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Abstract

In this paper, we present a new concept of inner amenability for a non-empty arbitrary subset A of dis-
crete semigroup S called A-inner amenablility. This condition is considerably weaker than ordinary inner
amenability. Further, we show some relationships between this version of inner amenability and Følner’s
condition.
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1. Introduction

Throughout this paper, S will denote a discrete semigroup. We shall use `∞(S) to denote the Banach
space of bounded real-valued functions on S with the supremum norm. For every subset A of S, let χA
denote its characteristic function, that is

χA(s) =

{
1 s ∈ A

0 s /∈ A

A mean is a linear functional m ∈ `∞(S)∗ such that m(χS) = ‖m‖ = 1. For each s ∈ S and f ∈ `∞(S)
we define sf and fs on S by (sf)(t) = f(st) and (fs)(t) = f(ts) for all t ∈ S. We say that m ∈ `∞(S)∗ is
invariant if m(sf) = m(f) = m(fs) for all s ∈ S and f ∈ `∞(S). A semigroup S is said to be amenable if
it has an invariant mean m on `∞(S). Also, let `1(S) denote the Banach space of all real-valued functions
ϕ on S such that ‖ϕ‖1 :=

∑
x∈S |ϕ(x)| < ∞. With pointwise addition and scalar multiplication, and with

convolution
(ϕ ∗ ψ)(x) =

∑
st=x

ϕ(s)ψ(t) (x ∈ S),
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as product, `1(S) is a Banach algebra.
We say that m ∈ `∞(S)∗ is inner invariant mean if

m(sf) = m(fs),

for all s ∈ S and f ∈ `∞(S). Following Ling[11], a semigroup S is said to be inner amenable if it has an
inner invariant mean m on `∞(S).

We will show that many results concerning inner amenability of semigoups have similar analogues for
A-inner amenability. Finally, a number of equivalent conditions characterizing A-inner amenable semigroups
is given.

2. Set inner amenability for semigroup

We start off with the following definition, which is the most important here.

Definition 2.1. Let S be a semigroup and φ 6= A ⊆ S. We say that a mean m on `∞(S), is an inner
A-invariant mean if for all a ∈ A and f ∈ `∞(S) we have

m(af) = m(fa).

A semigroup S which admits inner A-invariant means is called A-inner amenable.

In other words, invarince of m is only required in the subsets of S. It follows immediately that every
inner amenable semigroup is A-inner amenable for all subsets A of S. But the converse is not true in genaral.
(see Examples 3.2 and 3.4)

For an arbitrary non-empty subset A of semigroup S, we denote by H(A), the real linear span of functions
of the form af − fa, where a ∈ A and f ∈ `∞(S). In the following theorem, a sequence of characterizations
of A-inner amenable semigroup is given.

Theorem 2.2. Let S be a semigroup with non-empty subset A. Then the following proporties are equivalent:

(a) S is an A-inner amenable semigroup.

(b) for every h ∈ H(A), sup{h(x) : x ∈ S} ≥ 0.

(c) inf{‖1− h‖∞ : h ∈ H(A)} = 1.

Proof. (a) ⇒ (b). Let m be an inner A-invariant mean on `∞(S). If h ∈ H(A), then sup{h(x) : x ∈ S} ≥
m(h) = 0. Thus, the property (b) holds.

(b)⇒ (c). For every h ∈ H(A), we have

0 ≤ sup{−h(x) : x ∈ S} = − inf{h(x) : x ∈ S}.

This shows that, inf{h(x) : x ∈ S} ≤ 0. Hence, for any ε > 0, there exists x0 ∈ S such that h(x0) < ε,
and so 1 − h(x0) > 1 − ε. Therefore, ‖1 − h‖∞ ≥ 1 for any h ∈ H(A). But 0 ∈ H(A), inf{‖1 − h‖∞ : h ∈
H(A)} ≤ ‖1− 0‖∞ = 1.

(c)⇒ (a). Assume that the property (c) holds. Now by the Hahn-Banach theorem, there exists a linear
functional m on `∞(S) with norm one such that m(H(A)) = {0} and m(1) = inf{‖1− h‖∞ : h ∈ H(A)}. So
m is an inner A-invariant mean on `∞(S).

A non-empty subset A of S is said to act injectively on the left (right) of semigroup S, if ax = ay
(xa = ya) implies x = y for every a ∈ A, x, y ∈ S. We say that A acts injectively on the semigroup S, if it
acts on both left and right of S. In particular, if S is a cancellative semigroup, then every non-empty subset
of S acts injectively on S.
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Theorem 2.3. Let A act injectively on the left of semigroup S. Then S is A-inner amenable if and only if
H(A) is not norm dense in `∞(S).

Proof. We suppose thatm be a nonzero self-adjoint functionalm ∈ `∞(S)∗ such thatm(H(A)) = 0. Consider
the decomposition m = m+ −m−, such that

m+(f) = sup{m(g) : 0 ≤ g ≤ f}

and
m−(f) = − inf{m(g) : 0 ≤ g ≤ f},

for all f ∈ `∞(S) with f ≥ 0. A similar proof of Teorem 2 of [11], shows that m+ and m− are inner
A-invariant mean on `∞(S).

In the following proposition, we see that increasing union of a family of A-inner amenable semigroups is
A-inner amenable.

Proposition 2.4. Let {Sα}α∈I be a family of subsemigroups of S such that for each α ∈ I, Sα is Aα-inner
amenable and A =

⋃
α∈I Aα with the following conditions:

(a) for each Sα, Sβ that are Aα-inner amenable and Aβ-inner amenable, respectively, there exists Sγ ⊇
Sα ∪ Sβ such that Sγ is Aγ-inner amenable with Aγ ⊇ Aα ∪Aβ.

(b) S =
⋃
α∈I Sα.

Then S is A-inner amenable.

Proof. Assume that h =
∑n

k=1(ak(fk)−(fk)ak) such that fk ∈ `∞(S), ak ∈ A. By the assumption, there exists
a Sλ such that ak ∈ Aλ. Since Sλ is Aλ-inner amenable, it follows from Theorem 2.2, sup{h(x) : x ∈ Sλ} ≥ 0.
In particular, sup{h(x) : x ∈ S} ≥ 0. Again by Theorem 2.2, S is A-inner amenable.

Remark 2.5. A subsemigroup of an A-inner amenable semigroup need not be A-inner amenable. As an
example let S be any non A-inner amenable semigroup, and let So contain S and one new element o such
that os = so = oo = o, and S is a subsemigroup of So. Then So has an inner A-invariant mean: m(f) = f(o),
whereas S is not an A-inner amenable.

Theorem 2.6. Let T be a subsemigroup of S and A ⊆ T . Then T is an A-inner amenable if and only if S
is an A-inner amenable with mean m such that m(χT ) = 1.

Proof. Let θ : T −→ S be the embedding map. Then it induces θ : `∞(S) −→ `∞(T ) by θ(f) = f |T . It is
easily that θ is bounded and linear. Consider θ∗ : `∞(T )∗ −→ `∞(S)∗. Now suppose that m ∈ `∞(T )∗ is an
inner A-invariant mean. Clearly θ∗(m) is a mean on `∞(S). Also, for any f ∈ `∞(S), a ∈ A, it is easy to
see that

θ(af) = (af)|T = a(f |T ) = a(θ(f)),

and
θ(fa) = (fa)|T = (f |T )a = (θ(f))a.

Therefore, for all f ∈ `∞(S), a ∈ A, we get

(θ
∗
(m))(af) = m(θ(af)) = m(a(θ(f))) = m((θ(f))a) = (θ

∗
(m))(fa).

This means that, θ∗(m) is an inner A-invariant mean on `∞(S). Also,

(θ
∗
(m))(χT ) = m(θ(χT )) = m(χT |T ) = m(1) = 1.
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Conversely, Suppose that m is an inner A-invariant mean on `∞(S) such that m(χT ) = 1. Define the
mapping ϕ : `∞(T ) −→ `∞(S) by

ϕ(f)(t) =

{
f(t) t ∈ T

0 t ∈ S\T

It is obvious that ϕ is a bounded and linear. Consider ϕ∗ : `∞(S)∗ −→ `∞(T )∗. For any f ∈ `∞(T ) with
f ≥ 0, we have ϕ(f) ≥ 0. It is easy to see that ϕ∗(m) is a mean on `∞(T ). Also, for any f ∈ `∞(T ), a ∈ A
and t ∈ T , we get

(ϕ(af)− a(ϕ(f)))(t) = (af)(t)− (ϕ(f))(at) = f(at)− f(at) = 0.

So, (ϕ(af)− a(ϕ(f)))|T = 0, and

|ϕ(af)− a(ϕ(f))| ≤ ||ϕ(af)− a(ϕ(f))||uχS\T .

This implies that m(ϕ(af) − a(ϕ(f))) = 0, or, m(ϕ(af)) = m(a(ϕ(f))). Similarly, one can show that
m(ϕ(fa)) = m((ϕ(f))a).

Therefore,

(ϕ∗(m))(af) = m(ϕ(af)) = m(a(ϕ(f)))

= m((ϕ(f))a) = m(ϕ(fa))

= (ϕ∗(m))(fa).

This shows that, ϕ∗(m) is an inner A-invariant mean on `∞(T ).

Given semigroups S and T , a map ϕ : S −→ T is called a homomorphism if it satisfies

ϕ(s1s2) = ϕ(s1)ϕ(s2) (s1, s2 ∈ S).

Theorem 2.7. Let S, T be semigroups and ϕ be a homomorphism of S onto T . If S is A-inner amenable,
then T is ϕ(A)-inner amenable.

Proof. Assume that m is an inner A-invariant mean on `∞(S). Put mo(f) = m(foϕ) for each f ∈ `∞(T ).
Now for every s ∈ S, b ∈ B = ϕ(A) and f ∈ `∞(T ) we have

bfoϕ(s) = f(bϕ(s)) = f(ϕ(a)ϕ(s)) = f(ϕ(as)) = (foϕ)(as) = a(foϕ)(s),

and
fboϕ(s) = f(ϕ(s)b) = f(ϕ(s)ϕ(a)) = f(ϕ(sa)) = (foϕ)(sa) = (foϕ)a(s),

where a ∈ A is such that ϕ(a) = b. So, bfoϕ = a(foϕ) and fboϕ = (foϕ)a. It follows from this relations
that

mo(bf) = m(bfoϕ) = m(a(foϕ)) = m((foϕ)a) = m(fboϕ) = mo(fb).

Thus mo is an inner ϕ(A)-invariant mean.

Let S and T be semigroups. Then S × T is a semigroup with the operation (s1, t1)(s2, t2) = (s1s2, t1t2)
for all s1, s2 ∈ S and t1, t2 ∈ T . Also we can consider `∞(S × T ) as a Banach S × T -bimodule via

((s,t)f)(s
′, t′) = f(ss′, tt′), and (f(s,t))(s

′, t′) = f(s′s, t′t),

for all s, s′ ∈ S, t, t′ ∈ T and f ∈ `∞(S × T ). The homomorphisms πS : S × T −→ S and πT : S × T −→ T
with πS(s, t) = s, πT (s, t) = t, respectively, are called projection homomorphisms.

Theorem 2.8. Let S, T be semigroups such that `∞(S×T ) = `∞(S)×`∞(T ). S and T are A-inner amenable
and B-inner amenable, respectively if and only if S × T is (A×B)-inner amenable.
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Proof. Suppose that m and n are inner A-invariant and inner B-invariant means for `∞(S) and `∞(T ),
respectively. Define the mean mo on `∞(S × T ) by mo(f, g) = m(f)n(g) for all f ∈ `∞(S) and g ∈ `∞(T ).
Then for each (a, b) ∈ A×B

mo((a,b)(f, g)) = mo(af, bg) = m(af)n(bg)

= m(fa)n(gb) = mo(fa, gb)

= mo((f, g)(a,b)).

This means that mo is inner (A×B)-invariant mean.
Conversely, suppose that S × T is (A×B)-inner amenable. Then by projection homomorphism πS(A×

B) = A and Theorem 2.7, we obtain that S is A-inner amenable. Similarly, we conclude that T is B-inner
amenable.

Theorem 2.9. Let S, T be two semigroups such that S and T are A-amenable and B-inner amenable,
respectively. Then S × T is (A×B)-inner amenable.

Proof. Suppose that m be an A-invariant mean on `∞(S) and n be an inner B-invariant mean on `∞(T ).
For each f ∈ `∞(S × T ) and (s, t) ∈ S × T , we consider fT ∈ `∞(T ) and f tS ∈ `∞(S) by f tS(s) = f(s, t) and
fT (t) = m(f tS). Now, define the mean mo on `∞(S × T ) by

mo(f) = n(fT ) for all f ∈ `∞(S × T ).

For every (a, b) ∈ A×B it follows that ((a,b)f)tS = a(f
bt
S ) and (f(a,b))

t
S = (f tbS )a.

Furthermore, for every t ∈ T

((a,b)f)T (t) = m(((a,b)f)
t
T ) = m(a(f

bt
S ))

= m(f btS ) = (fT (bt))

= b(fT )(t).

That is, ((a,b)f)T = b(fT ). Similarly, one find that (f(a,b))T = (fT )b.
For every f ∈ `∞(S × T ) and (a, b) ∈ A×B we get

mo((a,b)f) = n(((a,b)f)T ) = n(b(fT ))

= n((fT )b) = n((f(a,b))T )

= mo(f(a,b)).

It follows that m is an inner (A×B)-invariant mean.

3. Examples of A-inner amenability

Example 3.1. If there exists an element x in semigroup S that commutes with all a ∈ A, then the Dirac
measure δx for all f ∈ `∞(S) is an inner A-invariant mean on `∞(S).

δx(af) = f(ax) = f(xa) = δx(fa).

In the following examples, we study A-inner amenability over a left (right) zero semigroup, that is a
semigroup whose multiplication is defined by st = s (st = t) for all s, t ∈ S. We denote the cardinal number
of a set A by |A|.

Example 3.2. Let S be a left zero semigroup, then for any subset A of S:

(i) if |A| = 1, then S is A-inner amenable;

(ii) if |A| ≥ 2, then S is not A-inner amenable.
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Proof. (i) Assume that A = {a}. Define m ∈ `∞(S)∗ by m(f) = f(a) for every f ∈ `∞(S). Then we obtain
m(af) = af(a) = f(aa) = fa(a) = m(fa). This shows that S is A-inner amenable.

(ii) Clearly for each a ∈ A we have

af = f(a) and fa = f.

Now, if we suppose that S is A-inner amenable with an inner A-invariant mean m, then for every a ∈ A
and f ∈ `∞(S), we have m(af) = m(fa). Therefore f(a) = m(f). Now if we consider a 6= b ∈ A and
f = χ{a} then we obtain

1 = f(a) = m(f) = f(b) = 0.

This is a contradiction.

Example 3.3. Let F2 be free group on two generators a and b. If A is the set of elements of F2 that begin
with a or a−1 when written as reduced words. Then F2 is not A-inner amenable.

Proof. We consider f = χA and

h = ((ba−1f)ab−1 − ab−1(ba−1f)) + ((b−1a−1f)aba − aba(b−1a−1f)).

Clearly h ∈ H(A). Now by Theorem 2.2, it is enough to prove that the function h has the property that,
sup{h(x) : x ∈ F2} < 0. For each x ∈ F2 we have

h(x) = f(ba−1xab−1) + f(b−1a−1xaba)− f(ax)− f(x).

Now the argument as in the proof of Theorem (17.16) of [7] shows sup{h(x) : x ∈ F2} ≤ −1.

By use of Theorem 2.2, in the following example, we study A-inner amenability over a right zero semi-
group.

Example 3.4. Let S be a right zero semigroup, then for any subset A of S we have

(i) if |A| = 1, then S is A-inner amenable.

(ii) if |A| ≥ 2, then S is not A-inner amenable.

Proof. (i) Assume that A = {a}. Since for every h ∈ H(A) and x ∈ S we have

h(x) =

n∑
k=1

((fk)a − a(fk))(x)

=

n∑
k=1

(fk(xa)− fk(ax))

=

n∑
k=1

(fk(a)− fk(x)).

Then by set x = a we have sup{h(x) : x ∈ S} ≥ 0. This shows that S is A-inner amenable.
(ii) For a 6= b ∈ A, we take h = (a(χ{a})− (χ{a})a) + (b(χ{b})− (χ{b})b). Hence for each x ∈ S we obtain

h(x) = (a(χ{a})− (χ{a})a)(x) + (b(χ{b})− (χ{b})b)(x)

= (χ{a}(ax)− χ{a}(xa)) + (χ{b}(bx)− χ{b}(xb))
= χ{a}(x) + χ{b}(x)− 2.

and this implise that sup{h(x) : x ∈ S} ≤ −1. Hence by theorem 2.2, S is not A-inner amenable.
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4. Følner’s condition

Before stating the following theorem, recall that a mean in `1(S) is called a finite mean if it is a convex
combination of the Dirac measures. We shall use Φ denote the set of all finite means and δx denotes the
Dirac measure at x ∈ S. It is obvious that Φ is convex subset of `1(S) . In fact, Φ is convex hull of S.

Theorem 4.1. Let S be a semigroup and A ⊆ S. Then the following statements are equivalent:

(a) S is A-inner amenable.

(b) there is a net (ϕα) of finite means such that δa ∗ ϕα − ϕα ∗ δa −→ 0 in the weak topology of `1(S), for
every a ∈ A.

(c) there is a net (ψα) of finite means such that ‖δa ∗ ψα − ψα ∗ δa‖1 −→ 0 for every a ∈ A.

Proof. (a)⇒ (b). Let m be an inner A-invariant mean on `∞(S). Since m ∈ `∞(S)∗, we can find a net (ϕα)
of finite means such that lim

α
ϕα = m in the weak* topology of `∞(S)∗. Then for all f ∈ `∞(S) and a ∈ A,

f(δa ∗ ϕα − ϕα ∗ δa) = ϕα(af)− ϕα(fa) −→ m(af)−m(fa) = 0.

It follows that δa ∗ ϕα − ϕα ∗ δa −→ 0 in the weak topology of `1(S), for every a ∈ A.
(b) ⇒ (c). Let (ϕβ) be a net as in (b). Using an idea of Ling [11], we define linear map T : `1(S) −→∏

a∈A `
1(S) by (T (ϕ))(a) = δa ∗ ϕ − ϕ ∗ δa for every ϕ ∈ `1(S), a ∈ A. Now by assumption, (T (ϕβ))(a) =

δa∗ϕβ−ϕβ ∗δa −→ 0 weakly in `1(S), for every a ∈ A. This means that zero lies in the weak closure of T (Φ).
Since

∏
a∈A `

1(S) with product of the norm topology is a locally convex space and Φ is convex, the closure of
T (Φ) in this topology contains 0. Thus, there exists a subnet (ϕα) ⊆ (ϕβ) such that ‖δa∗ψα−ψα∗δa‖1 −→ 0
for every a ∈ A.

(c)⇒ (b). Since convergence in norm implies convergence in weak topology, this implication is trivial.
(b) ⇒ (a). Let (ϕα) be a net satisfying the convergence in (b). By Alaoglu’s theorem, it has a weak*

convergent subnet. By passing to such a subnet if necessary, there is a m ∈ `∞(S)∗ such that lim
α
ϕα = m in

the weak* topology of `∞(S)∗ . Therefore m is a mean on `∞(S), and for all a ∈ A, f ∈ `∞(S)

m(af)−m(fa) = lim
α
(ϕα(af)− ϕα(fa)) = lim

α
(δa ∗ ϕa − ϕα ∗ δa)(f) = 0.

For each s ∈ S we put s−1A = {t ∈ S : st ∈ A} and As−1 = {t ∈ S : ts ∈ A}. We also note that 1
|A|χA

defines an element in `1(S).

Lemma 4.2. Let A acts injectively on the right of semigroup S, then for every B ⊆ A and a ∈ A

||χB ∗ δa − δa ∗ χB||1 = 2|Ba\aB|.

Proof. For a ∈ A and B ⊆ A, we get

(δa ∗ χB)(x) =
∑
as=x

χB(s)

=
∑

s∈a−1{x}

χB(s)

= |B ∩ a−1{x}|.

Similarly, we obtain (χB ∗ δa)(x) = |B ∩ {x}a−1|. It is easy to see that

(χB ∗ δa − δa ∗ χB)(x) =


|B ∩ {x}a−1| if x ∈ Ba\aB
−|B ∩ a−1{x}| if x ∈ aB\Ba
|B ∩ {x}a−1| − |B ∩ a−1{x}| if x ∈ aB ∩Ba
0 if x /∈ aB ∪Ba
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Since A acts injectively on the right of semigroup S, then for each x ∈ Ba we obtain |B ∩ {x}a−1| = 1.
This implies that

‖χB ∗ δa − δa ∗ χB‖1 =
∑

x∈Ba\aB

1 +
∑

x∈aB\Ba

|B ∩ a−1{x}|+
∑

x∈aB∩Ba
(|B ∩ a−1{x}| − 1)

= |Ba\aB|+
∑
x∈Ba

|B ∩ a−1{x}| − |aB ∩Ba|

= |Ba\aB|+ |B| − |aB ∩Ba|
= |Ba\aB|+ |Ba| − |aB ∩Ba|
= |Ba\aB|+ |Ba\aB|
= 2|Ba\aB|

Theorem 4.3. Let A act injectively on the right of semigroup S. If for any finite set F ⊆ A and any
ε > 0, there exists a finite non-empty set B ⊆ A such that |Ba\aB| < ε|B| for all a ∈ F , then S is A-inner
amenable.

Proof. By the assumption there exists a net of finite non-empty sets Bα ⊆ A such that

|Bαa\aBα|/|Bα| −→ 0 for all a ∈ A.

By Lemma 4.2, we have
||χBα ∗ δa − δa ∗ χBα ||1 = |Bαa\aBα|.

Set ϕα = |Bα|−1χBα . Then for α, and a ∈ A

||δa ∗ ϕα − ϕα ∗ δa||1 −→ 0.

Now the proof is complete by Theorem 4.1.

Remark 4.4. The assumption of Theorem 4.3 ‘that A acts injectively on the right of semigroup S’ is
necessary. In fact, any right zero semigroup S is not A-inner amenable if A has at least two elements (see
Example 3.2).
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