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Abstract: Let R be a ring. In this article, we introduce and study relative dual Baer property. We characterize
R-modules M which are Rr-dual Baer, where R is a commutative principal ideal domain. It is shown
that over a right noetherian right hereditary ring R, an R-module M is N-dual Baer for all R-modules
N if and only if M is an injective R-module. It is also shown that for R-modules M1, Ma, ..., M,
such that M; is Mj-projective for all ¢ > j € {1,2,...,n}, an R-module N is @, M;-dual Baer if
and only if N is M;-dual Baer for all i € {1,2,...,n}. We prove that an R-module M is dual Baer if
and only if S = Endr(M) is a Baer ring and IM = ra(ls(IM)) for every right ideal I of S.
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1. Introduction

Throughout this paper, R will denote an associative ring with identity, and all modules are unitary
right R-modules. Let M be an R-module. We will use the notation N <« M to indicate that N is small
in M (i.e., L+ N # M for every proper submodule L of M). By E(M) and Endg(M), we denote the
injective hull of M and the endomorphism ring of M, respectively. By Q, Z, and N we denote the set of
rational numbers, integers and natural numbers, respectively. For a prime number p, Z(p>) denotes the
Priifer p-group.

The concept of Baer rings was first introduced in [6] by Kaplansky. Since then, many authors have
studied this kind of rings (see, e.g., [2] and [3]). A ring R is called Baer if the right annihilator of any
nonempty subset of R is generated by an idempotent. In 2004, Rizvi and Roman extended the notion
of Baer rings to a module theoretic version [10]. According to [10], a module M is called a Baer module
if for every left ideal I of Endr(M), NgerKerg is a direct summand of M. This notion was recently
dualized by Keskin Tiitiincii-Tribak in [14]. A module M is said to be dual Baer if for every right ideal
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Iof S = Endr(M), ) 4crIm¢ is a direct summand of M. Equivalently, for every nonempty subset A of
S, > pealmg is a direct summand of M (see [14, Theorem 2.1]).

A module M is said to be Rickart if for any ¢ € Endg(M), Keryp is a direct summand of M (see [7]).
The notion of dual Rickart modules was studied recently in [8] by Lee-Rizvi-Roman. A module M is said
to be dual Rickart if for every ¢ € Endgr(M), Imyp is a direct summand of M. In [8], it was introduced
the notion of relative dual Rickart property which was used in the study of direct sums of dual Rickart
modules. Let N be an R-module. An R-module M is called N-dual Rickart if for every homomorphism
¢ : M — N, Imy is a direct summand of N (see [8]). Similarly, we introduce in this paper the concept of
relative dual Baer property. A module M is called N-dual Baer if for every subset A of Hom (M, N),
ZfeA Imf is a direct summand of N. It is clear that if M is N-dual Baer, then M is N-dual Rickart.

We determine the structure of modules M which are Rg-dual Baer for a commutative principal ideal
domain R (Proposition 2.7). Then we show that for an R-module M, Rg is M-dual Baer if and only if M
is a semisimple module (Proposition 2.9). It is shown that over a right noetherian right hereditary ring R,
an R-module M is N-dual Baer for all R-modules N if and ouly if M is an injective R-module (Corollary
2.17). We prove that if {M;}; is a family of R-modules, then for each j € I, @, ; M; is M;-dual Baer
if and only if M; is M;-dual Baer for all ¢ € I (Corollary 2.24). It is also shown that for R-modules My,
M, ..., M, such that M; is Mj-projective for all i > j € {1,2,...,n}, an R-module N is @, M;-dual
Baer if and only if N is M;-dual Baer for all ¢ € {1,2,...,n} (Theorem 2.25). We conclude this paper by
showing that an R-module M is dual Baer if and only if S = Endr(M) is a Baer ring and IM = rp;(1s(1))
for every right ideal I of S, where lg(I) = {p € S| I = 0}, rm(ls(I)) = {m € M | ls(I)m = 0} and
IM =3 ¢ Imf (Theorem 2.31).

2. Main results

Definition 2.1. Let N be an R-module. An R-module M is called N-dual Baer if, for every subset A
of Hom p(M, N), 3 ¢c o Imf is a direct summand of N.

Obviously, an R-module M is dual Baer if and only if M is M-dual Baer.
Example 2.2. (1) Let N be a semisimple R-module. Then for every R-module M, M is N-dual Baer.

(2) If M and N are R-modules such that Homp (M, N) = 0, then M is N-dual Baer. It follows that
for any couple of different maximal ideals m; and mg of a commutative noetherian ring R, E(R/m;) is
E(R/my)-dual Baer (see [12, Proposition 4.21]).

(3) Let p be a prime number. Note that Z/pZ and Z(p>) are dual Baer Z-modules. On the other
hand, it is clear that Z(p™) is Z/pZ-dual Baer but Z/pZ is not Z(p>)-dual Baer.

Recall that a module M is said to have the strong summand sum property, denoted briefly by SSSP,
if the sum of any family of direct summands of M is a direct summand of M.

Following [8, Definition 2.14], a module M is called N-d-Rickart if, for every homomorphism ¢ :
M — N, Imy is a direct summand of N.

Proposition 2.3. Let M and N be two R-modules. If M is N-dual Baer, then M 1is N-d-Rickart. The
converse holds when N has the SSSP.

Proof. This follows from the definitions of “M is N-d-Rickart” and “M is N-dual Baer”. O

The next example shows that the assumption “/N has the SSSP” is not superfluous in Proposition
2.3.

Example 2.4. Let R be a von Neumann regular ring which is not semisimple (e.g., R = [[;=, Z/2Z). By
[8, Proposition 2.26], the R-module Rr does not have the SSSP. On the other hand, Rg is Rr-d-Rickart,
but it is not Rp-dual Baer (see [14, Corollary 2.9] and [8, Remark 2.2|).
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Proposition 2.5. Let N be an indecomposable R-module. Then the following conditions are equivalent
for an R-module M .

(i) M is N-dual Baer;
(ii) M is N-d-Rickart;

(iii) Every nonzero ¢ € Hompr(M, N) is an epimorphism.

Proof. (i) = (ii) and (iii) = (i) are clear.

(ii) = (iii) Let 0 # ¢ € Hompr(M, N). By assumption, Imyp is a direct summand of N. But N is
indecomposable. Then Imy = N. This completes the proof. O

Proposition 2.6. Let M and N be modules such that Homg(M,N) # 0 (e.g., N is M -generated). Then
the following conditions are equivalent:

(i) M is N-dual Baer and N is indecomposable;

(ii) Every nonzero homomorphism ¢ € Hom r(M, N) is an epimorphism.

Proof. (i) = (ii) This follows from Proposition 2.5.

(ii) = (i) It is clear that M is N-dual Baer. Now let K be a nonzero direct summand of N. Let
K’ be a submodule of N such that N = K @ K'. Since Hompg(M,N) # 0, there exists a nonzero
homomorphism ¢ € Hompr(M,N). Let 7’ : N — K’ be the projection map and let i’ : K’ — N be the
inclusion map. Then '’ € Homg(M, N). Assume that i'7’p # 0. By hypothesis, Imi'7’o = N. So
K’ = N. Thus K = 0, a contradiction. Therefore i'7'¢ = 0. Hence K’ = 0 and K = N. It follows that
N is indecomposable. O

The following result describes the structure of R-modules which are Rgr-dual Baer, where R is a
commutative principal ideal domain which is not a field.

Proposition 2.7. Let R be a commutative principal ideal domain which is not a field. Then the following
conditions are equivalent for an R-module M :

(i) M is Rr-dual Baer;

(ii) M is Rg-d-Rickart;

(iii) M has no nonzero cyclic torsion-free direct summands;
(

iv) Homgr(M, Rg) = 0.

Proof. (i) = (ii) This is clear.

(i) = (iii) Assume that M has an element x such that zR is a direct summand of M and Rr = zR.
Let m: M — =R be the projection map and let f : ztR — Rp be an isomorphism. Then fr: M — Rpg is
an epimorphism. Let o be a nonzero element of R which is not invertible. Consider the homomorphism
g : Rr = Rpg defined by g(r) = ar for all r € R. Then gfm € Homgr(M, Rg) and Imgfm = aR. Tt is
clear that aR # 0 and aR # R. Thus aR is not a direct summand of R. So M is not Rr-d-Rickart, a
contradiction.

(iii) = (iv) Assume that Hompg(M, Rr) # 0. So there exists a nonzero homomorphism f : M — Rpg.
Thus Im f = aR for some nonzero a € R since R is a principal ideal domain. Then M /Kerf = aR = Ry is
a projective R-module. It follows that Kerf is a direct summand of M. Let Y be a submodule of M such
that M = Kerf @Y. Therefore Y = Rg. This contradicts our assumption. Hence Hompg(M, Rg) = 0.

(iv) = (i) This is immediate. O
Example 2.8. Consider a Z-module M = Q) @ T, where T is a torsion Z-module and I is an index

set. Suppose that M is not Z-dual Baer. By Proposition 2.7, there exists a cyclic submodule L of M
such that L =2 Z and L is a direct summand of M. Let N be a submodule of M such that M = L & N.
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Since T is the torsion submodule of M, we have T' C N. Hence T is a direct summand of N. Let K be a
submodule of N such that N = K@ T. Thus M = L& K & T. Therefore Ly K = Q). So L is injective,
a contradiction. It follows that M is Z-dual Baer. On the other hand, note that if T = Z(2*°) ¢ Z/8Z,
then M is not a dual Baer module (see [14, Corollary 3.5].

In Proposition 2.7, we studied when an R-module M is Rgr-dual Baer. Next, we investigate when
Rp is M-dual Baer for an R-module M.

Proposition 2.9. The following conditions are equivalent for an R-module M :
(i) The R-module Rg is M-dual Baer;

(ii) M is a semisimple module.

Proof. (i) = (ii) Let = € M. Consider the R-homomorphism ¢ : R — M defined by ¢(r) = ar for
all r € R. Then Imy = xR. Since Rp is M-dual Baer, it follows that for any submodule L of M,
L =73 ;xR is adirect summand of M. Therefore M is semisimple.

(ii) = (i) is obvious. O
Corollary 2.10. The following conditions are equivalent for a ring R:

(i) The R-module Rg is dual Baer;

(ii) The R-module Rg is E(R)-dual Baer;

(iii) R is a semisimple ring.

Proof. (i) < (iii) By [14, Corollary 2.9].
(ii) < (iii) This follows from Proposition 2.9. O

Remark 2.11. If K is a submodule of an R-module M such that K is M-dual Baer, then K is a direct
summand of M. In particular, if the R-module M is E(M)-dual Baer, then M is an injective module.

The next example shows that even if a module M is injective, the module M need not be M-dual
Baer.

Example 2.12. Let R be a self injective ring which is not semisimple (e.g., R = [[ 2, Z/2Z). Then
E(Rg) = Rg. By [14, Corollary 2.9], the R-module Rp is not Rp-dual Baer.

Next, we will be concerned with the modules M which are N-dual Baer for all modules N. We begin
with the following proposition which provides a class of rings R whose semisimple modules are N-dual
Baer for any R-module V.

Proposition 2.13. Let R be a right noetherian right V-ring and let M be a semisimple R-module. Then
M is N-dual Baer for every R-module N.

Proof. Let N be an R-module. It is clear that for any ¢ € Homp(M,N), Imyp is semisimple. Let
A be a subset of Homp(M,N). Then 3, ,Imf is a semisimple submodule of N. Since R is a right
noetherian right V-ring, ZfeA Imjf is injective by [4, Proposition 1]. Therefore ZfeA Imf is a direct
summand of N. So M is N-dual Baer. O

The next example shows that the condition “R is a right noetherian ring” in the hypothesis of
Proposition 2.13 is not superfluous.

Example 2.14. Let F be a field and let R = HnEN F,, such that F,, = F for all n € N. Then R is a
commutative V-ring which is not noetherian. Note that Soc(R) = @,enF), is an essential proper ideal of
R. In particular, Soc(R) is not a direct summand of R. So Soc(R) is not Rg-dual Baer.



T. Amouzegar, R. Tribak / J. Algebra Comb. Discrete Appl. 7(3) (2020) 259-267

Following [13], a module M is called noncosingular if for every nonzero module N and every nonzero
homomorphism f: M — N, Imf is not a small submodule of N.

Proposition 2.15. Let M be a module. Assume that M is N-dual Baer for every R-module N. Then
every factor module of M 1is injective. In particular, M is a noncosingular module.

Proof. Let L be a submodule of M. Let m : M — M/L be the natural epimorphism and let yu :
M/L — E(M/L) be the inclusion map. Then ur € Homg(M,E(M/L)) and Imur = M/L. Since M
is E(M/L)-dual Baer, M/L is a direct summand of F(M/L). So M/L is injective. This completes the
proof. O

Proposition 2.16. Let R be a right noetherian ring. Then the following conditions are equivalent for
an R-module M :

(i) M is N-dual Baer for all R-modules N;

(ii) Ewvery factor module of M is an injective R-module.

Proof. (i) = (ii) By Proposition 2.15.

(ii) = (i) Let N be an R-module. It is clear that Imyp is injective for every ¢ € Homp(M,N).
Since the ring R is right noetherian, >°,. , Imf is injective for every subset A of Hom g(M, N) by [1,

Proposition 18.13|. Therefore feA Imf is a direct summand of N. This proves the proposition.

Recall that a ring R is called right hereditary if each of its right ideals is projective. It is well known
that a ring R is right hereditary if and only if every factor module of an injective right R-module is
injective (see, for example [16, 39.16]). The next result is a direct consequence of Proposition 2.16. It
determines the structure of R-modules M which are N-dual Baer for all R-modules N, where R is a right
noetherian right hereditary ring.

Corollary 2.17. Let R be a right noetherian right hereditary ring (e.g., R is a Dedekind domain). Then
the following conditions are equivalent for an R-module M :

(i) M is N-dual Baer for any R-module N;
(ii) M is an injective R-module.
Example 2.18. Let M be a Z-module. It is easily seen from Corollary 2.17 that M is N-dual Baer for

any Z-module N if and only if M is a direct sum of Z-modules each isomorphic to the additive group of
rational numbers Q or to Z(p™) (for various primes p).

Combining Corollary 2.17 and [8, Corollary 2.30], we obtain the following result.

Corollary 2.19. The following conditions are equivalent for a ring R:
(i) Every injective R-module is dual Baer;
(ii) Fvery injective module is N-dual Baer for every R-module N ;

(iii) R is a right noetherian right hereditary ring.

The next characterization extends [14, Corollary 2.5].

Theorem 2.20. Let M and N be two R-modules. Then M is N-dual Baer if and only if for any direct
summand M' of M and any submodule N’ of N, M’ is N'-dual Baer.

Proof. Let M’ = eM for some e?> = ¢ € Endr(M) and let N’ be a submodule of N. Let {¢;}; be a
family of homomorphisms in Hom g(M’, N'). Since p;e(M) = ¢;(M’') C N’ C N for every i € [ and M
is N-dual Baer, » ;. ; p;e(M) is a direct summand of N. Therefore ), ©;(M’) is a direct summand of
N'. Tt follows that M’ is N’-dual Baer. The converse is obvious. O
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Corollary 2.21. The following conditions are equivalent for a module M :
(i) M is a dual Baer module;
(ii) For any direct summand K of M and any submodule N of M, K is N-dual Baer.

From [14, Example 3.1 and Theorem 3.4], it follows that a direct sum of dual Baer modules is not
dual Baer, in general. Next, we focus on when a direct sum of N-dual Baer modules is also N-dual Baer
for some module N.

Proposition 2.22. Let N be a module having the SSSP and let {M;}1 be a family of modules. Then
@,c; M; is N-dual Baer if and only if M; is N-dual Baer for all i € I.

Proof. Suppose that @, ; M; is N-dual Baer. By Theorem 2.20, M; is N-dual Baer for all i € I.
Conversely, assume that M; is N-dual Baer for all i € 1. Let {ox}a be a family of homomorphisms
in Hom r(P,c; M, N). For each i € I, let p; : M; — @,.; M; denote the inclusion map. Then for
every ¢ € I and every A € A, pru; € Homgr(M;, N). Since M; is N-dual Baer for every i € I, it
follows that Im(pyu;) is a direct summand of N for every (i,\) € I x A. Note that for each A € A,
Imey = > ;o7 Im(papi). As N has the SSSP, Y\ Impy = >3 cx D e Im(pap) is a direct summand
of N. Therefore @,.; M; is N-dual Baer. O

The following result is taken from [14, Theorem 2.1].

Theorem 2.23. The following conditions are equivalent for a module M and S = Endg(M):
(i) M is a dual Baer module;
(ii) For every nonempty subset A of S, ZfeA Imf = e(M) for some idempotent e € S;
(iii) M has the SSSP and for every ¢ : M — M, Imy is a direct summand of M.

Corollary 2.24. Let {M;}r be a family of modules and let j € I. Then @, ; M; is M;-dual Baer if and
only if M; is M;-dual Baer for all i € I.

Proof. The necessity follows from Theorem 2.20. Conversely, by assumption, we have M; is M;-dual
Baer. Then M; is a dual Baer module. By Theorem 2.23, M; has the SSSP. Applying Proposition 2.22,
D, M; is Mj-dual Baer. O

In the following result, we present conditions under which a module N is @, M;-dual Baer for
some modules M; (1 <i<n).

Theorem 2.25. Let My, ..., M, be R-modules, where n € N. Assume that M; is M;-projective for all
i>j€{1,2,....,n}. Then for any R-module N, N is @._, M;-dual Baer if and only if N is M;-dual
Baer for alli € {1,2,...,n}.

Proof. The necessity follows from Theorem 2.20. Conversely, suppose that N is M;-dual Baer for all
i€{1,2,...,n}. We will show that N is @, M;-dual Baer. By induction on n and taking into account
[9, Proposition 4.33], it is sufficient to prove this for the case n = 2. Assume that N is M;-dual Baer
for i = 1,2 and Ms is M;-projective. Let {¢x}a be a family of homomorphisms in Hom g (N, My & Ms).
Let mo : My & My — My be the projection of My @& Ms on My along M;. We want to prove that
ZXGA Im¢, is a direct summand of M; & M,. Since N is Msy-dual Baer, ZAGA ma¢A(N) is a direct
summand of M. So } 7, o m20x(NN) is Mi-projective by [9, Proposition 4.32]. As M; + (ZAeA Im@\) =
M, (Z,\e/\ ngi))\(N)) is a direct summand of M; @ Mp, there exists a submodule L < 7y, Imgy such
that M + (Z/\e/\ Irngb)\) = M1 @ L by [9, Lemma 4.47]. Thus ) ., Im¢y = (M1 N (Z)\eA Imgb)\)) @ L by
modularity. It is easily seen that ZAeA modx(N) is a direct summand of My. Let Ko be a submodule of M,
such that My = Ko @ (ZAeA 7r2¢>>\(N)). Therefore M1 & Mo = M1 ®LO K. Let 11 : M1 ® (LK) — M,
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be the projection of M; @M on M; along LA K. Then m ¢y € Hom (N, M) for every A € A. Moreover,
we have

> moa(N) =m (Zm@) - ((Zm@) + (L@K)) N M.

AEA AEA A€A

But Yy Imey = (M; N (3,cp Impy)) & L. Then,

> mea(N) = <<M1 N (me)) @L@K) NM; = M; N (Zm@) .

AEA AEA AEA

Since N is Mj-dual Baer, o) moa(N) = My N (ZAE,\ Imgb)\) is a direct summand of M;. It follows
that (M1 N (ZAeA IquA)) © L is a direct summand of My & L® Ka. So )y, Img, is a direct summand
of M1 @ Ms. Consequently, N is M7 @ Ms-dual Baer. This completes the proof. O

Corollary 2.26. Let My, ..., M, be R-modules, where n € N. Assume that M; is M;-projective for all
i>je{l,2,....,n}. Then M = @;_, M, is a dual Baer module if and only if M; is M;-dual Baer for
alli,j € {1,2,...,n}.

Proof. The necessity follows from Theorem 2.20. Conversely, suppose that M; is M;-dual Baer for
all 4,5 € {1,2,...,n}. By Corollary 2.24, M is Mj-dual Baer for all j € {1,2,...,n}. Since M; is
M;-projective for all i > j € {1,2,...,n}, M is @], M;-dual Baer by Theorem 2.25. Thus M is a dual
Baer module. O

Note that the sufficiency in Corollary 2.26 can be proved by using [14, Theorem 3.10].

Following [8, Definition 5.7], a module M is called N-Ds (or relatively Dy to N) if for any submodule
M' of M, M/M' is isomorphic to a direct summand of N implies that M’ is a direct summand of M.

Proposition 2.27. Let My, ..., M, be R-modules, where n € N. Assume that M; is M;-Dy for all
i,j € {1,2,...,n}. Then @, M; is a dual Baer module if and only if M; is M;-dual Baer for all
i,j€{1,2,...,n} and M has the SSSP.

Proof. (=) By [8, Theorem 5.11|, M; is M;-d-Rickart for all ¢,j € {1,2,...,n}. Note that M; has
the SSSP for every i € {1,2,...,n} (see Theorem 2.23). Applying Proposition 2.3, it follows that M; is
Mj-dual Baer for all 7,5 € {1,2,...,n}.

(«<=) This follows easily from [8, Theorem 5.11], Proposition 2.3 and Theorem 2.23. O

Theorem 2.28. Let M = @, ; M; be the direct sum of fully invariant submodules M;. Then M is a
dual Baer module if and only if M; is a dual Baer module for all i € I.

Proof. The necessity follows from [14, Corollary 2.5]. Conversely, let S = Endr(M) and let {©x}a
be a family of homomorphisms in S. For each ¢ € I, let m; : M — M, be the projection map and let
pi : M; — M be the inclusion map. Note that for each A € A, px(M) = >, wapi(M;). Since each M;
(i € I) is fully invariant in M, it follows that @x(M) = >, ; mioapi(M;) for all X € A. For every i € I
and every A € A, let N; x = mpapi(M;). Therefore,

doeaM) =" mipan(Mi) =) (Z Ni,A) =P (Z NM> .

AEA AEA el AeA \iel i€l \\EA

Since each M; (i € I) is dual Baer, each M; (i € I) has the SSSP by Theorem 2.23. Thus } ., N is
a direct summand of M; for every i € I. So )y, wa(M) is a direct summand of M. Consequently, M
is a dual Baer module. O
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We conclude this paper by showing a new characterization of dual Baer modules.

Let M be an R-module with S = Endg(M). Then for every nonempty subset A of S, we denote
Is(A)={pe S| pA=0}and ry(A) ={m e M | Am = 0}. We also denote Is(N) ={p € S| p(N) =
0} for any submodule N of M.

Recall that a ring R is called a Baer ring if for every nonempty subset I C R, there exists an
idempotent e € R such that [g(I) = Re.

Proposition 2.29. ([5, Proposition 2.3]) For an R-module M, S = Endr(M) is a Baer ring if and only
if rv(ls(3opea Imy)) is a direct summand of M for all nonempty subsets A of S.

The next example shows that if M is a module such that S = Endr(M) is a Baer ring, then M is
not a dual Baer module, in general.

Example 2.30. Consider the Z-module M = Z. Then S = Endy(M) = Z. Clearly, Z is a Baer ring.
On the other hand, it is easily seen that M is not a dual Baer module.

Note that if M is an R-module with S = Endr(M), then for any nonempty subset A of S, [g(A) =
ls(AM), where AM =3, ,Imf. The next result can be considered as an analogue of [8, Theorem 3.5|.
Theorem 2.31. The following are equivalent for an R-module M and S = Endr(M):

(i) M is a dual Baer module;

(ii) S is a Baer ring and AM = ra(ls(AM)) for every nonempty subset A of S;

(iii) S 4s a Baer ring and IM = ry(Is(IM)) for every right ideal I of S.
Proof. (i) = (ii) From [15, Theorem 3.6], it follows that S is a Baer ring. Moreover, we have
ra(ls(AM)) = ra(ls(A)) = ry(S(1 —e)) = e(M) = AM for all nonempty subsets A of S.

(i) = (iii) This is obvious.

(iii) = (i) Let I be a right ideal of S. Since S is a Baer ring, rp(Is(IM)) is a direct summand of M

by Proposition 2.29. But IM = ry(lg(IM)). Then IM is a direct summand of M. By Theorem 2.23,
it follows that M is a dual Baer module. O

Combining Theorem 2.31 and [10, Theorem 4.1], we get the following result.

Corollary 2.32. Let M be an R-module such that IM = ry(Is(IM)) for every right ideal I of S =
Endg(M). If M is a Baer module, then M is a dual Baer module.
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