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ABSTRACT:  The social spider algorithm (SSA) is a new heuristic algorithm created on spider behaviors 

to solve continuous optimization problems.  In this study, SSA is used in order to minimize a simplified 

model of the energy function of the molecule. The Molecular potential energy function problem is one of 

the most important real-life problems. The Molecular potential energy function problem attempts to 

predict the 3D structure of a protein. SSA is developed by various techniques (Crossover-mutation  and 

Gbest convergence-silent spider techniques) and SSA is called Improved SSA (ISSA). By these techniques, 

the exploration and exploitation capabilities of SSA in the continuous search space are improved. The 

general performances of SSA and ISSA are tested on low-scaled and large-scaled thirteen benchmark 

functions and obtained results are compared with each other. Wilcoxon signed-rank test is applied to 

SSA and ISSA results. Then, the general performance of the SSA and ISSA is tested on a simplified 

model of the molecule for different dimensions. Also, the performance of the ISSA is compared to 

various state-of-art algorithms in the literature. The results showed the superiority of the performance of 

ISSA.  
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Moleküler Potansiyel Enerji Fonksiyonu İçin Geliştirilmiş Sosyal Örümcek Algoritması 

 

ÖZ: Sosyal örümcek algoritması (SÖA), sürekli optimizasyon problemlerini çözmek için örümcek 

davranışları üzerine oluşturulan yeni bir sezgisel algoritmadır. Bu çalışmada, SÖA molekülün enerji 

fonksiyonunun basitleştirilmiş bir modelini en aza indirmek için kullanılmıştır. Moleküler potansiyel 

enerji fonksiyonu problemi, en önemli gerçek hayat problemlerinden biridir. Moleküler potansiyel enerji 

fonksiyonu problemi, bir proteinin 3D yapısını tahmin etmeye çalışır. Sosyal örümcek algoritması çeşitli 

teknikler (Çaprazlama-mutasyon ve Gbest yakınsaması-sessiz örümcek teknikleri) eklenerek 

geliştirilmiştir ve çeşitli tekniklerle geliştirilen SÖA 'ya Geliştirilmiş SSA (GSÖA) denilmiştir. Bu 

teknikler sayesinde, SÖA 'nın sürekli arama uzayında keşif ve sömürü yetenekleri geliştirilmiştir. SÖA 

ve GSÖA 'nın genel performansları, düşük ölçekli ve yüksek ölçekli on üç kıyaslama fonksiyonunda test 

edilmiştir ve elde edilen sonuçlar birbiriyle karşılaştırılmıştır. Wilcoxon işaretli testi, elde edilen SÖA ve 

GSÖA sonuçlarına uygulanmıştır. Daha sonra, SÖA ve GSÖA'nın genel performansı, farklı boyutlarda 

tanımlanan molekülün basitleştirilmiş bir modeli üzerinde test edilmiştir. Ayrıca, GSÖA'nın 

performansı, literatürdeki çeşitli sanatsal algoritmalarla da karşılaştırılmıştır. Sonuçlar, GSÖA 'nın 

performansının üstünlüğünü göstermiştir. 
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1. INTRODUCTION 

Determining the global minimum potential energy conformation of proteins and peptides is 

known as the problem of energy minimization (Tawhid and Ali, 2017b). The minimization of the 

molecular potential energy function problem (MPEF) can be formulated as a global optimization 

problem. Finding the steady-state of the molecules in the protein can help to predict the 3D structure of 

the protein. The difficulty of the problem arises from the number of local minimizers of the energy 

function that grows exponentially with the size of the molecule (Wales and Scheraga, 1999).  Many 

methods have been applied in the literature to solve this problem. Tawhid and Ali (2017a) proposed 

hybrid social spider optimization and genetic algorithm (HSSOGA) for MPEF. The social spider 

optimization (SSO) algorithm is a population-based algorithm proposed by Cuevas et al. (2013). SSO is 

another heuristic algorithm that is very similar to the SSA algorithm but different from it. Tawhid and 

Ali (2017b) proposed a hybrid Grey Wolf Optimizer and Genetic Algorithm (HGWOGA) for MPEF. The 

proposed HGWOGA algorithm is based on three procedures. In the first procedure, they apply the grey 

wolf optimizer algorithm with its powerful performance with the exploration and the exploitation 

processes and the second procedure is based on dimensionality reduction. The last procedure is to avoid 

premature convergence by applying the genetic algorithm mutation operator in the whole population. 

Tawhid and Ali (2017c) proposed hybrid flower pollination and genetic algorithm (HFPGA) and Tawhid 

and Ali (2016) improved a hybrid particle swarm optimization and genetic algorithm with population 

partitioning for large scale optimization problems for MPEF.  Barbosa et al. (2005) proposed a  steady-

state real-coded genetic-simplex hybrid algorithm for MPEF. Pardalos et al. (1994) introduced some of 

the most commonly used potential energy functions and discuss different optimization methods used in 

the  MPEF. 

Yu and Li have offered Social Spider Algorithm (SSA) which is configured according to social 

spider behaviors (Yu and Li, 2015). Some spider species, which generally live solitary, can live as 

colonies. Spiders live in colonies can communicate with each other by web structure. The vibration they 

produce on the web enables this communication. They can make random walks to each other by the 

vibration information they share (Yu and Li, 2015). In this paper, we firstly propose an improved social 

spider algorithm (ISSA) and then ISSA is applied in order to solve the molecular potential energy 

function minimizations. Genetic algorithm operators are generally used in the literature to improve the 

exploration and exploratory ability of the algorithms. In this paper, we have added Gbest convergence 

and silent spider techniques in addition to genetic algorithm operators. While crossover and Gbest 

convergence techniques increase local search capacity of ISSA in continuous search space, mutation and 

silent spider techniques increase the global search capacity of ISSA in continuous search space. 

Crossover and Gbest convergence techniques have been used to escape the local minima trap. Mutation 

and silent spider techniques ensure that global optimum points are found in the search space instead of 

local optimum points. The combination of these techniques accelerates the search and helps the 

algorithm to reach the optimal or near-optimal solution in a reasonable time. In this paper, the ISSA has 

been tested on various thirteen low-scaled and large-scaled benchmark functions. The molecular 

potential energy problem is solved by ISSA in various dimensions and the performances of ISSA are 

compared with well-known algorithms in the literature. 

The general structure of the paper as follows.  The related works and the definition of the 

molecular energy problem are details presented in section 1 and 2, respectively. In section 3, the original 

SSA and in section 4, ISSA is examined. In section 5, original SSA and ISSA are tested in various 

unimodal and multimodal benchmark functions in low-scale and large-scale dimensions. The 

performance of the SSA and ISSA is tested on a simplified model of the molecule with different 

dimensions. Obtained results are compared with each other and well-known heuristic and new methods 

in the literature. Finally, the results are interpreted and discussed. The paper is ended up with a 

conclusion and future works. 
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2. RELATED WORKS 

Evolutionary computation has become an attractively efficient device of optimization for rapidly 

increasing complex modern optimization problems. For the last twenty years, swarm intelligence based 

algorithms, which are based on new evolutionary computation methods, attract attention. The term of a 

swarm expresses a community that consists of individuals who are in communication with each other. 

Swarm intelligence-based algorithms, study main social animal and insect behaviors for solving 

problems. These algorithms, imitate the behaviors of ant, fish, bird, bee, bacteria, butterfly, etc. Thus, the 

problems which seem hard are able to be solved (Talbi, 2009; Mallipeddi et al., 2011; Parpinelli and 

Lopes, 2011; Kennedy and Eberhart, 1995). 

One of the most popular heuristic algorithms in the literature is GA. GA has crossover and 

mutation operators (Holland, 1975). These operators have been used effectively in a variety of heuristic 

algorithms. Particle swarm optimization (PSO) is one of the most hybrid algorithms with GA. For 

example, GA–PSO and PSOGA (Robinson et al., 2002) which are solved he particular electromagnetic 

application of profiled corrugated horned antenna, GSO (Grimaldi et al., 2004) which is solved 

combinatorial optimization problems, GSO with several strategies (Grimaccia et al., 2007) which is 

solved some multi-modal benchmark problems, and  BS (Settles and Soule, 2005) which is resolved  

unconstrained optimization problems. In addition, there are many studies in the literature that have 

been hybridized with GA operators (Krink and Lvbjerg, 2002; Juang, 2004; Jian and Chen, 2006). 

In this paper, one of the heuristic methods, the social spider algorithm has been selected. With 

the vibrations in SSA are shared some information in continuous spaces and the spiders are socialized at 

the evolutionary process. In the literature, SSA has been used in various papers. El-bages and Elsayed 

(2017) have solved a static transmission expansion planning problem by using SSA. In the proposed 

method; DC power flow sub-problem is solved by developing an original SSA based web and adding 

potential solutions to the result. Yu and Li (2016) have solved the Economic Load Dispatch (ELD) 

formulation by developing an original SSA based new approach. ELD is one of the essential components 

in power system control and operation. Mousa and Bentahar  (2016) have adapted QoS-aware web 

service selection process to OSSA approach. Elsayed et al. (2016) have solved the non-convex economic 

load dispatch problem with an OSSA based approach. 

3. MOLECULAR POTENTIAL ENERGY PROBLEM 

We test on a scalable simplified molecular potential energy function (MPEF) to examine the 

performance of ISSA. MPEF is first proposed in (Lavor and Maculan, 2004). The potential energy of a 

molecule is derived from molecular mechanics, which describes molecular interactions based on the 

principles of Newtonian physics (Tawhid and Ali, 2017).  

The molecular model has formed consists of a chain of k atoms (a1, a2, …, ak)  in a three-

dimensional space. Similar models have been figured in the literature (Hedar et al., 2011; Bansal et al., 

2010). In this paper, we define the potential energy as a function of the torsion angles as Equation 1. 

 

E = ∑ (1 + Cos(3ωi,i+3) +
(−1)i

√10.60099896−4.141720682(cos⁡(ωi,i+3))
)i                                                                     (1) 

 

where i = 1, . . . ,k−3 and k is the number of atoms in the given model and ωi, i + 3  is the torsion 

angle by the atoms ai, ai+1, ai+2 and ai+1, ai+2, ai+3. Figure 1 is shown in the torsion angle. 
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Figure 1. The torsion angle between the normal through the planes determined by the atoms ai, ai+1, ai+2, 

and ai+1, ai+2, ai+3. 

 

Our goal is to find ω1,4, ω2,5, . . . , ωk−3, k where ωi, j ∈  [0, 5]. Although the problem seems simple, it 

is a very difficult problem. A molecule with as few as 20 atoms has 217 = 131.072  local minimizers.  

In this paper, E is rewritten as f (x) for the large-scale unconstrained global optimization 

problem. Equations 2-4 show fitness function. 

 

f(x) = ∑ (1 + Cos(3xi) +
(−1)i

√10.60099896−4.141720682(Cos⁡(xi))
)n

i=1                                                                     (2) 

 

And         0⁡ ≤ xi⁡ ≤ 5,⁡⁡⁡⁡⁡⁡⁡⁡i = 1⁡, … , n                                                                                                              (3) 

 

min f(x),⁡⁡⁡⁡⁡x ∈ Rn⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ lb⁡ ≤ xi⁡ ≤ ⁡ ub⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡i = 1, 2, … , n                                                                    (4) 

 

where f: Rn → R is an objective function and x represents a decision variable vector.  lb⁡ and   

ub⁡⁡⁡⁡⁡⁡⁡are the lower and upper bounds of the decision variables xi, respectively. 

4. ORIGINAL SOCIAL SPIDER ALGORITHM (SSA) 

Social spider algorithm (SSA) is a heuristic algorithm that is created by imitating spiders’ 

behaviors in nature. SSA is created for organizing searching space of optimization problems as a high 

dimensional spider web. Each position on the web represents a convenient solution for the optimization 

problem and all convenient solutions to the problem correspond to positions on this web.  This web also 

serves as a transmission medium of vibrations created by spiders.  Each spider on the web is held in a 

position and the conformity value of the solution is calculated with the objective function. Spiders can 

move randomly on the web. But they can not move out of positions which represent convenient 

solutions for optimization problems. When a spider moves towards a new position, a vibration is 

produced and this vibration spreads on the web. Other spiders execute social information sharing via 

this vibration. Flowchart for the original SSA is shown in Figure 2. 
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Figure 2. Flowchart For SSA 

 

There are two important terms in SSA: spider and vibration. Spider structure: Spiders are SSA 

agents that perform optimization. At the beginning of the algorithm, a predetermined number of spiders 

are placed on the web. The number of spiders cannot be changed afterward. “a” represents a spider and 

a memory is allocated for each spider a. Spider information is stored here. This information: the position 

of spider a on the web, the fitness value at the current position of spider a, the target vibration of spider 

a in the previous iteration, the iteration number where the target vibration last changed, the movement 

of spider a in the previous iteration and the dimension mask of spider a that guided the movement in 

the previous iteration. Spider locations are initially set at random. Each spider produces a vibration 

when it moves from a position to a different location. The severity of the vibration is related to the 

fitness value that the spider produces in that position. Vibration can spread over the web and other 

spiders on the web can feel it. Thus, other spiders on the web can obtain the personal information of the 

spider that produces the vibration, and information sharing takes place. Vibration structure: The 

vibration in the SSA is a very important term. It is one of the most important characteristics 

distinguishing SSA from other meta-heuristic algorithms. Two properties are used to define a vibration. 

a-) The source position b-) The source of vibration severity [0,+ ∞)  Equation 5 (Yu and Li, 2015)  is used 

to calculate the vibration intensity. 
 

I(Pa, Pa, t) = log (
1

f(pa)−C
)+1                                                                                                                                              (5) 

 

Where a represents a spider and spider a generates vibration at its current position. It defines the 

position of spider a at time t as Pa(t), or simply as Pa if the time argument is t. Where I( Pa, Pa, t) is the 

Iteration 
<= 

Max_iteration 
 

Fitness evaluation 

Spider vibration generation 

 
Spider binary mask changing 

 
Perform a random walk for each spider 

Final 

Initialization 

Create random continuous space, Assign values to the 

parameters 

Yes 

No 

Control of violated  constraints 
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vibration value produced by the spider in the source position at time t.   f(Pa) represents the spider of 

fitness value in its current position. Where C is a confidently small constant such that all possible fitness 

values are larger than C for minimization problems. Dis( Pa, Pb) is showing the distance between spider a 

and spider b. This distance is calculated by Equation 6 (Yu and Li, 2015).  Manhattan distance structure 

is used when calculating this distance. The vibration attenuation over distance is calculated by Equation 

7 (Yu and Li, 2015). 

 

𝐷𝑖𝑠(𝑃𝑎, 𝑃𝑏) = ‖𝑃𝑎 − 𝑃𝑏‖                                                                                                                                   (6) 

 

𝐼(𝑃𝑎, 𝑃𝑏, 𝑡) = 𝐼(𝑃𝑎, 𝑃𝑎, 𝑡) ⁡× ⁡𝑒𝑥𝑝 (−
𝐷𝑖𝑠(𝑃𝑎,𝑃𝑏)

⁡�̅�×⁡𝑟𝑎
)                                                                                                (7) 

 

Where σ̅ represents mean of the standard deviation of the positions of all spiders in each 

dimension. ra is represented as a user-controlled parameter ra ∈  (0, ∞ ). This parameter controls the 

attenuation rate of the vibration intensity over the distance. Whenever a spider moves to a new position, 

it generates vibration at its current position.  I(Pa,Pb,t) is the felt value of the spider’s vibration in “a” 

point, by the spider in “b” point. The value of ra is selected from the set {1/10, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 

10} and the values of pc and pm are both selected from the set {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 

0.99} (Yu and Li, 2015). After setting the values, the algorithm creates an initial population of spiders for 

optimization. Each spider is assigned a fixed size memory for storing spider information. The positions 

of spiders are randomly generated in the search space. Fitness values of the spiders calculated and 

stored. The initial target vibration of each spider in the population is set at its current position, and the 

vibration intensity is zero. All spiders produce vibration using their position. The algorithm uses 

vibrations to activate the propagation process. V represents spiders' vibrations. Each spider receives the 

vibrations generated by other spiders. A spider selects the strongest of these vibration values. This value 

shows as Vabest,  a represents a spider.  Spider a which is stored in the memory of the target vibration 

shows as Vatar.  Vabest compares vibration values and if the intensity of the Vabest is not greater than the 

target vibration, the spider's memory is changed to Vabest. cs, the number of iterations since spider a has 

last changed its target vibration, is reset to zero; otherwise, the original Vatar is retained and cs is 

incremented by one. The dimension mask m is determined so that a random walk can be performed 

towards the Vatar. The dimension mask is a {0, 1} binary vector of length n and n is the dimension of the 

optimization problem. Initially, all the values of this mask are zero. In each iteration, spiders have a 

probability of 1 – pccs to change its mask where pc∈ (0, 1) is a user-defined attribute that describes the 

probability of changing mask. If the mask is decided to be changed, each bit of the vector has a 

probability of pm to be assigned with a one, and 1 – pm to be a zero. Pm is also a user-controlled 

parameter defined in (0, 1) (Yu and Li, 2015). Each bit of the mask is changed independently. The new 

mask does not have any correlation with the previous mask. In case all bits are zeros or ones,  one 

random value of the mask is changed to one or zero. After the dimension mask is determined, a new 

following position Pafo is generated based on the mask for a spider. Pafo value is calculated by Equation 8 

(Yu and Li, 2015). 

 

𝑃𝑎,𝑖
𝑓𝑜

= {
𝑃𝑎,𝑖
𝑡𝑎𝑟 , 𝑚𝑎,𝑖 = 0

𝑃𝑎,𝑖
𝑟 , 𝑚𝑎,𝑖 = 1

                                                                                                                                         (8) 

 

Where r is a random integer value generated in [1, population_size] and ma,i stands for the ith 

dimension of the dimension mask m of spiders.  The random walk of each spider is calculated by 

Equation 9 (Yu and Li, 2015). 
 

𝑃𝑎(𝑡 + 1) = 𝑃𝑎 + (𝑃𝑎⁡⁡ − 𝑃𝑎(𝑡 − 1)) × 𝑟 + (𝑃𝑎
𝑓𝑜
− 𝑃𝑎) ⊙ 𝑅                                                                    (9) 
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Where ʘ denotes element-wise multiplication. R is a vector of random float-point numbers 

generated from zero to one uniformly. Before following Pafo, spider a first moves along its previous 

direction, which is the direction of movement in the previous iteration. The distance along this direction 

is a random portion of the previous movement. Then spider a approaches Pafo along each dimension 

with random factors generated in (0, 1). After each spider performs a random walk, the spiders may 

move out of the web. It blocks the constraints of the optimization problem to be violated.  The work 

steps of the original SSA is shown in Figure 3.  

 
 

Step 1. Parameter setting: Required constant parameter sets are adjusted. For example, lower and upper 

limits of variables, number of maximum iteration, etc.  

Step 2. Initialization: Random starting position locations are determined for each spider in the swarm. 

Assign memory for them. The target vibration for each spider is started. 

Step 3. Evaluation: Fitness value is calculated for each spider. The best in the swarm are detected and 

recorded.   

Step 4. Vibration value for each spider calculated by using vibration Equations (5, 6, and 7). The best in 

the swarm are detected and recorded.   

Step 5. Vibration comparison: The received the best vibration is compared to the target vibration values. 

Step 6. Update the dimension mask. 

Step 7. Pafo value is calculated by Equation 8 

Step 8. Movement: Each spider moves to a new position by Equation 9 and a new population is obtained.  

Step 9. Repeat: All criteria beginning from Step 3 are repeated until reaching stopping criteria.  

Step 10. Output: Optimum outputs are obtained. 
 

Figure 3. The work steps of the original SSA 

 

5. IMPROVED SOCIAL SPIDER ALGORITHM (ISSA) 

The original SSA is an optimization algorithm that is developed for solving constant problems. 

In this paper, SSA is studied and it is improved by adding new four techniques enhancing its 

performance (ISSA). These techniques are crossover, mutation, Gbest convergence, and silent spider 

techniques.  In both techniques, ISSA develops the ability to search locally and globally in continuous 

search space. While crossover and Gbest convergence techniques increase local search capacity of ISSA in 

continuous search space, mutation and silent spider techniques increase the global search capacity of 

ISSA in continuous search space. The working steps of ISSA are shown in Table 1 with general headings 

and details. In this Table, newly added to original SSA steps are indicated by bold letters. Fitness 

evaluation, vibration generation, mask changing, and spider random walk steps are taken from SSA and 

used similarly in ISSA.  
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Table1. General headings of the working steps of ISSA 

Initialization   

Iteration  

Fitness evaluation  

Vibration generation  

Mask changing 

Spider  random walk 

Crossover-mutation techniques 

Gbest convergence- silent spider techniques  

Constraint handling 

Final 

 

Crossover-mutation Schema: ISSA is avoided trapped around the local point with crossover and 

mutation operators. The value of crossover rate (cr) and the mutation rate (mr)  is selected from the set 

{10%, %20, 30%, 40%, 50%, 60%, 70%, 80%, 90%}. The most appropriate cr value was found to be 90%. 

The most appropriate mr value was found to be 10%. Let N be the number of the population size, n 

show the dimension of the population; Figure 4 is shown in the crossover process. Figure 5 is shown in 

the mutation process. 
 

Lets n=10, cr=90,  Round(n*90)/100= 9 

N=1.spider 

0 1 1 1 1 0 1 1 0 1 

 

rand(N)=5.spider 

1 0 0 1 0 0 1 0 0 0 

  

 

Nnew spider in crossover process 

1 0 0 1 0 0 1 0 0 1 

Figure 4. Crossover process 

 

Lets n=10, mr=10,  Round(n*10)/100= 1 

Nnew spider in crossover process 

1 0 0 1 0 0 1 0 0 1 

 

 

Nnew spider in mutation process 

1 0 0 1 1 0 1 0 0 1 

Figure 5. Mutation process 

 

Gbest convergence Schema: The Gbest convergence rate (gr)  is selected from the set {10%, %20, 

30%, 40%, 50%, 60%, 70%, 80%, 90%}. The most appropriate gr value was found to be 40%. The Gbest 

convergence improves the ability of ISSA to search locally in continuous space. Let N be the number of 

the population size, n show the dimension of the population; Figure 6 is shown Gbest convergence 

process. 

 

crossover 

mutation 
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Lets n=10, gr=40,  Round(n∗40)/100= 4 

N=Global best spider in population 

1 1 1 0 0 0 0 1 1 1 

 

N=1.spider 

0 1 1 1 1 0 1 1 0 1 

  

 

 

Nnew spider in Gbest convergence process 

0 1 1 1 0 0 0 1 1 1 

Figure 6. Gbest convergence process 

 

Silent spider Schema: The worst spider (silent spider) in the original SSA is hidden throughout 

each iteration. This spider has a small effect on the optimum result. ISSA has determined and omitted 

the worst spider (silent spider) and has added a new random spider (spidernew) which can possibly have 

more effect on the optimum result. The fitness value of the new spider is controlled while adding it. If 

the fitness value of the new spider is worse than the fitness value of the worst spider (silent spider) of 

the population, it is never added to the population. The system preserves existing population members. 

If the fitness value of the new spider is better than the fitness value of the worst spider (silent spider) of 

the population, the silent spider is omitted from the population and a new spider is replaced (spidernew). 

So, a predetermined fixed population amount is preserved.  This process is repeated throughout each 

iteration.  Figure 7 is shown a silent spider process. 

 

Gbest convergence 
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Lets N=5, n=10  

Current  Spider population(N × n)(5 × 10) 

1 1 1 0 0 0 0 1 1 1 

1 0 1 1 0 1 0 1 0 0 

0 0 0 0 1 0 1 0 1 0 

0 1 1 1 0 0 0 0 0 0 

0 1 1 1 0 0 1 0 1 0 

 

N=3 (the worst spider in population) (silent spider) 

0 0 0 0 1 0 1 0 1 0 

  

 

 

Spidernew  (It is randomly generated) 

1 0 1 0 0 1 0 1 1 1 

 

New Spider population(N x n)(5 x 10) 

1 1 1 0 0 0 0 1 1 1 

1 0 1 1 0 1 0 1 0 0 

1 0 1 0 0 1 0 1 1 1 

0 1 1 1 0 0 0 0 0 0 

0 1 1 1 0 0 1 0 1 0 

Figure 7. Silent spider process 

Figure 8 shows a flowchart of ISSA and Figure 9 shows pseudocode of the ISSA. 

 

 

Silent spider 
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Figure 8. Flowchart For ISSA 
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Spider vibration generation 

 

Silent spider Technique 

 

Spider binary mask changing 

 

Final 
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Gbest convergence  Technique 
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26: 

27: 

28: 

Assign values to the parameters of ISSA 

Create the population of spiders N, assign memory for them 

Initialize Vatar  for each spider  

    while stopping criteria not met do 

             Apply the original social spider algorithm on all populations. 

                 Select Silent  spider in population 

                   Generate a new spider as spidernew 

                             if spidernew fitness value is smaller than Silent   spider fitness value then 

                   Update  Silent  spider as spidernew 

                   end if 

 

 

               for each spider  s in spider population do 

                 Select random r spider in spider population 

                 Apply the crossover process between s and r spider according to crossover rate and  

                 get the new spider(spidernew1) 

                 Apply mutation process  on spidernew1 according to mutation rate and get the new 

spider(spidernew2) 

                      if spidernew2  fitness value is smaller than s  spider fitness value then 

                        Update  s  spider as spidernew2 

                     end if 

                end for 

 

                    

             for each spider  s in spider population do 

              Select Gbest  spider(Global best spider) in population 

             Apply Gbest convergence process between Gbest and s spider according to Gbest  

convergence rate and get the new spider(spidernew) 

                      if spidernew  fitness value is smaller than s  spider fitness value then 

                        Update  s  spider as spidernew 

                     end if 

              end for 

 

            Address any violated constraints 

       end while      

    Output the best solutions found 

  

Figure 9. Pseudocode of the ISSA 

6. EXPERIMENTAL RESULTS AND ANALYSIS 

ISSA and SSA are tested on Matlab R2014a that installed over windows 7, 64 bit, the system of 

2.30 GHz processor with 4GB RAM. Common parameters used in ISSA and SSA comparison, which are 

population size (N), dimension (n), maximum iteration values, ra value, pc value, pm value, crossover rate 

(cr), mutation rate (mr), and Gbest convergence rate (gr) are shown in Table 2. The values of ra, pc, pm are 

taken directly from SSA. The values of cr, mr, and gr are selected from the set {10%, 20%, 30%, 40%, 50%, 

60%, 70%, 80%, 90%}. In experimental studies, thirteen different unimodal and multimodal benchmark 

functions, which are shown in Table 3 with ISSA and SSA, are solved separately.  The performance of 

ISSA is solved on both the global optimization problems and molecular potential energy problems, 

respectively.  

Silent Spider 

Technique 

Crossover 

Technique 

And  

Mutation 

Technique 

Gbest  

convergence 

Technique 
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Tablo 2. Parameters setup for ISSA and SSA 

Parameters Values 

Population size (N) 25 

Dimension (n) {30, 100, 400, 1000} 

Maximum iteration 1000 

Crossover rate (cr) 90% 

Mutation rate (mr) 10% 

Gbest Convergence rate (gr) 40% 

Nrun 20 

Other parameters ra=1; pc=0.7; pm=0.1 (Yu and Li, 2015) 

 

Table 3. Classical Benchmark functions used in the experimental study. 

Type Name Function Range fminimum 

Unimodal F1 ∑ 𝑥𝑖
2

𝑛

𝑖=1
 

[-100,100]n f(X*)=0 

F2 ∑ |𝑥𝑖|
𝑛

𝑖=1
+∏ |𝑥𝑖|

𝑛

𝑖=1
 

[-10,10]n f(X*)=0 

F3 

∑(∑𝑥𝑗

𝑖

𝑗=1

)

2
𝑛

𝑖=1

 

[-100,100]n f(X*)=0 

F4 𝑚𝑎𝑥𝑖|𝑥𝑖|,⁡⁡⁡1 ≤ 𝑖 ≤ 𝑛 [-100,100]n f(X*)=0 

F5 
∑[100(𝑥𝑖+1 − 𝑥𝑖

2)
2
+ (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 
[-30,30]n f(X*)=0 

F6 
∑([𝑥𝑖 + 0.5])2
𝑛

𝑖=1

 
[-100,100]n f(X*)=0  

F7 
∑𝑖𝑥𝑖

4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚[0,1) 
[-1.28,1.28]n f(X*)=0 

Multimodal F8 
∑−𝑥𝑖

𝑛

𝑖=1

𝑠𝑖𝑛 (√|𝑥𝑖|) 
[-500,500]n f(X*)=−418.9829 × n 

F9 
∑[𝑥𝑖

2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 
[-5.12,5.12]n f(X*)=0 

F10 
−20𝑒𝑥𝑝(−0.2√

1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

)

− 𝑒𝑥𝑝(
1

𝑛
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1

)

+ 20 + 𝑒𝑥𝑝(1) 

[-32,32]n f(X*)=0 

F11 1

4000
∑ 𝑥𝑖

2 −∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
)𝑛

𝑖=1
𝑛
𝑖=1 +1 [-600,600]n f(X*)=0 

F12 

1 − 𝑐𝑜𝑠(2𝜋√∑𝑥𝑖
2

𝑛

𝑖=1

)+ 0.1√∑𝑥𝑖
2

𝑛

𝑖=1

 

[-100,100]n f(X*)=0 

F13 
−∑𝑠𝑖𝑛(𝑥𝑖)

𝑛

𝑖=1

𝑠𝑖𝑛2𝑚 (
𝑖𝑥𝑖

2

𝜋
) 

[0,π]n n=30:             f(X*)=-
29,6309;  
n=100: f(X*)= -
99.6201940166; n=400: 
f(X*)= -
399,616795138572; 
n=1000:          f(X*)= -
999.6161052093 

 

Benchmark functions divide into two groups according to their type as unimodal and 

multimodal benchmark functions. Functions F1-F7 (unimodal), which have only one global optimum 
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and can evaluate the exploitation capability of the investigated algorithms. Functions F8–F13 

(multimodal), which include many local optima whose number increases exponentially with the 

problem size, become highly useful when the purpose is to evaluate the exploration capability of the 

investigated algorithms. These functions are obtained from various sources (Tawhid and Ali, 2017a; Yu 

and Li, 2015; Surjanovic and Bingham, 2017).  

For each benchmark function, two measures are used to evaluate the performance of each 

algorithm to solve this function. These measures include (1) Average ( Mean ) and (2) Standard 

deviation ( S.D.). They defined as in Table 4. Where Nrun represents the total number of runs.  

 

Table 4. Performance measure 

Mean 
Mean =

1

Nrun

× ∑ Fitness_funci

Nrun

i=1

 

Standard 

Deviation 
S. D. = √

1

Nrun

∑(Gbesti −Mean)2

Nrun

i=1

 

 

6.1. Determine of crossover, mutation, and Gbest convergence rates  

To determine the crossover rate (cr), population size = 25, dimension=30 and maximum iteration 

= 1000 parameter values are selected for ISSA. The crossover rate (cr) is tested in randomly selected five 

different unimodal benchmark functions (F1, F2, F4, F5, and F7) and randomly selected five different 

multimodal benchmark functions (F8, F9, F10, F11, and F13). Each benchmark function is run 20 times. 

Mean are done for obtained benchmark function results. Table 5 shows the results obtained. According 

to the results,  the crossover rate (cr) is selected at 90%. 

 

Table 5. Determine the crossover rate (cr) in 10 different unimodal and multimodal benchmark 

functions. 

F 
Crossover rate (cr) 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

F1 27004,4900 26156,1900 17520,1100 18324,9400 10140,2200 8790,2180 7135,4120 3347,9670 1175,5600 

F2 66,20135 69,99781 55,3307 53,31256 35,07983 37,10695 20,20037 22,91025 11,5507 

F4 49,85766 45,78515 35,00857 28,66598 22,04498 21,00766 19,00288 20,91694 19,2189 

F5 47536115 30431267 20364778 9716929 5907726 2776247 970753,500 1060099 38362,99 

F7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 

F8 -3112,3900 -2690,1100 -2947,0400 -2547,1600 -3073,5100 -
2572,2100 

-3227,9500 -
2949,1200 

-
2693,3300 

F9 244.9703 257,9103 188,5917 152.5475 112,2209 92,60459 64,57314 42,30282 36,73263 

F10 18,92449 17,49768 17,00651 17,20581 15,78174 14,79526 13,53442 11,89024 10,78819 

F11 283,2028 232,6389 188,1118 146,7355 84,3342 78,03849 54,26156 23,68114 9,374057 

F13 -8,78887 -9,00019 -8,67862 -9,16455 -8,73005 -9,33821 -8,90599 -9,10591 -9,18917 

 

To determine the mutation rate (mr), population size = 25, dimension=30 and maximum iteration 

= 1000 parameter values are selected for ISSA. The mutation rate (mr) is tested in randomly selected five 

different unimodal benchmark functions (F1, F2, F4, F5, and F7) and randomly selected five different 

multimodal benchmark functions (F8, F9, F10, F11, and F13).  Each benchmark function is run 20 times. 

Mean are done for obtained benchmark function results. Table 6 shows the results obtained. According 

to the results, the mutation rate (mr) is selected at 10%. 
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Table 6. Determine the mutation rate (mr) in 10 different unimodal and multimodal benchmark 

functions. 

F 
Mutation rate (mr) 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

F1 0,394634 0,702821 0,758151 0,617514 0,702059 0,671051 0,751396 0,905282 0,814592 

F2 0,141074 0,134244 0,168751 0,210592 0,1827 0,199393 0,208086 0,208631 0,187357 

F4 18,04599 21,89031 23,99734 24,45129 26,38615 25,51669 25,80048 24,79854 25,72667 

F5 282,6736 313,285 327,3802 383,4963 331,8956 429,427 360,3212 383,9664 424,8467 

F7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 

F8 -3325,990 -4201,030 -4000,200 -4730,400 -4522,850 -5123,600 -4961,060 -4514,820 -4711,540 

F9 56,78534 53,34603 49,45195 46,10922 45,66494 47,71347 50,04745 45,39075 46,79847 

F10 0,267519 0,316517 0,354352 0,340763 0,364685 0,317098 0,30045 0,390763 0,412149 

F11 0,679518 0,745935 0,752064 0,819712 0,825792 0,84922 0,777499 0,923743 0,826685 

F13 -8,9389 -9,15235 -9,13946 -8,75084 -9,03193 -9,09553 -9,04802 -9,04717 -8,79987 

 
To determine the Gbest convergence rate (gr), population size = 25 and maximum iteration = 1000 

parameter values are selected for ISSA. The Gbest convergence rate (gr) is tested in randomly selected five 

different unimodal benchmark functions (F1, F2, F4, F5, and F7) and randomly selected five different 

multimodal benchmark functions (F8, F9, F10, F11, and F13).  Each benchmark function is run 20 times. 

Mean are done for obtained benchmark function results. Table 7 shows the results obtained. According 

to the results, the convergence rate (gr) is selected at  40%. 

 

Table 7. Determine the Gbest convergence rate (gr) in 10 different unimodal and multimodal benchmark 

functions. 

F 
 Gbest convergence rate (gr) 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

F1 0,2992 0,2075 0,1135 0,1014 0,3617 2,5722 1,4404 4,1672 6,6827 

F2 0,0869 0,0541 0,0385 0,0363 0,0250 0,0482 0,1329 0,2004 0,3742 

F4 15,3631 12,6156 10,9124 9,0924 8,6100 7,9092 8,8164 9,8505 8,7613 

F5 252,0041 287,4710 230,5190 141,4368 317,3710 360,8188 708,5943 481,9163 643,2990 

F7 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 

F8 -
6,3339e+03 

-
5,0872e+03 

-
7,6181e+03 

-
8,2660e+03 

-
1,0197e+04 

-
1,2587e+04 

-
1,0404e+04 

-
1,3402e+04 

-
1,4866e+04 

F9 50,7249 49,6798 38,4998 32,6286 25,8040 16,9285 9,2235 7,4238 5,7207 

F10 0,1855 0,1092 0,1908 0,3017 0,6169 0,8428 1,3251 1,3012 1,7077 

F11 0,5491 0,4383 0,3003 0,1847 0,3639 0,5313 0,8443 1,0359 1,0551 

F13 -9,4599 -8,8794 -9,1509 -8,6585 -9,2841 -8,9549 -8,5483 -8,9557 -8,5900 

 

6.2. The contribution of crossover (cr), mutation (mr), Gbest convergence (gr), and silent spider 

techniques to the proposed algorithm 

Each developed technique is applied individually with ISSA and its contribution to ISSA has 

been demonstrated. Each benchmark function is run 20 times. Mean and standard deviation (S.D.) are 

done for obtained benchmark function results. The results are shown in Tables 8 and 9. According to 

obtain results, all techniques have improved ISSA's local and global search capabilities. Gbest convergence 
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and silent spider techniques are had good performance except for F5 and F6. Gbest convergence and silent 

spider techniques have improved ISSA's local and global search capabilities. Crossover and mutation 

techniques are had sufficiently good performance except for F8, F12, and F13.   

 
 

Table 8. The comparison of ISSA with cr, mr, gr, and silent spider techniques on dimension = {30}, the 

maximum number of iterations = 1000 in unimodal and multimodal benchmark functions.  

F 

ISSA 

cr mr gr silent spider 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
F1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F2 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F3 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F4 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F5 178,9085 60,0856 177,8799 60,6647 183,7258 96,9333 231,9934 79,9607 

F6 15,7213 6,7661 14,1819 4,1252 14,2264 4,1434 14,1882 4,1691 

F7 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F8 -4,37e+03 8359,600 -3,29e+03 7960,018 -6,47e+03 4730,590 -6,60e+03 2650,303 

F9 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F10 6,18e-10 0,00E+00 6,18e-10 0,00E+00 8,88e-16 0,00E+00 8,88e-16 0,00E+00 

F11 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F12 0,6215 0,2514 11,7313 1,4812 0,1203 0,2302 0,3289 0,6639 

F13 -8,4004 0,7053 -8,4930 0,7034 -8,7114 0,6902 -9,0613 0,6941 

 

 

Table 9. The comparison of ISSA with cr-mr, and gr-silent spider techniques on dimension = {30}, the 

maximum number of iterations = 1000 in unimodal and multimodal benchmark functions.  

F 

ISSA 

cr-mr gr-silent spider 

Mean S.D. Mean S.D. 
F1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F2 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F3 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F4 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F5 177,8799 60,0856 180,71421 66,4571 

F6 13,1852 3,8091 14,1852 4,7590 

F7 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F8 -5,10e+03 3730,5997 -6,60e+03 2650,303 

F9 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F10 8,18e-15 0,00E+00 8,88e-16 0,00E+00 

F11 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F12 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F13 -8,5613 0,6802 -8,7613 0,6602 
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6.3. The general performance of the ISSA and SSA on low-scaled and large-scale optimization 

problems 

ISSA is tested in seven unimodal benchmark functions. Each benchmark function is run 20 

times. Mean and standard deviation (S.D.) are done for obtained benchmark function results. Mean and 

standard deviation (S.D.) comparison results, which are obtained for unimodal benchmark functions 

(F1-F7) by selecting population size (N) =25 and maximum iteration=1000 values for ISSA,  are shown in 

Table 10. According to obtain results, ISSA is had super performance except for F5 and F6. 

 

Table 10. The performance of ISSA with dimension = {30, 100, 400, 1000},  maximum number of 

iterations = 1000, population size = 25  in unimodal benchmark functions. S.D.  is the standard deviation; 

Mean is the average of the unimodal benchmark function results. 

  F1 F2 F3 F4 F5 F6 F7 

30 Mean 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,78E+02 1,29E+01 0,00E+00 

S.D. 0,00E+00 0,00E+00 0,00E+00 0,00E+00 6,16E+01 3,59E+00 0,00E+00 

100 Mean 0,00E+00 0,00E+00 0,00E+00 0,00E+00 3,15E+04 9,04E+01 0,00E+00 

S.D. 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,13E+04 1,29E+01 0,00E+00 

400 Mean 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,57E+07 9,04E+01 0,00E+00 

S.D. 0,00E+00 0,00E+00 0,00E+00 0,00E+00 3,72E+06 1,29E+01 0,00E+00 

1000 Mean 3,04E+05 inf 0,00E+00 0,00E+00 9,99E+02 6,97E+02 0,00E+00 

S.D. 2,60E+04 NaN 0,00E+00 0,00E+00 1,45E-02 1,39E+01 0,00E+00 

 
ISSA is tested on six multimodal benchmark functions. Each benchmark function is run 20 times. 

Mean and standard deviation (S.D.) are done for obtained benchmark function results. Mean and 

standard deviation (S.D.) comparison results, which are obtained for multimodal benchmark functions 

(F8-F13) by selecting population size (N) =25 and maximum iteration=1000 values for ISSA,  are shown 

in Table 11.  According to obtain results, ISSA is had super performance except for F8, F10, and F13.  

 

Table 11. The performance of ISSA with dimension = {30, 100, 400, 1000},  maximum number of 

iterations = 1000, population size = 25  in multimodal benchmark functions.  

  F8 F9 F10 F11 F12 F13  

30 Mean -8,73E+03 0,00E+00 8,88E-16 0,00E+00 0,00E+00 -8,74E+00  

S.D. 2,67E+03 0,00E+00 0,00E+00 0,00E+00 0,00E+00  6,64E-01  
100 Mean -2,02E+04 0,00E+00 8,88E-16 0,00E+00 0,00E+00 -2,12E+01  

S.D. 4,82E+03 0,00E+00 0,00E+00 0,00E+00 0,00E+00 8,99E-01  
400 Mean -5,08E+04 0,00E+00 8,88E-16 0,00E+00 0,00E+00 -6,97E+01  

S.D. 2,57E+04 0,00E+00 0,00E+00 0,00E+00 0,00E+00  1,95E+00  
1000 Mean -9,41E+04 0,00E+00 8,88E-16 0,00E+00 0,00E+00 -1,61E+02  

S.D. 3,42E+04 0,00E+00 0,00E+00 0,00E+00 0,00E+00  2,97E+00  

 

Original SSA and proposed ISSA are tested in low-scaled and large-scaled three different 

dimensions (dimension={30, 100, 1000}), thirteen different unimodal and multimodal benchmark 

functions. Each benchmark function is run 20 times. Mean and standard deviation are done for obtained 

benchmark function results. Mean and standard deviation comparison results, which are obtained for 

unimodal nd multimodal benchmark functions by choosing dimension={30, 100}), and population 

size=25,  maximum iteration=1000 values equally for original SSA and ISSA,  are shown in Table 12. 

Mean and standard deviation comparison results, which are obtained for unimodal and multimodal 

benchmark functions by choosing dimension={1000}), and population size=25,  maximum iteration=1000 

values equally for original SSA and ISSA, are shown in Table 13.  The results of the high performance of 

the ISSA are bold. According to the results, ISSA has shown better performance than SSA in unimodal 
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benchmark functions. According to the results, ISSA has shown better performance than SSA in 

multimodal benchmark functions.  

Figure 10 is shown ISSA and SSA convergence graphs for unimodal F1 and F4, and multimodal 

F9 and  F10 benchmark functions. According to the convergence graphs results, the optimal solutions are 

obtained with ISSA. 

 

Table 12. The comparison of SSA and ISSA with dimension = {30, 100},  maximum number of iterations = 

1000 in unimodal and multimodal benchmark functions.  

F 

Dimension=30 Dimension=100 

SSA ISSA SSA ISSA 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
F1 1,49E+00 7,48E-01 0,00E+00 0,00E+00 5,67E+02 1,18E+02 0,00E+00 0,00E+00 

F2 5,23E-01 3,53E-01 0,00E+00 0,00E+00 8,51E+40 1,76E+41 0,00E+00 0,00E+00 

F3 2,51E+02 7,02E+01 0,00E+00 0,00E+00 2,38E+03 6,38E+02 0,00E+00 0,00E+00 

F4 3,42E+01 3,18E+00 0,00E+00 0,00E+00 6,35E+01 3,35E+00 0,00E+00 0,00E+00 

F5 4,79E+02 1,04E+02 1,78E+02 6,16E+01 5,99E+04 1,85E+04 3,15E+04 1,13E+04 

F6 4,27E+00 9,43E-01 1,23E+00 4,58E-01 6,79E+01 5,66E+00 6,56E+01 2,70E+00 

F7 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F8 -2,80E+03 9,54E+02 -8,73E+03 2,67E+03 -4,82E+03 9,31E+02 -2,02E+04 4,82E+03 

F9 4,45E+01 7,80E+00 0,00E+00 0,00E+00 5,36E+02 3,00E+01 0,00E+00 0,00E+00 

F10 6,75E-01 2,14E-01 8,88E-16 0,00E+00 4,77E+00 2,45E-01 8,88E-16 0,00E+00 

F11 9,96E-01 3,36E-02 0,00E+00 0,00E+00 6,42E+00 8,80E-01 0,00E+00 0,00E+00 

F12 8,52E+01 5,76E+00 0,00E+00 0,00E+00 2,32E+02 1,51E+01 0,00E+00 0,00E+00 

F13 -8,87E+00 7,17E-01 -9,03E+00 7,27E-01 -2,07E+01 9,87E-01 -2,22E+01 1,48E+00 

 

 

Table 13. The comparison of SSA and ISSA with dimension = {1000}, population size=25,  maximum 

number of iterations = 1000 in the unimodal and multimodal benchmark functions.  

F 

Dimension=1000 

SSA ISSA 

Mean S.D. Mean S.D. 
F1 3,18E+05 1,20E+04 3,04E+05 2,60E+04 

F2 Inf NaN Inf NaN 

F3 1,41E+03 1,93E+04 0,00E+00 0,00E+00 

F4 9,94E+01 1,33E-01 0,00E+00 0,00E+00 

F5 2,61E+08 2,09E+07 9,99E+02 1,45E-02 

F6 2,52E+03 6,26E+01 6,97E+02 1,39E+01 

F7 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

F8 -1,48E+04 3,79E+03 -9,41E+04 3,42E+04 

F9 1,02E+04 1,46E+02 0,00E+00 0,00E+00 

F10 1,54E+01 1,67E-01 8,88E-16 0,00E+00 

F11 2,83E+03 1,35E+02 0,00E+00 0,00E+00 

F12 8,73E+02 1,65E+01 0,00E+00 0,00E+00 

F13 -1,41E+02 2,36E+00 -1,57E+02 2,18E+00 
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Figure 10. Convergence graphs for ISSA and Original SSA for benchmark functions (F1, F4, F9, and F10) 
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Wilcoxon signed-rank test is a pairwise test that aims to detect significant differences between 

the behavior of two algorithms (Acılar, 2013). In this paper, SSA-ISSA algorithms are operated with 20 

times various unimodal and multimodal benchmark functions with the dimension (n)={30, 100, 1000}, 

population size=25 and maximum iteration=1000 equal parameter and 20 trials are done in each 

dimension for each benchmark function and thirteen data sets are obtained. The results are shown in 

Table 14 for unimodal benchmark functions, Table 15 shows the multimodal benchmark In Wilcoxon 

signed-rank test, alpha is selected as 0.05 (Acılar, 2013). ρ is the probability of the null hypothesis is true. 

ρ values of the hypothesis are calculated by using Matlab R2014a software. According to the obtained 

results, there is a semantic difference between the results obtained from SSA and ISSA heuristic 

algorithms. The results showed that the ISSA has superior performance on thirteen unimodal and 

multimodal benchmark functions. 

  

Table 14. Wilcoxon signed-rank test on SSA and ISSA in  dimension={30, 100, 1000},  maximum number 

of iterations = 1000, population size=25 in  unimodal benchmark functions. 

F 
n=30 n=100 n=1000 

ISSA(p) h ISSA(p) h ISSA(p) h 

F1 0,0419 1 0,9698 0 0,9097 0 

F2 0,0211 1 0,0472 1 - - 

F3 1 0 0,0444 1 - - 

F4 0,5708 0 0,0757 0 0,2730 0 

F5 0,0123 1 0,6756 0 0,9097 0 

F6 0,9475 0 1 0 0,8172 0 

F7 NaN 0 NaN 0 NaN 0 

 

Table 15. Wilcoxon signed-rank test on SSA and ISSA in  dimension={30, 100, 1000},  maximum number 

of iterations = 1000, population size=25 in  multimodal benchmark functions. 

F 
n=30 n=100 n=1000 

ISSA(p) h ISSA(p) h ISSA(p) h 

F8 0,0247 1 0,0474 1 0,0408 1 

F9 0,9698 0 0,7337 0 0,0103 1 

F10 0,0452 1 0,7337 0 0,0474 1 

F11 0,0123 1 0,0274 1 0,7337 0 

F12 0,0447 1 0,0257 1 0,0001 1 

F13 0,0347 1 0,0457 1 1 0 

 

6.4. The General Performance Of The ISSA For Minimizing The Potential Energy Function 

We compare ISSA with SSA on dimension={ 20, 40, 60, 80, 100, 120, 140, 160, 180, 200}. According 

to the results, the performance of ISSA is better than the performance of SSA on the MPEF problem. The 

results are shown in Table 16. 
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Table 16. The comparison results of ISSA and SSA on dimension = {20, 40, 60, 80, 100, 120, 140, 160, 180, 

200}. 

n SSA ISSA 

20 15,9100 13,5926 

40 33,1715 32,5559 

60 57,0631 48,4384 

80 76,7605 66,3655 

100 98,2967 78,4906 

120 110,91 105,76 

140 130,45 124,16 

160 160,79 148,94 

180 170,53 156,09 

200 187,36 186,60 

 

ISSA is compared in two different method series. In the first series, WX-PM, WX-LLM, LX-LLM 

and LX-PM which are variants of the GA, and ISSA  are compared in molecular potential energy 

function in equal comparison parameters (Deep et al., 2012; Deep and Thakur, 2007a; Deep and Thakur, 

2007b).  In the second series, VNS-123 which consists of a variable neighborhood search-based method, 

and ISSA  are compared in molecular potential energy function in equal comparison parameters 

(Dra˘zi´c et al., 2008). rHYB method expresses a hybrid genetic algorithm (Barbosa et al., 2005). The 

parameters settings used in all comparison algorithms are shown in Table 17. 
 

 

Table17. The parameters settings of all algorithms 

Key Method Name 

VNS-123 The combination of the VNS-1, VNS-2, and VNS-3 is made to diversify the 

search. 

WX-PM Crossover operator=WX and mutation operator=PM  

WX-LLM Crossover operator=WX and mutation operator=LLM  

LX-LLM Crossover operator=LX and mutation operator=LLM  

LX-PM Crossover operator=LX and mutation operator=PM  

rHYB   

Common settings Population size: N = 25; number of runs = 20; maximum iterations = [400-

4000]; n=[20-200] 

 

The function E in (1) is minimized in the specified search space [0, 5]n. The function E grows 

linearly with n as E* (n) = −0.0411183n (Lavor and Maculan, 2004) as shown in Table 18. 

 

Table 18. Global minimum value E* for different sizes 

n E* 

20 -0,822366 

40 -1,644732 

60 -2,467098 

80 -3,289464 

100 -4,111830 

120 -4,934196 

140 -5,756562 

160 -6,578928 

180 -7,401294 

200 -8,22366 
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The performance of ISSA is compared to SSA, VNS-123, WX-PM, WX-LLM, LX-LLM, LX-PM, 

and rHYB in dimension={20, 40, 60, 80, 100, 120, 140, 160, 180, 200} on MPEF problem. We take the 

results of comparison algorithms directly from (Barbosa et al., 2005; Dra˘zi´c et al., 2008; Deep et al., 2012; 

Deep and Thakur, 2007a; Deep and Thakur, 2007b ). The results are shown in Tables 19 and 20. Results 

of successful SSA are made in bold text. 

 

Table 19. The comparison results of ISSA on dimension = {20, 40, 60, 80, 100}. 

n WX-PM LX-PM WX-LLM LX-LLM ISSA 

20 15,574 23,257 28,969 14,586 13,5926 

40 59,999 71,336 89,478 39,366 32,5559 

60 175,865 280,131 225,008 105,892 48,4384 

80 302,011 326,287 372,836 237,621 66,3655 

100 369,376 379,998 443,786 320,146 78,4906 

 
Table 20. The comparison results of ISSA on dimension = {20, 40, 60, 80, 100, 120, 140, 160, 180, 200}. 

n VNS-123 GA rHYB ISSA 

20 23,381 36,626 35,836 13,5926 

40 57,681 133,581 129,611 32,5559 

60 142,882 263,266 249,963 48,4384 

80 180,999 413,948 387,787 66,3655 

100 254,899 - - 78,4906 

120 375,970 - - 105,76 

140 460,519 - - 124,16 

160 652,916 - - 148,94 

180 663,722 - - 156,09 

200 792,537 - - 186,60 

 

6.5. Discussion about ISSA 

In this paper, the original SSA is improved by adding four techniques. Exploration and 

exploration ability of SSA  is increased with these techniques. Crossover (cr) and Gbest convergence (gr) 

techniques allow ISSA to escape from the local traps in the search space and ISSA's local search 

capability is improved. Mutation (mr) and silent spider techniques allow ISSA to discover new points in 

search space. Thus, local optimum and global optimum points are guaranteed for ISSA. According to 

results, ISSA with  Gbest convergence and silent spider techniques shows performance at roughly 84,62% 

of benchmark functions for 11 out of 13 benchmark functions except for F5 and F6. ISSA with crossover 

(cr) and mutation (mr) techniques show performance at roughly 76,92% of benchmark functions for 10 

out of 13 benchmark functions except for F8, F10, and F13. The results showed that none of the methods 

alone proved superior to all benchmark functions. All techniques develop a different ability of ISSA. Gbest 

convergence and silent spider techniques developed ISSA's exploration and exploitation ability in 

multimodal functions, but not all unimodal functions. This is due to the low success of the silent spider 

technique in discovering new points, and the fact that the worst spiders are not thrown out of the system 

during each iteration. Furthermore, with the Gbest convergence technique, some of the population 

members resemble the best spider of iteration. However, if the best spider of iteration is not the 

optimum point in the search space, it reduces the success of the algorithm. Therefore, while Gbest 

convergence and silent spider techniques achieve 100% success in multimodal functions, they have not 

achieved in unimodal functions. Crossover and mutation techniques developed ISSA's exploration and 

exploitation ability in unimodal functions, but not all multimodal functions. This is because multimodal 

functions are more than one point of optimum and techniques can not discover these optimum points. 
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7. CONCLUSION 

Social spider algorithm (SSA) is a heuristic algorithm that is created by imitating spider 

behaviors in nature. SSA regulates search space of optimization problems as a high dimensional spider 

web. SSA can be easily adapted to real-world problems and an easy to apply heuristic algorithm. In this 

paper, the original social spider optimization algorithm is studied details, an improved SSA (ISSA) 

based on SSA has been developed and applied on MPEF problem. MPEF problem is difficult to solve. 

Because the number of local minima increases exponentially with the molecular size.  Four different 

techniques (Crossover, mutation, Gbest convergence, and silent spider) are developed during the 

candidate solutions production schema in ISSA. With these four techniques, the ability of ISSA to search 

locally and globally in continuous space has been developed. The value of crossover rate (cr), mutation 

rate (mr), and Gbest convergence rate (gr) are tested from the set {10%, 20%, 30%, 40%, 50%, 60%, 70%, 

80%, 90%} on ten different unimodal and multimodal benchmark functions. The most suitable values for 

these parameters are determined. The performances of SSA and ISSA are tested on thirteen unimodal 

and multimodal benchmark functions and the results obtained from SSA and ISSA are compared. 

Wilcoxon test was performed on the obtained results. The results showed that the ISSA has superior 

performance. The performance of the SSA and ISSA is evaluated on MPEF problem with different 

dimension={20, 40, 60, 80, 100, 120, 140, 160, 180, 200}. The results showed that the performance of ISSA 

is better than the performance of SSA. The performance of the ISSA is compared to various well-known 

seven algorithms in the literature. The results showed that the ISSA has superior performance and ISSA 

can be used as an alternative preference.  

In future research, hybrid SSA will be created by using different heuristic methods. The random 

walk scene of SSA will be developed by inspiring from different heuristic methods. Weight value will be 

added to SSA’s search space agents and the balance between the blasting and exploration will be 

provided. 
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