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Abstract

In the paper, the authors establish closed forms for the Delannoy two-functional sequence and its difference
in terms of the Hessenberg determinants, derive recursive relations for the Delannoy two-functional sequence
and its difference, and deduce closed forms in terms of the Hessenberg determinants and recursive relations
for the Delannoy one-functional sequence, the Delannoy numbers, and central Delannoy numbers.
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1. Introduction

A tridiagonal determinant is a determinant whose nonzero elements locate only on the diagonal and slots
horizontally or vertically adjacent the diagonal. Technically speaking, a determinant H = |hij |n×n is called
a tridiagonal determinant if hij = 0 for all pairs (i, j) such that |i − j| > 1. For more information, please
refer to the paper [11]. A determinant H = |hij |n×n is called a lower (or an upper, respectively) Hessenberg
determinant if hij = 0 for all pairs (i, j) such that i+1 < j (or j+1 < i, respectively). For more information,
please refer to the paper [18].
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In combinatorial number theory, the Delannoy number D(m,n) for n,m ≥ 0 can be regarded as the
number of lattice paths from (0, 0) to (m,n) in which only east (1, 0), north (0, 1), and northeast (1, 1). The
Delannoy numbers D(m,n) can be defined by means of the recurrence relation

D(m,n) = D(m− 1, n) +D(m− 1, n− 1) +D(m,n− 1)

with initial values D(0, n) = D(m, 0) = D(0, 0) = 1. The historic significance of these numbers D(m,n) was
explained in the paper [1]. The Delannoy numbers D(m,n) can be computed by explicit formulas

D(m,n) =
n∑
k=0

(
n

k

)(
m

k

)
2k and D(m,n) =

n∑
`=0

(
n

`

)(
m+ n− `

n

)
and can be generated by

1

1− x− y − xy
=
∑
n,m≥0

D(m,n)xmyn.

For more information on the Delannoy numbers D(m,n), please refer to [1, 19, 59, 63] and closely related
references therein.

The numbers D(k) = D(k, k) for k ≥ 0 are known as central Delannoy numbers. In [26, Theorem 1.3],
central Delannoy numbers D(k) were represented by

D(k) =
1

π

∫ 3+2
√
2

3−2
√
2

1√(
t− 3 + 2

√
2
)(
3 + 2

√
2 − t

) 1

tk+1
dt, k ≥ 0.

In [48, Section 4], the central Delannoy numbers D(k) were generalized as

Da,b(k) =
1

π

∫ b

a

1√
(t− a)(b− t)

1

tk+1
dt, k ≥ 0, b > a > 0

and, from [26, Lemma 2.4], it is derived that the quantities Da,b(k) have the generating function

1√
(x+ a)(x+ b)

=

∞∑
k=0

Da,b(k)x
k.

By virtue of conclusions in [24, Section 2.4] and [38, Remark 4.1], we can find that the quantities Da,b(k) for
k ≥ 0 can be computed by

Da,b(k) =
1

G(a, b)

(−1)k

[2A(a, b)]k

k∑
`=0

(−1)`22` (2`− 1)!!

(2`)!!

(
`

k − `

)[
A(a, b)

H(a, b)

]`
and

Da,b(k) =
1√
ab

1

bk

k∑
`=0

(2`− 1)!!

(2`)!!

[2(k − `)− 1]!!

[2(k − `)]!!

(
b

a

)`
,

where A(a, b) = a+b
2 , G(a, b) =

√
ab , and H(a, b) = 2

1/a+1/b are respectively known as arithmetic, geometric,
and harmonic means of a, b > 0. The quantities Da,b(k) can be further generalized as

Da,b;λ(z) =
sin(λπ)

π

∫ b

a

1

(t− a)λ(b− t)1−λ
1

tz+1
dt,

where 0 < a < b, λ ∈ (0, 1), and z ∈ C. It is obvious that Da,b;1/2(k) = Da,b(k). Theorems 2.1 and 2.2 in
the paper [38] demonstrate that the quantities Da,b;λ(k) can be generated by

1

(x+ a)λ(x+ b)1−λ
=
∞∑
k=0

Da,b;λ(k)x
k
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and can be computed by the closed forms

Da,b;λ(k) =
1

n!

1

aλb1−λ
1

bn

n∑
`=0

(
n

`

)
(λ)`(1− λ)n−`

(
b

a

)`
and

Da,b;λ(k) =
1

aλb1−λ
1

bn

n∑
k=0

(
b

a

)k k∑
`=0

〈λ〉`
(
k − 1

`− 1

)
1

`!

(
1− a

b

)`
,

where

(x)n =


n−1∏
k=0

(x+ k), n ≥ 1

1, n = 0

and

〈x〉n =


n−1∏
k=0

(x− k), n ≥ 1

1, n = 0

are known as the rising and falling factorials respectively. The ideas, significance, and reasonability of these
generalizations Da,b(k) and Da,b;λ(z) come from the papers [25, 34, 37, 38, 39, 43, 52, 53, 54, 55] and closely
related references therein.

Inspired by the identity
n∑
k=0

(
n

k

)(
x

k

)
tk =

n∑
k=0

(
n

k

)(
x+ k

n

)
(t− 1)k

in [8, eq. 3.17], the Delannoy numbers D(m,n) were extended to the functional sequence

D(x;n) =
n∑
k=0

(
n

k

)(
x

k

)
2k =

n∑
k=0

(
n

k

)(
x+ k

n

)
in [61]. Various arithmetic properties and congruence relations for the Delannoy one-functional sequence
D(x;n) have been studied in [9, 16, 17, 59, 60, 63].

In [58], the Delannoy one-functional sequence D(x;n) was further generalized as

D(x, r;n) =
n∑
k=0

(
x+ r + k

k

)(
x− r
n− k

)
,

the generating function
(1 + t)x−r

(1− t)x+r+1
=

∞∑
n=0

D(x, r;n)tn, |t| < 1 (1.1)

was derived, and a plenty of identities for the Delannoy two-functional sequence D(x, r;n) were acquired.
In [7], the Delannoy two-functional sequence D(x, r;n) was generalized again to the Delannoy two-

functional polynomials

D(x, r;n; y) =
n∑
k=0

(
x+ r + k

k

)(
x− r
n− k

)
yk

and, among other things, the generating function and recurrence formula for the Delannoy two-functional
polynomials D(x, r;n; y) were derived.

It is noted that D(x, 0;n) = D(x;n) and D(x, r;n; 1) = D(x, r;n).
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In combinatorial number theory, it is significant to express concrete sequences or arrays of integer numbers
or polynomials in terms of tridiagonal determinants or the Hessenberg determinants. In this respect, the
Bernoulli numbers and polynomials [2, 6, 20, 27, 36, 40, 62], the Euler numbers and polynomials [29, 32, 64],
(central) Delannoy numbers and polynomials [10, 19, 25, 26, 31, 47, 48, 49], the Horadam polynomials [41],
(generalized) Fibonacci numbers and polynomials [13, 14, 15, 21, 25, 33, 46, 50], the Lucas polynomials [41,
46], and the like, have been represented via tridiagonal determinants or the Hessenberg determinants, and
consequently many remarkable relations have been obtained. For more information in this area and direction,
please refer to [12, 22, 23, 30, 35, 42, 44, 45, 51, 56, 57] and closely related references therein.

In this paper, we will present closed forms [3] for the Delannoy two-functional sequence D(x, r;n) and
its difference D(x, r;n) −D(x, r;n − 1) in terms of the Hessenberg determinants, derive recursive relations
for the Delannoy two-functional sequence D(x, r;n) and its difference D(x, r;n)−D(x, r;n− 1), and deduce
closed forms in terms of the Hessenberg determinants and recursive relations for the Delannoy one-functional
sequence D(x;n), the Delannoy numbers D(m,n), and central Delannoy numbers D(k).

2. Determinantal forms of the Delannoy two-functional sequence and its difference

In this section, we will present closed forms for the Delannoy two-functional sequence D(x, r;n) and for
its difference D(x, r;n)−D(x, r;n− 1) in terms of the Hessenberg determinants.

Theorem 2.1. The Delannoy two-functional sequence D(x, r;n) for n ≥ 0 can be determinantally expressed
by

D(x, r;n) =
(−1)n

n!

∣∣P(n+1)×1(x, r) B(n+1)×n(x, r)
∣∣
(n+1)×(n+1)

, (2.1)

where

P(n+1)×1(x, r) =
(
〈x− r〉0 〈x− r〉1 〈x− r〉2 . . . 〈x− r〉n

)T
,

B(n+1)×n(x, r) =
((

i−1
j−1
)
(−1)i−j〈x+ r + 1〉i−j

)
(n+1)×n

,

and T denotes the transpose of a matrix.
The difference D(x, r;n)−D(x, r;n− 1) for n ≥ 1 can be determinantally expressed by

D(x, r;n)−D(x, r;n− 1) =
(−1)n

n!

∣∣P(n+1)×1 C(n+1)×n
∣∣
(n+1)×(n+1)

, (2.2)

where
C(n+1)×n(x, r) =

((
i−1
j−1
)
(−1)i−j〈x+ r〉i−j

)
(n+1)×n

.

Proof. Let px,r(t) = (1 + t)x−r and qx,r(t) = (1− t)x+r+1. Then

p(k)x,r(t) = 〈x− r〉k(1 + t)x−r−k → 〈x− r〉k

and
q(k)x,r(t) = (−1)k〈x+ r + 1〉k(1− t)x−r−k → (−1)k〈x+ r + 1〉k

as t→ 0.
The equation (1.1) implies that

D(x, r;n) =
1

n!
lim
t→0

dn

dtn

[
(1 + t)x−r

(1− t)x+r+1

]
. (2.3)

Let u(t) and v(t) 6= 0 be two nth differentiable functions for n ∈ N. Exercise 5) in [4, p. 40] reads that
the nth derivative of the ratio u(t)

v(t) can be computed by

dn

dxn

[
u(t)

v(t)

]
= (−1)n

∣∣W(n+1)×(n+1)(t)
∣∣

vn+1(t)
, (2.4)
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where |W(n+1)×(n+1)(t)| is the determinant of the (n+ 1)× (n+ 1) matrix

W(n+1)×(n+1)(t) =
(
U(n+1)×1(t) V(n+1)×n(t)

)
(n+1)×(n+1)

,

the matrix U(n+1)×1(t) is an (n+ 1)× 1 matrix whose elements satisfy uk,1(t) = u(k−1)(t) for 1 ≤ k ≤ n+ 1,
and V(n+1)×n(t) is an (n + 1) × n matrix whose elements meet vi,j(t) =

(
i−1
j−1
)
v(i−j)(t) for 1 ≤ i ≤ n + 1

and 1 ≤ j ≤ n. The formula (2.4) is a general and fundamental, but non-extensively circulated, formula for
derivatives of a ratio of two differentiable functions.

Combining (2.3) and (2.4) gives

D(x, r;n) =
(−1)n

n!
lim
t→0

∣∣U(n+1)×1(t) V(n+1)×n(t)
∣∣

qn+1
x,r (t)

=
(−1)n

n!

∣∣limt→0 U(n+1)×1(t) limt→0 V(n+1)×n(t)
∣∣

limt→0 q
n+1
x,r (t)

=
(−1)n

n!

∣∣limt→0 U(n+1)×1(t) limt→0 V(n+1)×n(t)
∣∣ ,

where

lim
t→0

U(n+1)×1(t) = lim
t→0

(
p
(0)
x,r(t) p

(1)
x,r(t) p

(2)
x,r(t) . . . p

(n)
x,r (t)

)T
=
(
〈x− r〉0 〈x− r〉1 〈x− r〉2 . . . 〈x− r〉n

)T
and

lim
t→0

V(n+1)×n(t) =
(
limt→0

(
i−1
j−1
)
q
(i−j)
x,r (t)

)
(n+1)×n

=
((

i−1
j−1
)
(−1)i−j〈x+ r + 1〉i−j

)
(n+1)×n

.

The determinantal form (2.1) is thus proved.
The generating function in (1.1) can be rewritten as

(1 + t)x−r

(1− t)x+r
= (1− t)

∞∑
n=0

D(x, r;n)tn = D(x, r; 0) +

∞∑
n=1

[
D(x, r;n)−D(x, r;n− 1)

]
tn.

By the same arguments as in the derivation of the determinantal form (2.1), we can obtain the determinantal
forms (2.2) immediately. The proof of Theorem 2.1 is complete.

3. Recursive relations of the Delannoy two-functional sequence and its difference

In this section, with the aid of Theorem 2.1, we will derive recursive relations for the Delannoy two-
functional sequence D(x, r;n) and for its differences D(x, r;n)−D(x, r;n− 1).

Theorem 3.1. The Delannoy two-functional sequence D(x, r;n) for n ≥ 1 satisfies

D(x, r;n) =
〈x− r〉n

n!
+ (−1)n

n∑
s=1

(−1)s 〈x+ r + 1〉n−s+1

(n− s+ 1)!
D(x, r; s− 1) (3.1)

and the differences D(x, r;n)−D(x, r;n− 1) for n ≥ 2 meet

D(x, r;n)−D(x, r;n− 1) =
〈x− r〉n

n!
+ (−1)n

n∑
s=2

(−1)s 〈x+ r〉n−s+1

(n− s+ 1)!
[D(x, r; s− 1)−D(x, r; s− 2)]. (3.2)
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Proof. Let Q0 = 1 and

Qn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1,1 e1,2 0 . . . 0 0
e2,1 e2,2 e2,3 . . . 0 0
e3,1 e3,2 e3,3 . . . 0 0
...

...
...

...
...

...
en−2,1 en−2,2 en−2,3 . . . en−2,n−1 0
en−1,1 en−1,2 en−1,3 . . . en−1,n−1 en−1,n
en,1 en,2 en,3 . . . en,n−1 en,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for n ∈ N. In [5, p. 222, Theorem], it was proved that the sequence Qn for n ≥ 0 satisfies Q1 = e1,1 and

Qn =
n∑
s=1

(−1)n−sen,s

(
n−1∏
j=s

ej,j+1

)
Qs−1 (3.3)

for n ≥ 2, where any empty product is understood to be 1 while any empty sum is understood to be 0.
Substituting (−1)n−1(n− 1)!D(x, r;n− 1) for Qn, replacing ek,1 for 1 ≤ k ≤ n by 〈x− r〉k−1, switching

ei,j for 1 ≤ i ≤ n and 2 ≤ j ≤ n into
(
i−1
j−2
)
(−1)i−j+1〈x+ r + 1〉i−j+1 in (3.3), and simplifying arrive at

(−1)n−1(n− 1)!D(x, r;n− 1)

= (−1)n−1〈x− r〉n−1 +
n∑
s=2

(−1)n−s
(
n− 1

s− 2

)
(−1)n−s+1〈x+ r + 1〉n−s+1(−1)s−2(s− 2)!D(x, r; s− 2)

which can be reformulated as

(−1)n−1(n− 1)!D(x, r;n− 1)

= (−1)n−1〈x− r〉n−1 −
n∑
s=2

(−1)s(s− 2)!

(
n− 1

s− 2

)
〈x+ r + 1〉n−s+1D(x, r; s− 2).

The recursive relation (3.1) is thus proved.
Similarly, substituting (−1)n−1(n−1)![D(x, r;n−1)−D(x, r;n−2)] for Qn, replacing ek,1 for 1 ≤ k ≤ n

by 〈x − r〉k−1, switching ei,j for 1 ≤ i ≤ n and 2 ≤ j ≤ n into
(
i−1
j−2
)
(−1)i−j+1〈x + r〉i−j+1 in (3.3), and

straightforwardly simplifying lead to the recursive relation (3.2). The proof of Theorem 3.1 is complete.

4. Determinantal forms and recursive relations for the Delannoy one-functional sequence, the
Delannoy numbers, and central Delannoy numbers

In this section, with the help of Theorems 2.1 and 3.1, we deduce closed forms in terms of the Hessenberg
determinants and recursive relations for the Delannoy one-functional sequenceD(x;n), the Delannoy numbers
D(m,n), and central Delannoy numbers D(k).

Since D(x, 0;n) = D(x;n), when taking r = 0 in Theorems 2.1 and 3.1, we derive the following conclu-
sions.

Theorem 4.1. The Delannoy one-functional sequence D(x;n) for n ≥ 0 can be determinantally expressed
by

D(x;n) =
(−1)n

n!

∣∣P(n+1)×1(x) B(n+1)×n(x)
∣∣
(n+1)×(n+1)

, (4.1)

where
P(n+1)×1(x) =

(
〈x〉0 〈x〉1 〈x〉2 . . . 〈x〉n

)T
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and
B(n+1)×n(x) =

((
i−1
j−1
)
(−1)i−j〈x+ 1〉i−j

)
(n+1)×n

.

The difference D(x;n)−D(x;n− 1) for n ≥ 1 can be determinantally expressed by

D(x;n)−D(x;n− 1) =
(−1)n

n!

∣∣P(n+1)×1(x) C(n+1)×n(x)
∣∣
(n+1)×(n+1)

,

where
C(n+1)×n(x) =

((
i−1
j−1
)
(−1)i−j〈x〉i−j

)
(n+1)×n

.

Theorem 4.2. The Delannoy one-functional sequence D(x;n) for n ≥ 1 satisfies

D(x;n) =
〈x〉n
n!

+ (−1)n
n∑
s=1

(−1)s 〈x+ 1〉n−s+1

(n− s+ 1)!
D(x; s− 1)

and the differences D(x;n)−D(x;n− 1) for n ≥ 2 meet

D(x;n)−D(x;n− 1) =
〈x〉n
n!

+ (−1)n
n∑
s=2

(−1)s 〈x〉n−s+1

(n− s+ 1)!
[D(x; s− 1)−D(x; s− 2)].

When taking x = m in Theorems 4.3 and 4.4, we derive the following conclusions.

Theorem 4.3. The Delannoy numbers D(m;n) for m,n ≥ 0 can be determinantally expressed by

D(m;n) =
(−1)n

n!

∣∣P(n+1)×1(m) B(n+1)×n(m)
∣∣
(n+1)×(n+1)

, (4.2)

where
P(n+1)×1(m) =

(
〈m〉0 〈m〉1 〈m〉2 . . . 〈m〉n

)T
and

B(n+1)×n(m) =
(
(−1)i−j

(
i−1
j−1
)
〈m+ 1〉i−j

)
(n+1)×n

.

The differences D(m;n)−D(m;n− 1) for m ≥ 0 and n ≥ 1 can be determinantally expressed by

D(m;n)−D(m;n− 1) =
(−1)n

n!

∣∣P(n+1)×1(m) C(n+1)×n(m)
∣∣
(n+1)×(n+1)

,

where
C(n+1)×n(m) =

((
i−1
j−1
)
(−1)i−j〈m〉i−j

)
(n+1)×n

.

Theorem 4.4. The Delannoy numbers D(m;n) for m ≥ 0 and n ≥ 1 satisfy

D(m;n) =

(
m

n

)
+ (−1)n−1

n−1∑
s=0

(−1)s
(
m+ 1

n− s

)
D(m; s) (4.3)

and the differences D(m;n)−D(m;n− 1) for m ≥ 0 and n ≥ 2 meet

D(m;n)−D(m;n− 1) =

(
m

n

)
+ (−1)n

n∑
s=2

(−1)s
(

m

n− s+ 1

)
[D(m; s− 1)−D(m; s− 2)].

When taking m = n = k in Theorem 4.3, we derive the following conclusions.

Theorem 4.5. Central Delannoy numbers D(k) for k ≥ 0 can be determinantally expressed by

D(k) =
(−1)k

k!

∣∣P(k+1)×1 B(k+1)×k
∣∣
(k+1)×(k+1)

, (4.4)

where
P(k+1)×1 =

(
〈k〉0 〈k〉1 〈k〉2 . . . 〈k〉k

)T
and

B(k+1)×k =
((

i−1
j−1
)
(−1)i−j〈k + 1〉i−j

)
(k+1)×k

.
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5. Remarks

Finally we list several remarks as follows.

1. The determinantal forms (4.2) and (4.4) in Theorem 4.3 and Theorem 4.5 recover [19, Theorem 2.1].
2. The formula (4.3) coincides with the first result in [19, Theorem 3.1]. Letting m = n in (4.3) recovers

the second result in [19, Theorem 3.1].
3. The determinantal form (4.4) in Theorem 4.5 is different from

D(k) = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0 0 0
a2 a1 1 · · · 0 0 0
a3 a2 a1 · · · 0 0 0
...

...
...

. . .
...

...
...

ak−2 ak−3 ak−4 · · · a1 1 0
ak−1 ak−2 ak−3 · · · a2 a1 1
ak ak−1 ak−2 · · · a3 a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.1)

where k ≥ 1 and

ak =
(−1)k+1

6k

k∑
`=1

(−1)`62` (2`− 3)!!

(2`)!!

(
`

k − `

)
.

The determinantal form (5.1) was established in [26, Theorem 1.1]. See also related texts in the
papers [19].

4. This paper is a modified version of the electronic preprint [28].
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