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Bu çalışmada, eğilme kuvveti etkisinde basit mesnetli dikdörtgen delik içeren 

FDM şerit plak incelenmiştir. Young modülü şerit plağın uzunluğu ve genişliği 

boyunca kuvvet yasası fonksiyonlarına göre değişirken Poisson oranı ve materyal 

yoğunluğu sabit kabul edilmiştir. Teorik incelemenin modellenmesinde klasik 

lineer elastisite teorisi ve genelleştirilmiş düzlem-şekil değiştirme koşulları ele 

alınmıştır. Problemin nümerik çözümü Sonlu Elemanlar Metodu (SEM) ile elde 

edilmiştir. Çözüm bölgesinin ayrıklaştırılmasında sonlu sayıda alt bölge 

kullanılmıştır ve her alt bölgedeki çözüm bir polinom fonksiyonu olarak 

düşünülmüştür. Sınır değer probleminin SEM modellemesi, Ritz tekniği ile 

yapılmıştır. Çözüm bölgesi belirli bir sayıda 9 düğüm içeren dikdörtgen elemanlar 

ile ayrıklaştırılmıştır. SEM modellemesi için yer değiştirme temelli sonlu 

elemanlar kullanılmıştır. Deliğin FDM şerit plağın üzerindeki etkisini anlamak için 

yer değiştirme ve gerilme yayılımlarının sonuçları incelenmiştir. 
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 In this sudy, a simply supported FGM plate-strip with rectangular hole subjected 

to bending loadings is investigated. Young’s modulus varies continuously 

throughout the length and width of the plate-strip based on the power-law 

functions; but the Poisson's ratio and material density are assumed to be constant. 

The classical linear elasticity theory and the generalized plane-strain conditions are 

assumed for the modelling of the theoretical investigations.  The solution of the 

considered problem is obtained numerically with the help of the Finite Element 

Method (FEM). Finite number of sub-domains (FEs) are used for the discretization 

of the solution domain and the solution in each sub-domain is considered as a 

polynomial function. Employing the Ritz technique, the FEM modelling of the 

boundary value problem is obtained. The solution domain is discretized a certain 

number of rectangular elements having nine nodes. We have used displacement-

based finite elements for the FEM modelling. The solutions of the displacement 

and stress concentration are investigated to understand the hole effect on the plate-

strip made of functionally graded materials.  
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1. Introduction 

 

Displacement and stress concentrations in 

structures with geometrical discontinuities in the 

form of holes and cutouts have received wide 

attention in the literature in that they cause of 

failure. The problem widely investigated, and 

several analytical, experimental, and numerical 

techniques have existed for the reduction of the 

stress concentration around discontinuities for 

homogeneous materials.  

 

The first and systematic studies in this area were 

done by Savin [1]. Savin analyzed the 

distributions of displacements and stresses for 

infinite plates with holes of different geometry, 

with the help of complex functions theory and 

conformal transformation analytically under 

various stress boundary conditions. For the 

rectangular hole, the conformal transformation 

function that converts the outside of the 

rectangular hole into the unit circle is expressed as 

an infinite series. Stress functions for the finite 

number term of this series are obtained 

analytically. Taking the finite number of terms 

from the conformal transformation series, this 

piece refers to the transformation for the hole with 

a rounded geometry rather than a real rectangular 

hole. Obtaining the rectangular hole form and 

obtaining a sufficiently accurate result for the 

stress distributions at the corner points requires 

taking too many terms from the conform 

transformation function. Until now, only a few 

terms from this series have been studied in Savin 

[1] and Jong [2] for analyzing stress and 

displacement distributions. These results are far 

from the actual values in the regions near the 

corner points. Rao et al. [3] gave analytical 

solutions to get the stress distribution around the 

square and rectangular cutouts edges of which are 

reasonably straight, and the corners are rounded 

without sharp corners.  

 

In Lei et al. [4] the solution technique given above 

was tried to be developed and by taking a few 

terms from the conform transformation function, a 

correction coefficient was included in the 

processes, the method given in Savin [1] was 

developed and results were given for infinite 

isotropic plates. The form of a rectangular hole 

with sharp corners has been addressed in 

Yahnioğlu and Yücel [5] for isotropic plate-strip. 

 

Recently, FGM has been widely used in many 

engineering applications for reducing stress 

concentrations by taking advantage of their 

material inhomogeneity. FGM possesses 

continuously varying microstructure and 

mechanical properties. There are no internal 

boundaries that exist, and the interfacial stress 

concentrations can be avoided. There are several 

studies on graded material structures including 

beams, plates, shells, and cylinders, with and 

without discontinuities. 

 

Some plane elasticity problems and analytical 

solutions were given for plates made of FGM with 

and without cracks under different boundary 

conditions in Erdoğan and Wu [6]. Graded finite 

elements were formulated using linear 

interpolation functions in Santare and Lambros 

[7]. Graded finite elements were presented using a 

generalized isoparametric formulation in Kim and 

Paulino [8]. A comprehensive review of FGM has 

been made in Udupa et al. [9]. Stress 

concentration in an infinite panel having a 

rounded rectangular hole reinforced with a 

functionally graded material layer using the 

extended finite element method [10]. 

 

In the present paper within the two dimensional 

(2D) finite element method (FEM) modeling of a 

plate-strip made functionally graded material 

(FGM) with a rectangular hole with sharp corners 

is studied and the effect varying material 

properties of FGM on the concentrations of static 

displacements and stresses caused by the bending 

loading is investigated.  

 

Numerical results are compared with the 

corresponding numerical values of isotropic plates 

and with the whole plate made functionally 

graded material.   

 

2.  Mathematical Formulation of the Problem 

 

The geometry and loading of the plate-strip are 

given in Figure 1. 

 

 
Figure 1. Loading of the plate-strip with a rectangular 

hole 
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Young’s modulus of the medium varies 

continuously in the horizontal and vertical 

directions according to power law distribution, but 

the Poisson's ratio and material density are 

assumed to be constant. The following functional 

forms are used for the nodal values of Young’s 

modulus through the axes Ox1 and Ox2 

respectively.  

 

1 2 1 0 1( , ) ( ) ( )   nE x x E x E ax b  

1 2 2 0 2( , ) ( ) ( )   nE x x E x E cx d
0 , , , , ,E a b c d n R  

(1) 

 

where E0 is the Young’s modulus at xi=0, i=1,2 

and n is the exponent of the power law material 

variation. These problems are solved for a half of 

the domain, because of the symmetry of the 

geometry and loading with respect to the planes 

x1=ℓ/2. The material property gradient around the 

rectangular hole for the half of the solution 

domain is shown for the Problem 1 (Problem 2) in 

Figure 2a (Figure 2b). 

 

 
(a) (b) 

Figure 2. Half FGM plate-strip with material 

properties varying over (a) Ox1 axis (Problem 1) and, 

(b) Ox2  axis (Problem 2) 

 

The classical linear elasticity theory and the 

generalized plane-strain conditions are assumed 

for the modeling of the theoretical investigations 

[11]. Solution domain of boundary value problem 

is; 

 

 
 

1 2

1 2

0 ;0
;

h

h S S E A A O

W W W
W x x h
W x h x h h

  
    
      

 
 

(2) 

 

The solution of the considered problem is 

obtained numerically with the help of the Finite 

Element Method (FEM). Finite numbers of sub-

domains (FEs) are used for the discretization of 

the solution domain and the solution in each sub-

domain is considered as a polynomial function. 

The displacement functions of the FGM plate-

strip for each finite element can be written as; 
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(3) 

 

where Ni is the shape function, uki is the nodal 

displacement corresponding to node i in the k 

direction, n is total number of nodal points in the 

element; M is total number of finite elements in 

the solution domain. Also strain functions can be 

derived from displacements by differentiation as 

 
( ) ( ) ( )e e e

B u    (4) 

 

where B
(e)

 is the displacement-strain matrix of 

shape function derivatives and u
(e)

 is the nodal 

displacement vector. Equations and relations can 

be determined by solving the boundary value 

problem. 
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(5) 

 

In (5) D(x1, x2) is the constitutive matrix, which is 

a function of position of points. So, this matrix’s 

form for each finite element will be Dij
(e)

=Dij
(e)

(x1) 

(for problem 1) and Dij
(e)

=Dij
(e)

(x2)  (for Problem 

2). The elements of this matrix can be given for 

the constant Poisson ratio; 

 

11 22 12 21 66

(1 ) ( ) ( ) ( )
,  ,  

(1 )(1 2 ) (1 )(1 2 ) 2(1 )

i i i
E x E x E x

D D D D D
 

    


    

    

 (6) 

 

where i=1 (2) for Problem 1(2). 

 

3. Fem Modelling of the Problem 

For the FEM modelling of the boundary value 

problem, total potential energy functional   is 

used. 
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1 2 2 1

0

1
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2
ij ij

W x h
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(7) 

 

where W'  is the solution domain. Employing the 

Ritz technique, we are obtained the FEM 

modelling of the boundary value problem from 

the equation δ 0   [11]. Solution domain is 

discretized into a certain number of finite 
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elements. Finite elements are chosen as 

rectangular elements with 9 nodes (Figure 3). 

 

 
Figure 3. Nodes of representative finite element. 

 

Expressions of the 2nd order Standard Lagrange 

Shape functions which are defined on the 

rectangular finite elements at normalized 

coordinates ( 'O  ) are: [11] 
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(8) 

 

The relation which provide the transformation 

between the local coordinate system O'ξη and the 

natural coordinate system Ox1x2  is: 

 

1 10 2 20
,  

x x x x
 

 

 
   

(9) 

 

The same discretization of finite element is used 

for finite element solution of each boundary value 

problem. The displacement function on each finite 

element is chosen as polynomial function as given 

in (3). This expression is substituted in the 

functional (7). When the required operations are 

done, the solution is reduced to 

 

Ku=F  (10) 

 

Here, K is the stiffness matrix, u is the vector 

which contains unknowns on the nodes and F is 

the force vector. For example, K elements for any 

chosen e
th
 finite element.  
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finite element and T indicates transpose, be 

Dij
(e)

=Dij
(e)

(x1) (for problem 1) and Dij
(e)

=Dij
(e)

(x2)  

(for Problem 2). Gaussian Quadrature Method 

which is one of the numerical integration methods 

is used to calculate elements of the matrix with 10 

sample points for each finite element. The same 

finite element discretization is used in finite 

element solution of both problems. All computer 

programs used for numerical investigations 

carried out have been composed by the authors in 

the package FTN77. 

 

4. Numerical Results 

 

Due to the symmetry about the plane x1/ℓ=1/2 

only one half of the full plate-strip is under 

consideration.  The solution domain discretized 

into 80 and 12 rectangular finite elements along 

the Ox1 and Ox2 axes, respectively. FE 

discretization of the solution domain is selected 

among the finite element meshes in which the 

numerical results found for many finite elements’ 

meshes are best approached to the corresponding 

numerical results in the literature. It should be 

noted that the graphs of the displacements and 

stresses obtained for the Problem 1 (Problem 2) 

are given according to the axis Ox1 (Ox2). In the 

present study, Poisson’s ratio is assumed to be 

constant and set to be 0.3  . 

The solution domain is discussed as 4 cases with 

respect to different sizes of the hole. The 

following dimension of hole are used for  hW  

given in equation (12),  
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(12) 

where ℓ is the length of the plate-strip and h is the 

width of the plate-strip. 

 

The main aim of the present numerical 

investigations is to determine how the functional 

material property effect the stress and 

displacement concentrations for the different size 

of the rectangular hole under bending. Before 

considering the main numerical results, for testing 

of the used calculation algorithm and programs 

which are composed by the authors and realized in 

FORTRAN 77, plate-strip without a hole is 

considered. 

 

Figure 4 illustrates the distribution of 11 p   of 

the plate-strip without a hole (Case 0) which is 
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under bending force for Problem 1 at x2=h  and 

for Problem 2 at 1x / 4 . 1 0/E E  represents the 

variation of Young modulus due to the use of 

dimensionless sizes. E0 (E1) is the Young’s 

modulus at xi=0, i=1, 2 (x1=ℓ/2 or x2=h). Choosing 

1 0/ 1E E   corresponds that plate-strip material is 

homogeneous. 

  

Figure 4a shows that material property of plate-

strip approximates the homogeneous state with 

decreasing of 1 0/E E   and the graph is coincident 

with analytical solution given in [12]. Also, 

Figure 4.b illustrates that FEM solutions for each 

value of 1 0/E E  identical the analytical solutions 

given in [6], in the case that plate-strip has FGM 

property in the direction of Ox2. These results 

indicate sensitivity and accuracy of finite element 

algorithms we constituted. So, the verification of 

the algorithm and the programs used for 

determining the numerical results has been 

completed. 

 

 
(a) 

 
(b) 

Figure 4. For plate-strip without rectangular hole, 

effect of changing E1/E0  to the distribution of 11σ p  

for n=2  for (a) Problem 1 (b) Problem 2. 

 

The distribution of 11σ p  for various values of the 

material nonhomogeneity parameter E1/E0  for the 

three cases versus Case 0 on the plane x2=h  for  

Problem 1 are plotted in Figure 5. Figure 5 shows 

that the more E1/E0, the larger absolute values of 

the stresses of 11σ p . The difference between the 

values obtained for Case 0 and the other cases 

also increase with the size of the hole. As the size 

of the hole increases, the difference between the 

values of the stresses of 11σ p  for FGM and 

homogeneous plate (E1/E0=1) increases and as the 

size of the hole increases tensile stress occurs. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. The normalized stress of 11σ p  at x2=h  

plane for different values of 1 0E E  for  n=2 for (a) 

Case 1 (b) Case 2 (c) Case 3 versus Case 0 for Problem 

1. 

 

Fig. 6 represents the distribution of 11σ p  for 

various values of the material non homogeneity 

parameter E1/E0 for three cases versus Case 0 on 

the plane 1 / 2sx   for Problem 2 along the Ox2 

axis. The maximum tensile stress is at the bottom 

edge 2x 0  for 1 0E E 2  and the maximum 

compressive stress is at the top surface at 

2x h  for 1 0E E 1  for Case 1 and Case 2. For 

the ratio E1/E0=1 in which the FGM plate 

becomes a homogeneous plate, the stress 

concentration is a linear function of x2 and the 

maximum stress is at the top or bottom surface of 

the plate for Case 1 (in Figure 6a) and Case 2 (in 
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Figure 6b), but for Case 3 (in Figure 6c) it is not 

linear because of the hole and edge effects.The 

difference between the values obtained for Case 0 

and the other Cases also increase with the size of 

the hole.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 6. The normalized stress of 11σ p  at 1 sx 2   

plane for different values of 1 0E E  for  n=2 for (a) 

Case 1 (b) Case 2 (c) Case 3 versus Case 0 for Problem 

2. 

 

Figure 7 illustrates the distribution of 12τ p  for 

various values of the material non homogeneity 

parameter E1/E0 for the three cases versus Case 0 

on the plane 1 / 2sx   for Problem 2. It follows 

from the graphs that the absolute values of the 

stresses of 12τ p  decrease with increasing the 

parameter E1/E0 for the first half of the width (i.e., 

[0, h/2]), while increase with increasing the 

parameter E1/E0 for the second half of the width 

[h/2,h] for Cases 0, 1 and 2 (in Figure 7a and 

Figure 7b) but for Case 3 (in Figure  7c) absolute 

values of 12τ p  decrease with increasing the 

parameter E1/E0.  The difference between the 

values of the stresses of 12τ p  obtained for Case 

0 and the other Cases also increase with the size 

of the hole in Problem 2. The maximum 

difference occurs for the Case 3 and Case 0 (in 

Figure 7c). 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. The normalized stress of 12τ p  at 1 sx 2   

plane for different values of 1 0E E  for  n=2 for (a) 

Case 1 (b) Case 2 (c) Case 3 versus Case 0 for Problem 

2 

 

Figure 8 illustrates the distribution of 22σ p  for 

various values of the material non homogeneity 

parameter  E1/E0  for three Cases versus Case 0 on 

the plane x2=5h/6  for  Problem 1. The graphs 

indicate that the absolute values of the stresses of 

22σ p  decrease with increasing the parameter 

E1/E0 for the Problem 1, and maximum effect 

occur around the hole region. It can be said that 

compressive stress occur at edge and center of the 

plate-strip with changing parameter E1/E0 for Case 

0 in Problem 1.  
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(a) 

 
(b) 

 
(c) 

Figure 8. The normalized stress of 22σ p  at x2=5h/6  

plane for different values of 1 0E E  for  n=2 for (a) 

Case 1 (b) Case 2 (c) Case 3 versus Case 0 for Problem 

1. 

 

Figure 9 illustrates the distribution of 22σ p  for 

various values of the material non homogeneity 

parameter E1/E0  for the three Cases versus Case 0 

on the plane 1 / 2sx   for  Problem 2. The graphs 

indicate that the absolute values of the stresses of 

22σ p  decrease with increasing the parameter 

E1/E0 for the Problem 2 and the difference 

between the values obtained for Case 0 and the 

other Cases also increase with the size of the hole. 

The maximum difference occurs for the Case 3 

and Case 0. Also, tensile stress is observed in 

Cases 2 and 3 (in Figure 9b and Figure 9c) as only 

compressive stress occur in Case 0 and 1 (in 

Figure 9a) 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 9. The normalized stress of 22σ p  at 1 sx 2   

plane for different values of 1 0E E  for  n=2 for (a) 

Case 1 (b) Case 2 (c) Case 3 versus Case 0 for Problem 

2. 

 

Figure 10 represents the distribution of 1 0u E p  

for various values of the material non 

homogeneity parameter E1/E0 for three cases 

versus Case 0 on the plane x2=h  for  Problem 1. It 

follows from the graphs that the absolute values of 

the displacement of 1 0u E p  decrease with 

increasing the parameter E1/E0. The difference 

between the values of the displacements of 

1 0u E p  obtained for Case 0 and the other Cases 

also increase with the size of the hole, and this 

difference is more for E1/E0<1 than E1/E0>1.  
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(a) 

 
(b) 

 
(c) 

Figure 10. The normalized displacement of 1 0u E p  at 

x2=h  plane for different values of 1 0E E  for  n=2 for 

(a) Case 1 (b) Case 2 (c) Case 3 versus Case 0 for 

Problem 1 

 

Figure 11 represents the distribution of 1 0u E p  

for various values of the material non 

homogeneity parameter E1/E0  for three cases 

versus Case 0 on the plane 1 / 2sx   for  Problem 

2. The displacement of 1 0u E p  of the FGM plate 

is linear for Problem 2. It is observed that the 

absolute values of displacement decreases upon 

increasing E1/E0.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 11. The normalized displacement of 1 0u E p  at 

1 sx 2  plane for different values of 1 0E E  for  n=2 

for (a) Case 1 (b) Case 2 (c) Case 3 versus Case 0 for 

Problem 2. 

 

The distribution of 2 0u E p  for various values of 

the material non homogeneity parameter E1/E0 for 

the three cases versus Case 0 on the plane x2=h  

for  Problem 1 are plotted in Figure 12. The 

graphs show that the absolute values of the 

displacements of 2 0u E p  decrease with 

increasing the parameter E1/E0. The difference 

between the values obtained for Case 0 and the 

other Cases also increase with the size of the hole. 
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(a) 

 
(b) 

 
(c) 

Figure 12. The normalized displacement of 2 0u E p  

at x2=h  plane for different values of 1 0E E  for  n=2 

for (a) Case 1 (b) Case 2 (c) Case 3 versus Case 0 for 

Problem 1. 

 

The effect of power-law exponent value, (i.e., n) 

on the displacement distribution of 1 0u E p  

 2 0u E p  for three cases versus Case 0 on the 

plane x2=h for Problem 1 are plotted in Figure 13 

(Figure 14). As can be seen from the graphs, the 

absolute values of displacements increase rapidly 

at the sharp corners of the hole. It follows from 

the graphs that the absolute values of the 

displacements increase with increasing the 

parameter n. The difference between the values 

obtained for Case 0 and the other Cases also 

increase with the size of the hole. The presence of 

hole increases the effect of n. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 13.The normalized displacement of 1 0u E p  at 

x2=h  plane for different values of n for 1 0E E 5  for 

(a) Case 1 (b) Case 2 (c) Case 3 versus Case 0 for 

Problem 1. 

 

 
(a) 
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(b) 

 
(c) 

Figure 14.The normalized displacement of 2 0u E p  at 

x2=h  plane for different values of n for 1 0E E 5  for 

(a) Case 1 (b) Case 2 (c) Case 3 versus Case 0 for 

Problem 1. 

 

The effect of power-law exponent value, (i.e., n) 

on the displacement distribution of 2 0u E p  for 

three cases versus Case 0 on the plane 1 sx 2  

for Problem 2 are plotted in Figure 15. It follows 

from the graphs that the absolute values of the 

displacements increase with increasing the 

parameter n.  

 

 
(a) 

 

(b) 

 
(c) 

Figure 15. The normalized displacement of 2 0u E p  

at 1 sx 2   plane for different values of n for 

1 0E E 5  for  (a) Case 1 (b) Case 2 (c) Case 3 versus 

Case 0 for Problem 2. 

 

5. Conclusions 

 

A static analysis of a plate-strip made of 

functionally-graded material (FGM) containing a 

rectangular hole has been investigated under 

bending forces. The plate-strip is simply 

supported at two opposite ends. Classical linear 

elasticity theory and the generalized plane-strain 

conditions are used to analyze the problem. The 

plate-strip’s material is assumed functionally 

graded. Using the FEM, effect of grading 

direction, power-law exponent, size of the hole 

and magnitude of material nonhomogeneity 

parameter on the displacements and the stresses 

have been investigated. From the numerical 

results, the following conclusions can be drawn: 

 

 The difference between the values of 

stresses and displacements obtained for 

unholed medium (Case 0) and holed 

medium (the other Cases) increase with 

the size of the hole as the ratio E1/E0 

changes, 

 The more E1/E0, the larger absolute values 

of the stresses of  11σ p  for Problem 1 

(Figure 5), 

  As the size of the hole increases, the 

difference between the values of the 

stresses for FGM and homogeneous plate 

(E1/E0=1) increases (Figure 5-9), 

 For the ratio E1/E0=1 in which the FGM 

plate becomes a homogeneous plate, the 

stress concentration is a linear function of 

x2 and the maximum stress of 11σ p   is at 

the top or bottom surface of the plate for 

Case 1 and Case 2, but for Case 3 it is not 
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linear because of the hole effect (Figure 

6). 

 The most affected stress by the change of 

E1/E0  is 11σ p  for both problems. 

 The absolute values of the displacements 

decrease with increasing the parameter E1/ 

E0  (Figure 10-12). 

 The absolute values of the displacements 

increase with increasing the parameter n 

in direction of x1 and x2 (for both 

problems). The presence of hole increases 

the effect of n (Figure 13-15). 
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