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Miroslava Antić and Djordje Kocić*
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ABSTRACT

It is well known that the sphere S6(1) admits an almost complex structure J which is nearly Kähler.
A submanifold M of an almost Hermitian manifold is called a CR submanifold if it admits a
differentiable almost complex distribution D1 such that its orthogonal complement is a totally real
distribution. In this case the normal bundle of the submanifold also splits into two distributions
D3, which is almost complex, and a totally real complement. In the case of the proper three-
dimensional CR submanifold of a six-dimensional manifold the distribution D3 is non-trivial.
Here, we investigate three-dimensional CR submanifolds of the sphere S6(1) admitting an umbilic
direction orthogonal to D3 and show that such submanifolds do not exist.
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1. Introduction

Let ∇̃ and J be the Levi-Civita connection and an almost complex structure of the almost Hermitian manifold
M̃ . In the case that the almost complex structure is parallel, i.e. ∇̃J = 0 we say that M is a Kähler manifold.
If this condition is relaxed to skew-symmetry of the tensor G(X,Y ) = (∇̃XJ)Y then M is a nearly Kähler
manifold. A six-dimensional nearly Kähler manifold is strict if it is not Kähler. The investigation of these
manifolds and their properties has been initiated by A. Gray, see [11, 12]. In particular, six-dimensional nearly
Kähler manifolds play a special role, since in [16], Nagy showed that any complete strict nearly Kähler manifold
is locally a Riemannian product of six-dimensional nearly Kähler manifolds, some homogeneous nearly Kähler
spaces and twistor spaces over quaternionic Kähler manifolds with positive scalar curvature. We recall that
it has been shown by Butruille [7] that there exists only four homogeneous, six-dimensional, nearly Kähler
manifolds: the nearly Kähler sphere S6(1), product manifold S3 × S3, the projective space CP 3 and the flag
manifold SU(3)/U(1)× U(1), where only the sphere S6(1) is endowed with its standard metric.

In this paper we are interested in the study of special types of submanifolds of the nearly Kähler sphere
S6(1). The two most natural classes to regard are the following: those for which J maps the tangent space
of the submanifold into the tangent space, i.e. JTpM ⊂ TpM , p ∈M (and hence JT⊥

p M ⊂ T⊥
p M ), and those for

which J maps the tangent space into the normal space, i.e. JTpM ⊂ T⊥
p M . The first type of the submanifolds are

called almost complex submanifolds and the second type of submanifolds are totally real submanifolds. If in
the second case the dimension and codimension of the submanifold coincide the submanifold is Lagrangian. It
is well known that an almost complex submanifold of the sphere S6 is two-dimensional, see [13], and minimal.
Also in [10] it was shown that a Lagrangian submanifold of the sphere S6(1) is always minimal and orientable.

The notion of CR submanifolds was introduced by Aurel Bejancu, first in [3] for the Kähler manifolds,
and later, in [4] its extension was given for submanifolds of almost Hermitian manifolds. The class of CR
submanifolds is set in between of the classes of almost complex and totally real submanifolds, as they represent
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a natural generalization of both of these types of submanifolds. A submanifold M of an almost Hermitian
manifold is called a CR submanifold if there exists on M a differentiable almost complex distribution D1

(i.e. JD1 = D1) such that its orthogonal complement D⊥
1 ⊂ TM is a totally real distribution. Obviously, if the

distribution D1 or its complement are trivial, we deal with a totally real or an almost complex submanifold.
If none of these two distributions is trivial the submanifold is a proper CR submanifold. Trivially any
hypersurface of an almost Hermitian manifold is a proper CR submanifold. If we denote by D2 = D⊥

1 ⊕ J(D⊥
1 )

and by D3 the orthogonal complement of J(D⊥
1 ) in the normal bundle we have that D1,D2,D3 are almost

complex distributions such thatD1 ⊕D2 ⊕D3 = TM ⊕ TM⊥. In the case of the sphere S6(1), proper non-trivial
cases are of dimensions three and four, here we refer the reader for the results in three-dimensional case to
[17, 9, 14, 2, 1].

In [4] the geometric properties of several special types of CR submanifolds of almost Hermitian manifolds
were investigated, among others the properties of totally umbilical CR submanifolds. If for a normal direction
V ξ of the submanifold M it holds that Aξ = λI , where Aξ is the shape operator of the immersion with respect
to the section ξ, λ is a differentiable function, and I the identity map, thenM is umbilical with the respect of the
normal section ξ. If M umbilical with respect to arbitrary normal section then M is said to be totally umbilical.
Totally umbilical CR submanifolds of Kähler manifolds have been investigated and classified, see [5, 8, 6]. Also,
in the case of the nearly Kaähler manifolds some of the geometric properties are known, see [15]. However,
in the case of the sphere S6(1) it is known that there does not exist a totally umbilical, three-dimensional
proper, CR submanifold. Therefore, here we investigate a weaker condition: if a three-dimensional, proper CR
submanifold of S6(1) admits a particular umbilical direction and prove the following theorem.

Theorem 1.1. There exists no proper three-dimensional CR submanifold of S6(1) that admits an umbilical direction
orthogonal to the distribution D3.

2. Preliminaries

First, we give a brief exposition of how the standard nearly Kähler structure J on S6(1) arises in a natural
manner from the Cayley multiplication. The multiplication on the Cayley numbers O may be used to define a
vector cross product× on the purely imaginary Cayley numbers R7 using the formula u× v = 1

2 (uv − vu). This
cross product has many similarities to the cross product in the space R3, in particular the triple scalar product
〈u× v, w〉 is skew symmetric in u, v, w. Then the vectors of the standard orthonormal basis of the space R7

satisfy the relations given in the following multiplication table.

We note that any orthonormal basis or a frame that satisfies relations given in this table is said to be a G2

basis or a G2 frame. Such basis or frame is uniquely determined by mutually orthogonal unit vectors e1, e2 and
e4 at a given point, such that e4 is orthogonal to e1 × e2. Then other vectors of the G2 basis are generated by
e1, e2 and e4 subject to the relations:

ei × (ej × ek) + (ei × ej)× ek = 2δikej − δijek − δjkei.

Now, the standard almost complex structure on S6(1) is obtained as

JX = p×X, X ∈ TpS6(1), p ∈ S6(1), (2.1)

and moreover, it is a nearly Kähler structure in the sense that the (2, 1)-tensor field G on S6(1) defined by
G(X,Y ) = (∇̄XJ)Y, where ∇̄ is the Levi-Civita connection on S6(1), is skew-symmetric. A straightforward
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computation also shows that

G(X,Y ) = X × Y + 〈X, p× Y 〉p.

It is important to note the relation between the cross product and the Levi-Civita connection D in R7. Namely,
the following Lemma holds.

Lemma 2.1. Arbitrary vector fields X,Y, Z in R7 satisfy

DX(Y × Z) = DXY × Z + Y ×DXZ.

Let M be a Riemannian submanifold of a nearly Kähler sphere S6(1) and let us denote by ∇ and ∇⊥ the
Riemannian connection of M and the normal connection induced from ∇̄ in the normal bundle T⊥M of M in
S6(1), respectively. Then the formulas of Gauss and Weingarten are given respectively by

∇̄XY = ∇XY + h(X,Y ), (2.2)

∇̄Xξ = −AξX +∇⊥
Xξ, (2.3)

where X,Y ∈ TM , ξ ∈ T⊥M and h and Aξ are the second fundamental form and the shape operator with
respect to the secion ξ, respectively. The second fundamental form and the shape operator are related by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉.

Also, if we denote by

(∇h)(X,Y, Z) = ∇⊥
Xh(Y,Z)− h(∇XY,Z)− h(X,∇Y Z),

for X,Y, Z ∈ TM , we have that the Gauss, Codazzi and Ricci equations yield

R(X,Y, Z,W ) = 〈X,W 〉〈Y,Z〉 − 〈X,Z〉〈Y,W 〉+ 〈h(X,W ), h(Y,Z)〉 − 〈h(X,Z), h(Y,W )〉 (2.4)
(∇h)(X,Y, Z) = (∇h)(Y,X,Z) (2.5)

〈R⊥(X,Y )ξ, µ〉 = 〈[Aξ, Aµ]X,Y 〉, (2.6)

where we denote by R the Riemannian curvature tensor of M .
A submanifold M is said to be umbilical with respect to the normal section ξ ∈ T⊥M if the second

fundamental form h : TM × TM → T⊥M satisfies 〈h(X,Y ), ξ〉 = λ〈X,Y 〉, for all X,Y ∈ TM for some
differentiable function λ. If the submanifold is umbilical with respect to any normal section then it is a totally
umbilical submanifold, and clearly such submanifolds represent the simplest generalization of the totally
geodesic ones.

3. The construction of the suitable moving frame

Here we are dealing with three-dimensional, proper CR submanifolds of S6(1). Since the almost complex
distribution is even dimensional, and nontrivial, it follows that dim D1 = 2 and then dim D⊥

1 = 1. We present
one of the convenient moving frames to work with and the relations between the connection coefficients in it,
for details see [9], [2].

We denote by p the position vector field of the submanifold. Let then E1 and E2 = JE1 be the unit vector
fields which span the tangent almost complex distribution D1, and E3 the unit vector field which spans
the totally real distribution. Straightforwardly, we have that the vector fields E4 = JE3, E5 = E1 × E3 and
E6 = E2 × E3 = JE5 are sections of the normal bundle, unit and mutually orthogonal. Here, we have that
E5 and E6 span the normal almost complex distribution D3. Note, that by assuming that E1, E2 and E3 are
positively oriented, we have that the choice of E3 is unique. Nevertheless, the choice of the pair E1, E2 is not
unique, by rotating initial pair E1, E2 in the distribution D3 we obtain another frame

Ē1 = cos θE1 + sin θE2, Ē2 = JĒ1 = − sin θE1 + cos θE2,

Ē3 = E3, Ē4 = E4,

Ē5 = cos θE5 + sin θE6, Ē6 = − sin θE5 + cos θE6, (3.1)
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so the rotation in one of the distributions D1 or D3 induces a rotation in the other. For one such frame, let us
denote by

gijk = 〈DEi
Ej , Ek〉, hijk = 〈DEi

Ej , Ek+3〉, ηijk = 〈DEi
Ej+3, Ek+3〉, 1 ≤ i, j, k ≤ 3. (3.2)

The connection D is metric, which gives the skew-symmetry of the coefficients gijk and ηijk, and the second
fundamental form symmetric, so we have that

gijk = −gikj , hijk = hikj , ηijk = −ηikj . (3.3)

Moreover, by using the relations of the Lemma 2.2 for the vector fields X ∈ {E1, E2, E3} and Y,Z ∈
{p,E1, ..., E6}, it follows

Lemma 3.1. ([9]) For the previously defined coefficients the following relations hold

h111 = −g123, h121 = g113, h122 = h113, h123 = −h112,
η113 = −h132, g223 = −g113, h221 = g213, h222 = −h112,
h223 = −h113, η212 = h233, η213 = 1− h232, h131 = −g323,
h231 = g313, h232 = h133 − 1, h233 = −h132, η312 = h333,

η313 = −h332, η123 = g112 − g323, η223 = g212 + g313, η323 = g312 + h331,

η112 = 1 + h133. (3.4)

4. Proof of the main theorem

Now we assume that M has admits an umbilical direction orthogonal to D3, i.e. in the direction of the vector
field E4, so it satisfies

〈h(X,Y ), E4〉 = λ〈X,Y 〉, X, Y ∈ TM, (4.1)

for some differentiable function λ.

Lemma 4.1. The coefficients (3.3) satisfy the following relations

g113 = g313 = g323 = 0,

h331 = g213 = −g123 = λ.

Proof. Using the relations from the Lemma 3.1 and relations (4.1) it straightforwardly follows that

−g123 = h111 = 〈h(E1, E1), E4〉 = λ〈E1, E1〉 = λ,

g113 = h121 = 〈h(E1, E2), E4〉 = λ〈E1, E2〉 = 0,

−g323 = h131 = 〈h(E1, E3), E4〉 = λ〈E1, E3〉 = 0,

g213 = h221 = 〈h(E2, E2), E4〉 = λ〈E2, E2〉 = λ,

g313 = h231 = 〈h(E2, E3), E4〉 = λ〈E2, E3〉 = 0,

h331 = 〈h(E3, E3), E4〉 = λ〈E3, E3〉 = λ.

We recall that these relations hold for any such frame. Also, the vector field E3 is uniquely determined up to
a sign, so the vector field DE3E3 is independent of the choice of the frame, while the pairs of the vector fields
(E1, E2) and (E5, E6) can be simultaneously rotated in the distributions D1 and D3, respectively. Therefore, we
can choose the pair of the vector fields (E5, E6) in the distribution D3, i.e. chose one particular frame, such that
the projection of the vector field DE3

E3 to D3 is in direction of the corresponding vector field E5. Therefore, it
is orthogonal to the vector filed E6 and we have

h333 = 〈DE3
E3, E6〉 = 0.

Now, the Gauss, Codazzi and Ricci equations (2.4), (2.5), (2.6) further yield some new relations among
the coefficients. In particular we first obtain the expressions for the derivatives of some of the coefficients
in directions of the vector fields E1, E2 and E3.
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Lemma 4.2. The derivatives of the differentiable functions (3.3) satisfy

E1(g212) = −1− g2112 − g2212 + 2h2112 + 2h2113 − 2g312h331 − 2h2331 + E2(g112),

E1(h331) = h112 + 2h113h132 − 2h112h133,

E2(h331) = h113 − 2h112h132 − 2h113h133,

E1(h113) = −3g112h112 − 3g212h113 − 4h132h331 + E2(h112),

E2(h113) = −3g212h112 + 3g112h113 − 2h331 + 4h133h331 − E1(h112),

E1(h133) = g212 − 2g212h133 − 2(g112h132 + h331h332) + E2(h132),

E2(h133) = −2g212h132 + g112(−1 + 2h133)− E1(h132,

E1(g312) = −g212g312 + h112 + 2h113h132 − 2h112h133 + g212h331 + E3(g112),

E3(h331) = −h132 − h113h332,
E1(h132) = −g112 − 3g312h113 + 2g112h133 + E3(h112),

E2(h132) = −g212 + 3g312h112 + 2g212h133 + h331h332 + E3(h113),

E1(h332) = g312 − 2g312h133 − 3h331 + E3(h132),

E3(h133) = −2g312h132 + g112h332,

E2(g312) = g112g312 + h113 − 2h112h132 − 2h113h133 − g112h331 + E3(g212),

E2(h332) = 2g312h132 + E3(h133),

E3(h132) = −g312 + 2g312h133 − 3h331 − g212h332.

Proof. Gauss equations (2.4), taken respectively for (X,Y, Z,W ) = (E1, E2, E1, E2) and (X,Y, Z,W ) =
(E1, E2, E1, E3) yield

E1(g212) = −1− g2112 − g2212 + 2h2112 + 2h2113 − 2g312h331 − 2h2331 + E2(g112),

E1(h331) = h112 + 2h113h132 − 2h112h133.

Further, the Codazzi equation (2.5), for the triplet (X,Y, Z) = (E1, E2, E1) in the directions of the vector fields
E4, E5 and E6 respectively gives

E2(h331) = h113 − 2h112h132 − 2h113h133,

E1(h113) = −3g112h112 − 3g212h113 − 4h132h331 + E2(h112),

E2(h113) = −3g212h112 + 3g112h113 − 2h331 + 4h133h331 − E1(h112).

The other expressions for the given derivatives are obtained in the similar manner.

We note that, by taking the derivatives from the Lemma 4.2 not all of the Gauss, Codazzi and Ricci equalities
are still satisfied.

Lemma 4.3. For the coefficients (3.3) of the second fundamental form it holds:

1− 2h2132 + 2h133 − 2h2133 = 0, (4.2)

1− h2132 − h2133 + h112h332 = 0, (4.3)
h112 + 2h113h132 − 2h112h133 − h332 − 2h133h332 = 0, (4.4)

h132 + h113h332 = 0, (4.5)

h2132 − 2h133 + h2133 + h112h332 = 0. (4.6)
h113 − 2h112h132 − 2h113h133 + 2h132h332 = 0. (4.7)

Proof. Using Lemma 4.2, from the Gauss equations (2.4) for (X,Y, Z,W ) = (E1, E3, E1, E3), (X,Y, Z,W ) =
(E2, E3, E1, E3), respectively, we obtain

1− h2132 − h2133 + h112h332 = 0,

h132 + h113h332 = 0,
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Similarly, from the Codazzi equations (2.5) for the triplets (X,Y, Z) = (E1, E2, E3) , (X,Y, Z) = (E1, E3, E3),
(X,Y, Z) = (E2, E3, E3), (X,Y, Z) = (E2, E3, E3) in the direction of the normal vector field E4, respectively, we
get

1− 2h2132 + 2h133 − 2h2133 = 0,

h112 + 2h113h132 − 2h112h133 − h332 − 2h133h332 = 0,

h2132 − 2h133 + h2133 + h112h332 = 0,

h113 − 2h112h132 − 2h113h133 + 2h132h332 = 0.

Straightforward computation now shows that the other Gauss, Codazzi and Ricci equations do not yield any
new relations.

Now, let us show that such submanifold does not exist.
If we multiply (4.6) by 2 and add (4.2) we get

1− 2h133 + 2h112h332 = 0, (4.8)

then from (4.5) and (4.8) we get

h132 = −h113h332,

h133 =
1

2
+ h112h332.

Now equations (4.3), (4.4) and (4.7) simplify to

3

4
− h2112h2332 − h2113h2332 = 0, (4.9)

−2h332(1 + h2112 + h2113 + h112h332) = 0, (4.10)

2h113h
2
332 = 0. (4.11)

From (4.11) it follows that h113 = 0 or h332 = 0. If we assume that h332 = 0, then (4.9) reduces to 3
4 = 0, which

is a contradiction. Therefore, we may take that h113 = 0, h332 6= 0 and from (4.9) we get |h112h332| =
√
3
2 . If we

replace it in (4.10), we get

−2h332

(
1±
√

3

2
+ h2112

)
= 0. (4.12)

Since h332 6= 0 and
(

1±
√
3
2

)
+ h2112 > 0, we obtain a contradiction. This completes the proof.

Example 4.1. We present here a family of three-dimensional CR submanifolds that do admit an umbilical
section ξ that has non-trivial projections both in the direction of the vector field E4 and on the distribution D3.

Namely, the first example of a three-dimensional CR submanifold was given in [17] and further generalized
in [14]. In [2] it was shown that for a proper three-dimensional CR submanifold two conditions are equivalent:
(a) it is minimal and contained in a totally geodesic hyprsphere; (b) its D1 and D⊥

1 distributions are totally
geodesic, i.e. h(D1,D1) = 0 and h(D⊥

1 ,D⊥
1 ) = 0. Further it was shown that they are given by

F (s, x1, x2) = cosx1 cosx2(cos(µ1s)e0 + sin(µ1s)e4) + sinx1 cosx2(cos(µ2s)e1 + sin(µ2s)e5)

+ sinx2(cos(µ3s)e2 + sin(µ3s)e6), µ1, µ2, µ3 ∈ R, µ1 + µ2 + µ3 = 0, µ2
1 + µ2

2 + µ2
3 6= 0,

where e0, . . . , e6 is a standard G2 basis of the space R7. In particular, these submanifolds are given in [14] with
additional one particular example. For these examples it holds that h(Ei, Ej) 6= 0 only for i = 1, 2 and j = 3, and
the normal section ξ orthogonal to h(E1, E3) and h(E2, E3) has non-vanishing components both in direction of
E4 and D3, see [2]. Then, ξ is trivially an umbilical direction with λ = 0.
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