologies τR∆(<)
and (τx)∆,<. Then, for any y ∈ Uσ, (τy)∆,< = τR∆(<) if and only if y is a minimum
element with respect to R∆(<).

Proof. Let (τy)∆,< = τR∆(<). So, it is concluded that (Oy)∆ = R∆(<). This means that
y is a minimum element with respect to R∆(<). Conversely, let y be the minimum element
with respect to R∆(<). It is equivalent to show that (Oy)∆ = R∆(<). Let (ℓ, z) ∈ (Oy)∆
imply that (y, ℓ, z) ∈ B∆(<). So, there are four cases:

(i) ℓ = y implies that (y, z) ∈ R∆(<) since y is a minimum element in R∆(<) and so
(ℓ, z) ∈ R∆(<).

(ii) ℓ = z implies that (ℓ, z) ∈ R∆(<), by the reflexitivity of R∆(<).
(iii) yR∆(<)ℓR∆(<)z implies that (ℓ, z) ∈ R∆(<).
(iv) zR∆(<)ℓR∆(<)y. Since y is a minimum element in R∆(<) and R∆(<) antisym-

metric, then z = ℓ = y. By the reflexitivity of R∆(<), we have (ℓ, z) ∈ R∆(<).
Hence, (Oy)∆ ⊆ R∆(<). Conversely, if (ℓ, z) ∈ R∆(<), then y R∆(<)ℓR∆(<)z
since y is the minimum element in R∆(<). Then, (y, ℓ, z) ∈ B∆(<), and so
(ℓ, z) ∈ (Oy)∆. Thus, R∆(<) ⊆ (Oy)∆. Therefore, (Oy)∆ = R∆(<).

�
Example 5.15. From Examples 2.7 and 5.5, since f1 is the minimum element with respect
to R∆1(<), then R∆1(<) = (Of1)∆1 . It is clear that (τf1)∆1,< = τR∆1

(<) since f1 is the
minimum element with respect to R∆1(<).

6. Conclusions
In this paper, we begin with a simplicial complex σ. An approximation space (Uσ, ∆) is

established. The universal set Uσ of a simplicial complex σ is represented by a set of points
from the vertices, edges, triangles, tetrahedrons, and so on. A betweenness relation is used
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to establish a new class of order relations. From the set of order relations, the researchers
have a set of topologies. Moreover, a relationship between the topology induced by R∆(<)
and the topologies generated by (Ox)∆ is studied.

Acknowledgment. The authors would like to thank editors and anonymous reviewers
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