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Abstract 

This paper presents static analysis of a simply supported beam made of fiber reinforced composite material resting 
on elastic foundation. The foundation type is considered as Winkler-Pasternak foundation type. The first-shear 
beam theory is used in the kinematics of the beam and the Ritz method is used and in the solution of the problem. 
In the Ritz method, algebraic polynomials are used with the trivial functions. In the numerical examples, the effects 
of fibre orientation angles, the volume fraction and foundation parameters on the static deflections of fiber 
reinforced composite beam are investigated. The numerical results show that fiber orientation angle, volume 
fraction and foundation parameter have great influence on static behavior of fiber reinforced composites. 
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1. Introduction 

Fiber reinforced composite (FRC) structures are used in a lot of engineering applications, for 
example, airplanes, machine, marine, and civil engineering projects. FRC structures mainly 
preferred in the engineering projects due to their higher strength-weight ratios, more lightweight 
and ductile properties.  
 
In the literature, many researchers investigated the static, dynamic and stability analyses of FRC 
structures in last decades. Some investigations about of FRC structures are as follows; 
Krawczuk et al. [1] studied the vibration of cracked composite beams. Shen [2] presented post-
buckling analysis of laminated plate with thermal effects resting on elastic foundation. Sayman 
[3] investigated elastic-plastic analysis of aluminum metal-matrix laminated plate under 
thermal effect. Shukla et al. [4] presented thermal postbuckling analysis of laminated plates. 
Emery et al. [5] analyzed thermoelastic stress analysis of laminated orthotropic plates. Shen [6] 
presented thermal nonlinear analysis of functionally graded nanocomposite plates reinforced 
by single-walled carbon nanotubes. Akgöz and Civalek [7,8,9,10] presented mechanical 
behavior of composite structure resting on foundation. 
 
Kishore et al. [11] investigated nonlinear analysis of magnetostrictive layered plate by using 
third order shear deformation theory. Sahoo and Singh [12] analyzed static of layered composite 
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plates by using the hyperbolic zigzag theory. Houmat [13] presented nonlinear vibration of 
laminated composite plates with curvilinear fibers. Khorshid and Farhadi [14] analyzed 
hydrostatic vibration analysis of a laminated composite rectangular plate partially contacting 
with a bounded fluid. DeValve and Pitchumani [15] investigated damping vibration analysis of 
rotating composite beams with embedded carbon nanotubes. Tornabene et al. [16] investigated 
static and vibration analysis of laminated doubly-curved shells and panels embedded in elastic 
foundation by using the generalized differential quadrature. Akbaş [17-22] presented free 
vibration of functionally graded composite beams. Yüksel and Akbaş [23] presented thermal 
effects of laminated plates by using the Navier method. Draiche et al. [24] presented static 
analysis of laminated reinforced composite plates based on first-order shear deformation theory 
by using the Navier method. Jena et al. [25] analysed dynamic behavior of cracked fiber 
reinforced composite beams. Zenkour et al. [26] investigated torsional dynamics of carbon 
nanotubes embedded in viscoelastic medium. Waddar et al. [27] investigated buckling and 
dynamic response of cenosphere reinforced epoxy composite core sandwich beam with sisal 
fabric/epoxy composite facings under compressive load by experimentally. Akbaş [28-43] 
investigated nonlinear behavior and forced vibration analysis of composite structures. Also, 
many researchers investigated mechanical analysis of composite structures resting on 
foundation [44-60].  
 
The main purpose of this study is to investigate the effects of the fibre orientation angles, the 
volume fraction and foundation parameters on the static deflections of the FRC beam in detail. 
In solution of the problem, first shear deformation beam theory and the energy based Ritz 
method are used. In the numerical results, the effects of fibre orientation angles, the volume 
fraction and foundation parameters on the static deflections of the FRC beam are investigated. 

2. Formulations 

 
Figure 1 shows a simply supported FRC beam resting on Winkler-Pasternak Foundation with 
with spring constant kw and kp, the length L, the height h and width b under a point load (Q) at 
midpoint of the beam. When the Pasternak foundation spring constant kp=0, the foundation 
model reduces to Winkler type.   

 
Fig.1. A simply supported FRC beam resting on Winkler-Pasternak Foundation under a point load. 

 
The axial strain (ε") and shear strain (γ"$) are given according to the first shear deformation    
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where, 𝑢, 𝑣 and ∅  are axial displacement, vertical displacement and rotation, respectively. 

The constitute relation is presented as follows; 
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where  𝑄:; are the transformed components of the reduced constitutive tensor. The 

transformed components of the reduced constitutive tensor for orthotropic material are as 
follows: 
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where l=cos	𝜃 and n= sin	𝜃, 𝜃 indicates the fiber orientation angle and the expressions of  

𝑄:; are as follows;   
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where E1 is the Young’s modulus in the X direction, E2 is the Young’s modulus in the Y 

direction, 𝜈7@ and 𝜈@7 are Poisson’s ratios and 𝐺7@ is the shear modulus in XY plane. The gross 
mechanical properties of the composite materials are calculated by using the following 
expression (Vinson and Sierakowski [61]): 

 
                 𝐸7 = 𝐸T𝑉T + 𝐸V	 1 −	𝑉T ,	                 (5a) 
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           𝜌 = 𝜌T𝑉T + 𝜌V	 1 − 𝑉T ,	                               (5e) 
 
where f indicates the fibre and m indicates the matrix. Vf is the volume fraction of fiber. E, 

G, ν and 𝜌 are the Young’s modulus, the shear modulus, Poisson’s ratio and mass density, 
respectively. 
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The strain energy (Ui), and potential energy of the external loads (Ue) are presented as 
follows; 
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                       𝑈l = −𝑄 𝑡 	𝑣 𝑧k, 𝑡                                                     (6b) 
where, 
 

𝐴a, 𝐴7, 𝐴@ = 𝑄77 1, 𝑌, 𝑌
@ 𝑑𝐴o , 𝐵a = 𝑄88𝑑𝐴o ,          (7) 

 
The total potential energy of the problem is expressed as follows: 
 
                  ᴨ = (𝑈_ − 𝑈l)                         (8) 
 
In the solution of the problem in Ritz method, approximate solution is given as series of i 

terms of the following form: 
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where ai, bi and ci are the unknown coefficients, 𝛼_(𝑧), 𝛽_(𝑧), 𝛾_(𝑧) are the coordinate 

functions depend on the boundary conditions over the interval [0,L]. The coordinate functions 
for the simply supported beam are given as algebraic polynomials: 

 
According to the minimum total potential energy principle, unknown coefficients ai,, bi , ci 

which correspond to the minimum of the total potential energy (П) are determined by the 
conditions: 
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Differentiation of П in respect to unknown coefficients produces the following equilibrium 

equations: 
 
                   K q = F                       (11) 

 
where 𝐾  and F  are the stiffness matrix and load vector, respectively. The detail of these 

expressions are given as follows; 
 

                 𝐾 =
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	                          (12) 

 
Where 
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              F(t) = 𝑄𝛽�                   (14) 
 
The dimensionless quantities can be expressed as 
 

𝑘j 	=
��	h�

KX�
 ,   𝑘k 	=

��	hO
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 ,  v 	= �

h
                                          (15) 

 
𝑘j and 𝑘k are the dimensionless Winkler Pasternak parameters, v is lateral dimensionless 

displacement. 
 

3. Numerical Results 
 
In the numerical study, static displacements of the FRC simply supported beam are presented 

and discussed. In the numerical examples, the materials of the beams are selected as made of 
graphite fibre-reinforced polyamide composite and its material parameters are as follows 
(Krawczuk et al [1]); Em = 2.756 GPa, Ef = 275.6 GPa, Gm = 1.036 GPa, Gf = 114.8 GPa, νm = 
0.33, νf = 0.2. The geometry properties of the beam are selected as  𝑏 = 0.1	m, h=0.1 m and 
L=1.2 m. In the numerical results, number of the series term is taken as 10. The load value is 
selected as Q0=1000 kN.  

 
In figure 2, effects of the volume fraction of fiber (vf) on the lateral static dimensionless 

displacements of FRC beam at midpoint (vV) are presented with effects of foundation 
parameter for 𝜃 = 30 . It is seen from figure 2 that, displacements of the FRC beam decrease 
with increasing of the volume fraction of fiber and foundation stiffness parameters due to the 
bending rigidity increases according to Eq. 5. With increasing of foundation stiffness 
parameters, the difference among the results of vf decreases considerably. It is seen from figures 
2 that Pasternak parameter 𝑘k is more effective than Winkler parameter 𝑘j on the behavior of 
the volume fraction of fiber.  

 
In figure 3, effects of the fiber orientation angles (𝜃) on the lateral static dimensionless 

displacements of FRC beam at midpoint (vV) are presented with effects of foundation 
parameter for vf=0.3. Figure 3 shows that, displacements of the FRC beam increase with 
increasing of the fiber orientation angles (𝜃) due to the bending rigidity increases according to 
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Eq. 3. It is observed from figure 3, Pasternak parameter 𝑘k is more effective on the results of 
fiber orientation angles like the results of the volume fraction of fiber.  

 

 

 
Fig.2. Load – dimensionless lateral displacement (at midpoint) relation for different values of the 

volume fraction of fiber (vf ) for a) 𝑘j = 0 ,	𝑘k = 0 b) 𝑘j = 1 ,	𝑘k = 0, c) 𝑘j = 2 ,	𝑘k = 0, d) 𝑘j =
1 ,	𝑘k = 0.3, e) 𝑘j = 1 ,	𝑘k = 1 
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Fig.3. Load – dimensionless lateral displacement (at midpoint) relation for different values of the fiber 

orientation angles (𝜃) for a) 𝑘j = 0 ,	𝑘k = 0 b) 𝑘j = 1 ,	𝑘k = 0, c) 𝑘j = 2 ,	𝑘k = 0, d) 𝑘j = 1 
,	𝑘k = 0.3, e) 𝑘j = 1 ,	𝑘k = 1 

 

4. Conclusions 
 
Effects of Winkler-Pasternak foundation parameters and composite material parameters on the 
static displacements of the FRC simply supported beam are investigated in this paper by using 
the first shear deformation beam theory. In solution of the problem, the energy based Ritz 
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method is implemented.  The presented results show that the displacements of FRC beam 
change significantly with fiber orientation angle and the volume fraction. The Pasternak 
parameter is a great influence on behavior of material properties of FRC. 
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