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Abstract

Let G be a graph having vertex set V (G). For S⊆V (G), if each vertex is adjacent to a vertex
in S or has at least two vertices in S at distance two from it, then the set S is a disjunctive total
dominating set of G. The disjunctive total domination number is the minimum cardinality
of such a set. In this work, we discuss the disjunctive total domination of shadow distance
graphs of some graphs such as cycle, path, star, complete bipartite and wheel graphs.

1. Introduction

Domination in graphs [1] has received considerable attention in graph theory due to the various applications for real world
problems such as the chess problem, communication network problems, location of radar stations, routing and coding theory
[2]-[4]. There are several variations of domination; one of which is total domination [5]. Since implementations of dominating
and total dominating sets in modern networks are expensive, some restrictions are added to them. Then Henning and Naicker
[6] defined the disjunctive total domination as a relaxation of total domination. For a set S⊆V (G), if each vertex is adjacent to
a vertex in S or has at least two vertices in S at distance two from it, then the set S is a disjunctive total dominating set, briefly
DTD-set, of G. When a vertex u satisfies one of these two conditions, it is known that u is disjunctively totally dominated,
briefly DT-dominated, by vertices of S. Furthermore, when u satisfies the first condition (the second condition, respectively), it
is known that u is totally dominated (disjunctively dominated, respectively) by vertices of S. The disjunctive total domination
number, γd

t (G), is the minimum cardinality of a DTD-set in G. A DTD-set which gives the value γd
t (G) is called γd

t (G)-set.
This parameter is studied on grids, trees, permutation graphs, claw-free graphs and it is applied on some graph modifications
such as bondage and subdivision [6]-[12]. This paper is about disjunctive total domination number of shadow distance graph
of some special graphs.

Let G be a graph having vertex set V (G) and edge set E(G). For two vertices u and v if there is an edge joining them, then they
are adjacent (or neighbors). The distance dG(u,v) between u and v is the length of the shortest path joining them in G. The
greatest distance between any pair of vertices of G is the diameter of G and denoted by diam(G). We follow [1] for graph
theory terminology and notation which are not defined here for simplicity.

The distance graph [13] D(G,Ds) of G has vertex set V (G) and two vertices u and v are neighbors in D(G,Ds) if d(u,v) ∈ Ds,
in which D is the set of all distances between distinct pairs of vertices in G and Ds is a subset of D. The shadow graph D2(G)
[14] of a connected graph G is obtained by taking two copies of G and joining each vertex u in the first copy to the neighbors
of the corresponding vertex v in the second copy.

The shadow distance graph Dsd(G,Ds) of a connected graph G is defined by Kumar and Muralli [15] and is obtained from G
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with the following properties:

(i) The graph Dsd(G,Ds) consists of two copies of G say G itself and G′.
(ii) For v ∈V (G), the corresponding vertex is denoted by v′ ∈V (G′).

(iii) V (Dsd(G,Ds)) =V (G)∪V (G′).
(iv) E(Dsd(G,Ds)) = E(G)∪E(G′)∪Eds, in which Eds is the set of all edges between two distinct vertices v ∈V (G) and

w′ ∈V (G′) satisfying d(v,w) ∈ Ds in G.

If Ds = {1}, then this gives the definition of shadow graph D2(G). The shadow graph D2(P6) and shadow distance graphs
Dsd(P6,{2}), Dsd(P6,{3}) are shown in Figure 1.1.

Figure 1.1: The shadow and shadow distance graphs of a path P6

Now, we make use of the following known theorems in our results.

Theorem 1.1. [6] Let G be a cycle with n≥ 3. Then γd
t (G) = 2n/5 when n≡ 0 (mod 5) and γd

t (G) = d2(n+1)/5e otherwise.

Observation 1.2. [11] If diam(G) ∈ {1,2} for a connected graph G having at least two vertices, then γd
t (G) = 2.

2. Disjunctive total domination of shadow distance graphs

We, in this section, determine the disjunctive total domination number of shadow distance graph of some special graphs
such as cycle, path, star, complete bipartite and wheel graphs. Throughout the paper, we will label vertices of D2(G) and
Dsd(G,Ds) for G � W1,n,Kr,s as the vertices in the first copy of G by 1,2, ...,n and the vertices in the second copy of G by
n+1,n+2, ...,2n starting from the left.

Theorem 2.1. If D2(Cn) is a shadow graph of a cycle with n≥ 3, then

γ
d
t (D2(Cn)) =

{
d 2n

5 e+1, if n≡ 2 (mod 5)
d 2n

5 e, otherwise.

Proof. We first establish the upper bound for γd
t (D2(Cn)). Let

S =

{
5i+1

∣∣ 0≤ i≤
⌈n

5

⌉
−1
}
∪
{

n+5i+2
∣∣ 0≤ i≤

⌈
n−1

5

⌉
−1
}
.

In all cases of n based on mod 5, the set S is a DTD-set of D2(Cn). Thus, if n≡ 2 (mod 5), then |S|= d 2n
5 e+1 and for other

cases |S|= d 2n
5 e. Therefore,

γ
d
t (D2(Cn))≤ |S|=

{
d 2n

5 e+1, if n≡ 2 (mod 5)
d 2n

5 e, otherwise.

Now, we will prove the reverse inequality. Assume that T = {v1,v2, ...,vi, ...,v j, ...,vt} is a γd
t -set of D2(Cn) with v1 < v2 <

... < vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive integers such that 1≤ vi ≤ n for i∈ {1,2, ...,m}
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and n+1≤ v j ≤ 2n for j ∈ {m+1,m+2, ..., t}. Let fx = vx+1− vx for x ∈ {1,2, ..., t−1} with x 6= m. We must prove fx ≤ 5
for each x ∈ {1,2, ..., t−1} provided that x 6= m.

Let us suppose that fx ≥ 6 for every x. We claim that fx = 6 for some x ∈ {1,2, ..., t−1} with x 6= m. In accordance with this
claim, we construct the set{

6i+1
∣∣ 0≤ i≤

⌈n
6

⌉
−1
}
∪
{

n+6i+2
∣∣ 0≤ i≤

⌈
n−1

6

⌉
−1
}
.

However, some vertices, i.e. vertices 4 and 5 are not DT-dominated by this set. Thus, it is needed to add some new vertices.
This makes fx < 6 for some x, which contradicts our claim. Therefore, fx ≤ 5 for all x ∈ {1,2, ..., t−1} with x 6= m. Thus, it is

clear that
m−1
∑

x=1
fx +

t−1
∑

x=m+1
fx ≤ 5(t−2). This yields

5
(⌈n

5

⌉
−1
)
+5
(⌈

n−1
5

⌉
−1
)
=

m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t−2).

Therefore, we have |T |= t ≥ d 2n
5 e+1 for n≡ 2 (mod 5) and |T |= t ≥ d 2n

5 e for the other cases of n. The proof is completed
by combining the lower and upper bounds for γd

t (D2(Cn)).

Theorem 2.2. If D2(Pn) is a shadow graph of a path with n≥ 3, then

γ
d
t (D2(Pn)) =

{
d 2n+2

5 e+1, if n≡ 1 (mod 5)
d 2n+2

5 e, otherwise.

Proof. For the upper bound on γd
t (D2(Pn)), let

S =

{
5i+3

∣∣ 0≤ i≤
⌈

n−2
5

⌉
−1
}
∪
{

n+5i+2
∣∣ 0≤ i≤

⌈
n−1

5

⌉
−1
}
.

If n≡ 0,2 (mod 5), then let S′ = S∪{n−1}; if n≡ 1 (mod 5), then let S′ = S∪{n,2n−1} and if n≡ 3,4 (mod 5), then let
S′ = S. The set S′ is a DTD-set of D2(Pn) in all cases. Thus, if n≡ 1 (mod 5), then γd

t (D2(Pn))≤ |S′|= d 2n+2
5 e+1 and for

other cases γd
t (D2(Pn))≤ |S′|= d 2n+2

5 e.

We now prove the lower bound on γd
t (D2(Pn)). Assume that T = {v1,v2, ...,vi, ...,v j, ...,vt} is a γd

t -set of D2(Pn) with
v1 < v2 < ... < vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive integers such that 1 ≤ vi ≤ n for
i ∈ {1,2, ...,m} and n+ 1 ≤ v j ≤ 2n for j ∈ {m+ 1,m+ 2, ..., t}. Let fx = vx+1− vx for x ∈ {1,2, ..., t− 1} with x 6= m. As
similar as the proof of Theorem 2.1 we conclude fx ≤ 5 for each x ∈ {1,2, ..., t−1} with x 6= m. This yields

m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t−2).

Since v1 = 3 and vm+1 = n+2 in all cases of n, it follows
m−1
∑

x=1
fx +

t−1
∑

x=m+1
fx = vm + vt − (n+5).

If n≡ 0 (mod 5), then vt = 2n−3 and vm = n−1. Thus,

2n−9 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t−2),

and hence |T |= t ≥ d 2n+1
5 e. This implies that γd

t (D2(Pn))≥ d 2n+2
5 e.

If n≡ 1,3 (mod 5), then vt = 2n−1 and vm = n. Thus,

2n−6 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t−2),

and hence |T |= t ≥ d 2n+4
5 e. This implies that γd

t (D2(Pn))≥ d 2n+2
5 e+1 for n≡ 1 (mod 5) and γd

t (D2(Pn))≥ d 2n+2
5 e for n≡ 3

(mod 5).
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If n≡ i (mod 5) for i ∈ {2,4}, then vt = 2n− i+2 and vm = n−1. Thus,

2n− i−4 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 5(t−2),

and hence |T |= t ≥ d 2n−i+6
5 e. This implies that γd

t (D2(Pn))≥ d 2n+2
5 e.

The proof is completed by combining the lower and upper bounds for γd
t (D2(Pn)).

Theorem 2.3. Let K1,s,W1,n,Kr,s denote a star, a wheel and a complete bipartite graph, respectively, and if G ∼= H, where
H ∈ {K1,s,Wn,Kr,s}, then γd

t (D2(G)) = 2.

Proof. Since diam(D2(G)) = 2 for G∼= H, where H ∈ {K1,s,Wn,Kr,s}, the result follows from Observation 1.2.

Theorem 2.4. For n≥ 6,

γ
d
t (Dsd(Pn,{2})) =

{
d 3n

8 e+1, if n≡ 5 (mod 8)
d 3n

8 e, otherwise.

Proof. We first establish the upper bound for γd
t (Dsd(Pn,{2})). Let

S =

{
{8i+3,8i+5}

∣∣ 0≤ i≤
⌈

n−4
8

⌉
−1
}
∪
{

n+8i+6
∣∣ 0≤ i≤

⌈
n−5

8

⌉
−1
}
.

If n≡ 0,6,7 (mod 8), then let S′ = S; if n≡ 1,5 (mod 8), then let S′ = S∪{2n−1}; if n≡ 2 (mod 8), then let S′ = S∪{2n−2};
if n ≡ 3 (mod 8), then let S′ = S∪{n− 2,2n− 1} and if n ≡ 4 (mod 8), then let S′ = S∪{n− 3,2n− 2}. The set S′ is a
DTD-set of Dsd(Pn,{2}) in all cases. Thus, if n ≡ 5 (mod 8), then γd

t (Dsd(Pn,{2})) ≤ |S′| = d 3n
8 e+ 1 and for other cases

γd
t (Dsd(Pn,{2}))≤ |S′|= d 3n

8 e.

Let T be a γd
t -set of Dsd(Pn,{2}) to prove the lower bound. Assume that T = {v1,v2, ...,vi, ...,v j, ...,vt} with v1 < v2 < ... <

vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive integers such that 1 ≤ vi ≤ n for i ∈ {1,2, ...,m}
and n+ 1 ≤ v j ≤ 2n for j ∈ {m+ 1,m+ 2, ..., t}. Let fx = vx+2− vx for x ∈ {1,2, ...,m− 2} and fy = vy+1− vy for y ∈
{m+1,m+2, ..., t−1}. We must prove fx ≤ 8 for x ∈ {1,2, ...,m−2} and fy ≤ 8 for y ∈ {m+1,m+2, ..., t−1}. Suppose
that at least one inequality is not true. Without loss of generality, let fy > 8 for at least one y. We claim that fm+1 = 9 for
y = m+1. In accordance with this claim, one of the set can be constructed is

{n+6}∪
{
{8i+3,8i+5}

∣∣ 0≤ i≤
⌈

n−4
8

⌉
−1
}
∪
{

n+8i+7
∣∣ 0≤ i≤

⌈n
8

⌉
−2
}
.

However, all vertices of this set are not DT-dominated. Therefore, fx ≤ 8 for each x ∈ {1,2, ...,m−2} and fy ≤ 8 for each

y ∈ {m+1,m+2, ..., t−1}. This yields
m−2
∑

x=1
fx +

t−1
∑

y=m+1
fy ≤ 8(t−3).

Since v1 = 3, v2 = 5 and vm+1 = n+6 in all cases of n, it follows
m−2
∑

x=1
fx +

t−1
∑

y=m+1
fy = vm−1 + vm + vt − (n+14).

If n≡ i (mod 8) for i ∈ {1,2}, then vm−1 = n− i−5, vm = n− i−3 and vt = 2n− i. Thus,

3n−3i−22 =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t−3)

and hence |T |= t ≥ d 3n−3i+2
8 e. This implies γd

t (Dsd(Pn,{2}))≥ d 3n
8 e.

If n≡ i (mod 8) for i ∈ {3,4}, then vm−1 = n− i−3, vm = n− i+1 and vt = 2n− i+2. Thus,

3n−3i−14 =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t−3),

and hence |T |= t ≥ d 3n−3i+10
8 e. This implies γd

t (Dsd(Pn,{2}))≥ d 3n
8 e.
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If n≡ i (mod 8) for i ∈ {5,6}, then vm−1 = n− i+3, vm = n− i+5 and vt = 2n+ i−6. Thus,

3n− i−12 =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t−3),

and hence |T |= t ≥ d 3n−i+12
8 e. This implies that γd

t (Dsd(Pn,{2}))≥ d 3n
8 e+1 for n≡ 5 (mod 8) and γd

t (Dsd(Pn,{2}))≥ d 3n
8 e

for n≡ 6 (mod 8).

Let n≡ i (mod 8) for i ∈ {0,7}. We take i = 8 for n≡ 0 (mod 8). Then vm−1 = n− i+3, vm = n− i+5 and vt = 2n− i+6.
Thus,

3n−3i =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t−3),

and hence |T |= t ≥ d 3n−3i+24
8 e. This implies γd

t (Dsd(Pn,{2}))≥ d 3n
8 e.

Consequently, the proof follows from the lower and upper bounds.

Theorem 2.5. For n≥ 3,

γ
d
t (Dsd(Cn,{2})) =

{
d 3n

8 e+1, if n≡ 3,4,5 (mod 8)
d 3n

8 e, otherwise.

Proof. For the upper bound on γd
t (Dsd(Cn,{2})), let

S =

{
{8i+1,8i+3}

∣∣ 0≤ i≤
⌈

n−2
8

⌉
−1
}
∪
{

n+8i+4
∣∣ 0≤ i≤

⌈
n−3

8

⌉
−1
}
.

If n≡ 1 (mod 8), then let S′ = S∪{n}; if n≡ 2 (mod 8), then let S′ = S∪{n−1}; if n≡ 3 (mod 8), then let S′ = S∪{2n} and
otherwise let S′ = S. The set S′ is a DTD-set of Dsd(Cn,{2}) in all cases. Thus, if n≡ 3,4,5 (mod 8), then γd

t (Dsd(Cn,{2}))≤
|S′|= d 3n

8 e+1 and for other cases γd
t (Dsd(Cn,{2}))≤ |S′|= d 3n

8 e.

Now, we need to prove the lower bound to complete the proof. Let T be a γd
t -set of Dsd(Cn,{2}). Assume that T =

{v1,v2, ...,vi, ...,v j, ...,vt} with v1 < v2 < ... < vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive
integers such that 1≤ vi ≤ n for i ∈ {1,2, ...,m} and n+1≤ v j ≤ 2n for j ∈ {m+1,m+2, ..., t}. As similar as the proof of
Theorem 2.4, we define functions fx = vx+2− vx for x ∈ {1,2, ...,m−2} and fy = vy+1− vy for y ∈ {m+1,m+2, ..., t−1}.
It is easily seen that fx ≤ 8 for each x ∈ {1,2, ...,m−2} and fy ≤ 8 for each y ∈ {m+1,m+2, ..., t−1} as in the proof of

Theorem 2.4. This means that
m−2
∑

x=1
fx +

t−1
∑

y=m+1
fy ≤ 8(t−3).

Since v1 = 1, v2 = 3 and vm+1 = n+4 in all cases of n, it follows
m−2
∑

x=1
fx +

t−1
∑

y=m+1
fy = vm−1 + vm + vt − (n+8).

If n≡ i (mod 8) for i ∈ {1,2}, then vm−1 = n− i−5, vm = n− i+1 and vt = 2n− i−4. Thus,

3n−3i−16 =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t−3),

and hence |T |= t ≥ d 3n−3i+8
8 e. This means that γd

t (Dsd(Cn,{2}))≥ d 3n
8 e.

If n≡ 3 (mod 8), then vm−1 = n−2, vm = n and vt = 2n. Thus,

3n−10 =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t−3),

and hence |T |= t ≥ d 3n
8 e+1.

Let n≡ i (mod 8) for i∈ {0,4,5,6,7}. We take i= 8 for n≡ 0 (mod 8). Then vm−1 = n− i+1, vm = n− i+3 and vt = 2n− i+4.
Thus,

3n−3i =
m−2

∑
x=1

fx +
t−1

∑
y=m+1

fy ≤ 8(t−3),

and hence |T |= t ≥ d 3n−3i+24
8 e. This implies that γd

t (Dsd(Cn,{2}))≥ d 3n
8 e+1 for n≡ 4,5 (mod 8) and γd

t (Dsd(Cn,{2}))≥
d 3n

8 e for otherwise.
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Theorem 2.6. For r ≥ 1 and s≥ 2, γd
t (Dsd(Kr,s,{2})) = 3.

Proof. Let V (Dsd(Kr,s,{2})) =V (Kr,s)∪V (K′r,s) be vertex set of Dsd(Kr,s,{2}), in which V (Kr,s) = {u1,u2, ...,ur,v1,v2, ...,vs}
and V (K′r,s) = {u′1,u′2, ...,u′r,v′1,v′2, ...,v′s}. We first establish the upper bound for γd

t (Dsd(Kr,s,{2})). If S = {u1,u2,v1}, then
the set S is a DTD-set of Dsd(Kr,s,{2}). Thus, γd

t (Dsd(Kr,s,{2}))≤ 3.

For the lower bound, let T be a γd
t (Dsd(Kr,s,{2}))-set. Suppose that |T |= 2, this means that the vertices of T are adjacent.

Then we have the following cases.

Case 1. Let T = {ui,v j} for any i ∈ {1,2, ...,r} and j ∈ {1,2, ...,s} (The case T = {u′i,v′j} for any i ∈ {1,2, ...,r} and
j ∈ {1,2, ...,s} is similar). All vertices except u′i and u′j are totally dominated by the vertices of T . However, since d(u′i,v j) = 2
and d(u′i,ui) = 3, the vertex u′i is not DT-dominated by the vertices of T .

Case 2. Let T = {ui,u′j} for any i, j ∈ {1,2, ...,r} and i 6= j. (The case T = {vi,v′j} for any i, j ∈ {1,2, ...,s} and i 6= j is
similar.) Since d(u j,ui) = 2 and d(u j,u′j) = 3, the vertex u j is not DT-dominated by the vertices of T .

Therefore, γd
t (Dsd(Kr,s,{2})) = |T | ≥ 3, and this concludes the proof.

Theorem 2.7. For n≥ 3, γd
t (Dsd(W1,n,{2})) = 3.

Proof. Let V (Dsd(W1,n,{2})) =V (W1,n)∪V (W ′1,n) be vertex set of Dsd(W1,n,{2}) in which V (W1,n) = {c,u1,u2, ...,un} and
V (W ′1,n) = {c′,u′1,u′2, ...,u′n}, where c is the center vertex of W1,n. We first establish the upper bound for γd

t (Dsd(W1,n,{2})). If
S = {c,u1,u′2}, then the set S is a DTD-set of Dsd(W1,n,{2}). Thus, γd

t (Dsd(W1,n,{2}))≤ 3.

Now, we need to prove the lower bound. Let T be a γd
t (Dsd(W1,n,{2}))-set. Suppose that |T |= 2. We have following cases.

Case 1. Let T = {c,ui} for i ≥ 1. (The case T = {c′1,u′i} for i ≥ 1 is similar.) Since d(u′i,ui) = 3 and d(c′1,c1) = 3, then
vertices c′ and u′i are not DT-dominated.

Case 2. Let T = {ui,ui+1} for i ∈ {1,2, ...,n− 1}. (The case T = {u′i,u′i+1} for i ∈ {1,2, ...,n− 1} is similar.) Since
d(u′i,ui) = 3 and d(u′i+1,ui+1) = 3, vertices u′i and u′i+1 are not DT-dominated.

Case 3. Let T = {ui,u′j} for j /∈ {i,(i−1)(mod n),(i+1)(mod n)}. Note that we take j = n when j = 0. In this case, since
d(u′i,ui) = 3 and d(u j,u′j) = 3, vertices u′i and u j are not DT-dominated.

In all cases, the assumption is false and γd
t (Dsd(W1,n,{2})) = |T | ≥ 3, which completes the proof.

Theorem 2.8. For n≥ 14,

γ
d
t (Dsd(Pn,{3})) =

{
n
3 +2, if n≡ 0 (mod 6)
d n

3e+1, otherwise.

Proof. For the upper bound for γd
t (Dsd(Pn,{3})), let D = {3}∪{{6i+ 5,n+ 6i+ 5} | 0 ≤ i ≤

⌈ n−4
6

⌉
− 2}. If n ≡ 0 (mod

6), then let S = D∪ {n− 1,2n− 3,2n− 1}; if n ≡ 0,2 (mod 6), then let S = D∪ {n− 3,2n− 3,2n− 1}; if n ≡ 1 (mod
6), then let S = D∪{n− 2,2n,2n− 2}; if n ≡ 3 (mod 6), then let S = D∪{n− 4,2n− 4,2n− 2} and if n ≡ 4 (mod 6),
then let S = D∪ {n− 5,n− 2,2n− 5,2n− 2} and if n ≡ 5 (mod 6), then let S = D∪ {n− 3,2n− 3}. Then the set S is
a DTD-set of Dsd(Pn,{3}) in all cases of n. Thus, if n ≡ 0 (mod 6), then γd

t (Dsd(Pn,{3})) = |S| ≤ n
3 + 2 and otherwise

γd
t (Dsd(Pn,{3})) = |S| ≤ d n

3e+1.

Now, we prove the lower bound for γd
t (Dsd(Pn,{3})). Let T = {v1,v2, ...,vi, ...,v j, ...,vt} be a γd

t -set of Dsd(Pn,{3}) with
v1 < v2 < ... < vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive integers such that 1 ≤ vi ≤ n
for i ∈ {1,2, ...,m} and n+ 1 ≤ v j ≤ 2n for j ∈ {m+ 1,m+ 2, ..., t}. Assume that f1 = v2 − v1 and fy = vy+1 − vy for
y∈ {2, ..., t−1} with y 6= m. We will show that f1 ≤ 2 and fy ≤ 6 for each y. Suppose first that f1 ≥ 3. In order to DT-dominate
v1, the condition fy ≤ 6 must be hold for at least one y. Thus, the set

T ′ = {2,5,n+4}∪{{6i+8,n+6i+8} | 0≤ i≤ dn−7
6
e−2}

is constructed. However, this contradicts with our upper bound. For example, if n ≡ 1 (mod 6), then T = T ′ ∪{n− 5,n−
2,2n−5,2n−2} and |T |= n+7

3 , a contradiction.
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Suppose now that f1 ≤ 2 and fy ≥ 7 for at least one y. Then the set

T ′ = {3,5,n+5,n+7,12,n+12}∪{{6i+15,n+6i+15} | 0≤ i≤ dn−14
6
e−1}

is constructed. However, this contradicts with our upper bound. For example, if n≡ 1 (mod 6), then T = T ′∪{2n−2} and
|T |= n+8

3 , a contradiction.

Therefore, f1 ≤ 2 and fy ≤ 6 for each y ∈ {2, ..., t−1}. This yields f1 +
t−1
∑

y=2
fy ≤ 2+6(t−3). Since v2 = 5 and vm+1 = n+5,

it follows 2+
t−1
∑

y=2
fy = 2+ vm− v1 + vt − vm+1 = vm + vt − (n+8).

If n≡ 0 (mod 6), then vm = n−1 and vt = 2n−1. This yields

2n−10 = 2+
t−1

∑
y=2

fy ≤ 2+6(t−3),

and hence |T |= t ≥ d 2n+6
6 e.

If n≡ i (mod 6) for i ∈ {1,2,3}, then vm = n− i−1 and vt = 2n− i+1. This yields

2n−2i−8 = 2+
t−1

∑
y=2

fy ≤ 2+6(t−3),

and hence |T |= t ≥ d 2n−2i+8
6 e.

If n≡ 4 (mod 6), then vm = n−2 and vt = 2n−2. This yields

12(dn−4
6
e−1)+8 = 2+

t−1

∑
y=2

fy ≤ 8+6(t−5),

and hence |T |= t ≥ n+5
3 .

If n≡ 5 (mod 6), then vm = n−3 and vt = 2n−3. This yields

2n−14 = 2+
t−1

∑
y=2

fy ≤ 2+6(t−3),

and hence |T |= t ≥ d 2n+4
6 e.

Consequently, if n≡ 0 (mod 6), then γd
t (Dsd(Pn,{3}))≥ n

3 +2 and otherwise γd
t (Dsd(Pn,{3}))≥ d n

3e+1. This completes the
proof.

Since Dsd(Pn,{3}) ∼= C8 for n = 4, by Theorem 1.1 we have γd
t (Dsd(P4,{3})) = 4. Therefore, we give the result of

γd
t (Dsd(Pn,{3})) for 5≤ n≤ 13 in Table 1.

n 5 6 7 8 9 10 11 12 13
γd

t (Dsd(Pn,{3})) 4 4 4 4 4 4 4 5 5

Table 1: The values of γd
t (Dsd(Pn,{3})) for 5≤ n≤ 13

Theorem 2.9. For n≥ 15,

γ
d
t (Dsd(Cn,{3})) =

{
n+5

3 , if n≡ 1 (mod 6)
d n+2

3 e, otherwise.

Proof. For the upper bound for γd
t (Dsd(Cn,{3})), let D =

{
{6i+ 3,n+ 6i+ 3} | 0 ≤ i ≤

⌈ n−2
6

⌉
− 2
}

. If n ≡ 0 (mod 6),
then let S = D∪{n− 3,2n− 3,2n− 1}; if n ≡ 1 (mod 6), then let S = D∪{n− 4,2n− 4,n,2n}; if n ≡ 2 (mod 6), then let
S=D∪{n−5,2n−5,n−1,2n−1}; if n≡ 3 (mod 6), then let S=D∪{n,2n}; if n≡ 4 (mod 6), then let S=D∪{n−1,2n−1}
and if n ≡ 5 (mod 6), then let S = D∪{n,n−3,2n−6}. The set S is a DTD-set of Dsd(Cn,{3}) in all cases of n. Thus, if
n≡ 1 (mod 6), then γd

t (Dsd(Cn,{3})) = |S| ≤ n+5
3 and otherwise γd

t (Dsd(Cn,{3})) = |S| ≤ d n+2
3 e.
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We need to prove the opposite inequality to complete the proof. Let T = {v1,v2, ...,vi, ...,v j, ...,vt} be a γd
t -set of Dsd(Cn,{3})

with v1 < v2 < ... < vi < ... < vm < vm+1 < ... < v j < ... < vt , where vi and v j are any positive integers such that 1≤ vi ≤ n
for i ∈ {1,2, ...,m} and n+1≤ v j ≤ 2n for j ∈ {m+1,m+2, ..., t}. Assume that fx = vx+1− vx for x ∈ {1,2, ..., t−1} with
x 6= m. As similar as the proof of Theorem 2.1 we can show that fx ≤ 6 for each x ∈ {1,2, ..., t−1} with x 6= m. This yields

m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 6(t−2).

Since v1 = 3 and vm+1 = n+3 in all cases of n, we have
m−1
∑

x=1
fx +

t−1
∑

x=m+1
fx = vm− v1 + vt − vm+1 = vm + vt − (n+6).

If n≡ 0 (mod 6), then vm = n−3 and vt = 2n−1. This yields

2n−10 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 6(t−2),

and hence |T |= t ≥ d 2n+2
6 e.

If n≡ i (mod 6) for i ∈ {1,3}, then vm = n and vt = 2n. This yields

2n−6 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 6(t−2),

and hence |T |= t ≥ d 2n+6
6 e.

If n≡ i (mod 6) for i ∈ {2,4}, then vm = n−1 and vt = 2n−1. This yields

2n−8 =
m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 6(t−2),

and hence |T |= t ≥ d 2n+4
6 e.

If n≡ 5 (mod 6), then vm = n and vt = 2n−6. This yields

12
(⌈

n−2
6

⌉
−2
)
+10 =

m−1

∑
x=1

fx +
t−1

∑
x=m+1

fx ≤ 10+6(t−5),

and hence |T |= t ≥ n+4
3 .

As a consequence, if n≡ 1 (mod 6), then γd
t (Dsd(Cn,{3}))≥ n+5

3 and otherwise γd
t (Dsd(Cn,{3}))≥ d n+2

3 e, and this completes
the proof.

For n = 4, since diameter of Dsd(Cn,{3}) is two, it is clear that γd
t (Dsd(Cn,{3})) = 2. For 5≤ n≤ 14, the result is given in

Table 2.

n 5 6 7 8 9 10 11 12 13 14
γd

t (Dsd(Cn,{3})) 3 3 4 4 4 4 4 5 5 5

Table 2: The values of γd
t (Dsd(Cn,{3})) for 5≤ n≤ 14
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