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Abstract

The purpose of this work is to establish an extension of a Bai-Ge type multiple �xed point theorem for a sum
of two operators. The arguments are based upon recent �xed point index theory in cones of Banach spaces
for a k-set contraction perturbed by an expansive operator. As illustration, our approach is applied to prove
the existence of at least three nontrivial nonnegative solutions for a class eigenvalue three-point BVPs for a
class of fourth order ordinary di�erential equations (ODEs for short).
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1. Introduction

In recent decades, there has been enormous interest in the development of the �xed point theory due
to many applications. The existence and multiplicity of positive solutions for nonlinear ordinary di�erential
equations and di�erence equations have been studied extensively. The main tools used are �xed-point
theorems in cones of Banach spaces. The most well-known version of Leggett-Williams �xed point theorem
[11] provides conditions which ensure the existence of at least three �xed points in cones of Banach spaces of
a completely continuous operator. Some new �xed point theorems based on Leggett-Williams's work were
established. For example, the �ve functional �xed point theorem [2] due to Avery, a generalization of the
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Leggett-Williams �xed-point theorem [3] due to Bai and Ge, were applied to archive some new existence and
multiplicity results.

In [3, Theorem 2.1], Bai and Ge have discussed the existence of at least three positive solutions to the
nonlinear operational equation

Ax = x (1.1)

where P is a cone in a Banach space (E, ‖.‖), A is a completely continuous nonlinear map acting in P. Note
that the obtained result can be regarded as an extension of the Leggett-Williams �xed point theorem.

The Bai-Ge �xed point theorem states the following.
Let r > a > 0, L > 0 be constants, ψ a nonnegative concave functional and α, β nonnegative convex
functionals on P. De�ne the convex sets:

Pr = {x ∈ P : ‖x‖ < r},

P(α, r;β, L) = {x ∈ P : α(x) < r, β(x) < L} ,

P(α, r;β, L) = {x ∈ P : α(x) ≤ r, β(x) ≤ L} ,

P(α, r;β, L;ψ, a) = {x ∈ P : α(x) < r, β(x) < L, ψ(x) > a} ,

P(α, r;β, L;ψ, a) = {x ∈ P : α(x) ≤ r, β(x) ≤ L, ψ(x) ≥ a} .

The following assumptions about the nonnegative convex functionals α, β will be used:

(A1) there exists M > 0 such that ‖x‖ ≤M max{α(x), β(x)}, for all x ∈ P;

(A2) P(α, r;β, L) 6= ∅ for all r > 0, L > 0.

Lemma 1.1. Let r2 ≥ d > c > r1 > 0, L2 ≥ L1 > 0 be constants. Assume that α, β are nonnegative
continuous convex functionals satisfying (A1) and (A2). Let ψ be a nonnegative continuous concave functional
on P such that ψ(x) ≤ α(x) for all x ∈ P(α, r2;β, L2) and let A : P(α, r2;β, L2) → P(α, r2;β, L2) be a
completely continuous operator. Assume

(B1) {x ∈ P(α, d;β, L2;ψ, c) : ψ(x) > c} 6= ∅, ψ(Ax) > c for all x ∈ P(α, d;β, L2;ψ, c);

(B2) α(Ax) < r1, β(Ax) < L1 for all x ∈ P(α, r1;β, L1);

(B3) ψ(Ax) > c for all x ∈ P(α, r2;β, L2;ψ, c); with α(Ax) > d.

Then A has at least three �xed points x1, x2 and x3 in P(α, r2;β, L2) with

x1 ∈ P(α, r1;β, L1), x2 ∈ {x ∈ P(α, r2;β, L2;ψ, c) : ψ(x) > c }

and
x3 ∈ P(α, r2;β, L2) \ (P(α, r2;β, L2;ψ, c)

⋃
P(α, r1;β, L1)).

In this work, instead of equation (1.1), we consider the nonlinear operational equation

Tx+ Fx = x, x ∈ U
⋂

Ω, (1.2)

where T : Ω ⊂ P → E is an expansive mapping with constant h > 1 and F : U ⊂ P → E is a k-set
contraction with k < h− 1. We will establish a generalization of Lemma 1.1 for such class of operators. The
arguments are based upon of the properties of the generalized �xed point index i∗, developed by Djebali and
Mebarki in [6].

The paper is organized as follows. In Section 2, we formulate and prove our main result. In Section 3, we
lustrate our main result with an application for existence of at least three nonnegative solutions for a class
of eigenvalue three-point BVP for a fourth order ODEs.
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2. Main Results

Let X be a real Banach space.

De�nition 2.1. A mapping K : X → X is said to be completely continuous if it is continuous and maps
bounded sets into relatively compact sets.

The concept for l-set contraction is related to that of the Kuratowski measure of noncompactness which
we recall for completeness.

De�nition 2.2. Let ΩX be the class of all bounded sets of X. The Kuratowski measure of noncompactness
α : ΩX → [0,∞) is de�ned by

α(Y ) = inf

δ > 0 : Y =
m⋃
j=1

Yj and diam(Yj) ≤ δ, j ∈ {1, . . . ,m}

 ,

where diam(Yj) = sup{‖x− y‖X : x, y ∈ Yj} is the diameter of Yj, j ∈ {1, . . . ,m}.

For the main properties of measure of noncompactness we refer the reader to [4].

De�nition 2.3. A mapping K : X → X is said to be l-set contraction if it is continuous, bounded and there
exists a constant l ≥ 0 such that

α(K(Y )) ≤ lα(Y ),

for any bounded set Y ⊂ X. The mapping K is said to be a strict set contraction if l < 1.

Obviously, if K : X → X is a completely continuous mapping, then K is 0-set contraction (see [7]).

De�nition 2.4. Let X and Y be real Banach spaces. A mapping K : X → Y is said to be expansive if there
exists a constant h > 1 such that

‖Kx−Ky‖Y ≥ h‖x− y‖X
for any x, y ∈ X.

Let P be a cone in X, Ω ⊂ P and U is a bounded open subset of P. Assume that T : Ω → X is an
expansive mapping with constant h > 1 and F : U → X is a k-set contraction. The operator (I − T )−1 is
(h− 1)−1-Lipschtzian on (I − T )(Ω). Suppose that 0 ≤ k < h− 1,

F (U) ⊂ (I − T )(Ω), (2.1)

and
x 6= Tx+ Fx, for all x ∈ ∂U

⋂
Ω. (2.2)

Then x 6= (I − T )−1Fx, for all x ∈ ∂U and the mapping (I − T )−1F : U → P is a strict k(h − 1)−1-set
contraction. Indeed, (I − T )−1F is continuous and bounded; and for any bounded set B in U , we have

α(((I − T )−1F )(B)) ≤ (h− 1)−1 α(F (B)) ≤ k(h− 1)−1α(B).

The �xed point index i ((I − T )−1F,U,P) is well de�ned. Thus we put, see [6],

i∗ (T + F,U
⋂

Ω,P) =

{
i (T−1(I − F ), U,P), if U

⋂
Ω =6 ∅

0, if U
⋂

Ω = ∅. (2.3)

This integer is called the generalized �xed point index of the sum T + F on U
⋂

Ω with respect to the cone
P.

Theorem 2.5. [6, Theorem 2.3]. The �xed point index de�ned in (2.3) satis�es the following properties:
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(a) (Normalization). If U = Pr, 0 ∈ Ω, and Fx = z0 ∈ B(−T0, (h− 1)r)
⋂
P for all x ∈ Pr, then

i∗ (T + F,Pr
⋂

Ω,P) = 1.

(b) (Additivity). For any pair of disjoint open subsets U1, U2 in U such that T + F has no �xed point on
(U \(U1

⋃
U2))

⋂
Ω, we have

i∗ (T + F,U
⋂

Ω,P) = i∗ (T + F,U1

⋂
Ω,P) + i∗ (T + F,U2

⋂
Ω,P),

where i∗ (T + F,Uj
⋂

Ω, X) : = i∗ (T + F | Uj
, Uj

⋂
Ω,P), j = 1, 2.

(c) (Homotopy Invariance). The �xed point index i∗ (T +H(t, .), U
⋂

Ω,P) does not depend on the parameter
t ∈ [0, 1] whenever

(i) H : [0, 1]× U → E is continuous and H(t, x) is uniformly continuous in t with respect to x ∈ U,
(ii) H([0, 1]× U) ⊂ (I − T )(Ω),

(iii) H(t, .) : U → E is a l-set contraction with 0 ≤ l < h− 1 and l does not depend on t ∈ [0, 1],

(iv) Tx+H(t, x) 6= x, for all t ∈ [0, 1] and x ∈ ∂U
⋂

Ω.

(d) (Solvability). If i∗ (T + F,U
⋂

Ω,P) 6= 0, then T + F has a �xed point in U
⋂

Ω.

Several conditions allowing computation of the �xed point index are shown. Details can be found in [6].
The following lemmas are fundamental for the proofs of our main results.

Lemma 2.6. Let X be a closed convex subset of a Banach space E, U a nonempty bounded open subset of X
and Ω be a subset of X. Assume that T : Ω→ E is an expansive mapping with constant h > 1 and F : U → E
is a k-set contraction with k < h − 1 such that F (U) ⊂ (I − T )(Ω), and Tx + Fx 6= x, for all x ∈ U

⋂
Ω.

The index i∗ satisfying the following properties:
(i) (Excision property). Let V ⊂ U be an open subset such that T + F has no �xed point in (U\V )

⋂
Ω.

Then
i∗ (T + F,U

⋂
Ω, X) = i∗ (T + F, V

⋂
Ω, X).

(ii) (Preservation property). If Y is a retract of X and Ω ⊂ Y , then

i∗ (T + F,U
⋂

Ω, X) = i∗ (T + F,U
⋂

Ω, Y ).

Proof. Properties (i) and (ii) follow directly from the de�nition (2.3) and [6, Remark 2.4] and the correspond-
ing properties of the �xed point index for strict set contractions (see [9, Theorem 1.3.5] or [1, 5, 10]).

Lemma 2.7. Let X be a closed convex subset of a Banach space E, X1 a bounded closed convex subset of
X, Ω be a subset of X and U a nonempty bounded open convex subset of X with U ⊂ X1. Assume that
T : Ω → E is an expansive mapping with constant h > 1 and F : X1 → E is a k-set contraction with
k < h− 1. If

F (X1) ⊂ (I − T )(X1

⋂
Ω), (2.4)

and
Tx+ Fx 6= x, for all x ∈ (X1 \ U)

⋂
Ω. (2.5)

then
i∗ (T + F,U

⋂
Ω, X) = 1.

In particular, if X is a nonempty bounded convex closed subset of E, Ω ⊂ X, F : X → E is a k-set
contraction with k < h− 1 and F (X) ⊂ (I − T )(Ω), then

i∗ (T + F,X
⋂

Ω, X) = 1.
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Proof. The mapping (I − T )−1F : X1 → X is a strict k(h− 1)−1-set contraction and it is readily seen that
(I−T )−1F (X1) ⊂ X1 such that there is no �xed point of (I−T )−1F in X1 \U. Otherwise, there would exist
some x0 ∈ X1 \U such that x0 = (I − T )−1Fx0. Hence, if x0 ∈ Ω, we get a contradiction with the condition
(2.5). If not we get a contradiction with (I −T )−1Fx0 ∈ Ω. The result then follows from the de�nition (2.3)
of the index i∗ and [9, Theorem 1.3.6].

Our main result is as follows.

Theorem 2.8. Let r2 ≥ d > c > r1 > 0, L2 ≥ L1 > 0 be constants, R > M max(r2, L2) and 0 ∈ Ω ⊂
P(α, r2;β, L2). Assume that α, β are nonnegative convex functionals satisfying (A1) and (A2). Let ψ be
a nonnegative concave functional on P such that ψ(x) ≤ α(x) for all x ∈ P(α, r2;β, L2). Assume that
T : Ω → E is an expansive mapping with constant h > 1 and F : P(α, r2;β, L2) → E is a k-set contraction
with k < h− 1 such that

F
(
P(α, r2;β, L2)

)
⊂ (I − T )(P (α, r1;β, L1)

⋂
Ω). (2.6)

Suppose that:

(C1) if x ∈ P with α(x) = r1, then α(Tx+ Fx) 6= r1;

(C2) if x ∈ P with β(x) = L1, then β(Tx+ Fx) 6= L1;

(C3) there exist z0 ∈ {x ∈ P(α, d;β, L2;ψ, c) : ψ(x) > c} such that

z0 ∈ B(−T0, (h− 1)R), ψ((I − T )−1z0) > c,

and
tF
(
P(α, r2;β, L2)

)
+ (1− t)z0 ⊂ (I − T )(Ω), for all t ∈ [0, 1].

(C4) ψ(Tx+ Fx) > c, ψ(Tx+ z0) ≥ c and α(Tx+ z0) ≤ d for all x ∈ P(α, d;β, L2;ψ, c)
⋂

Ω;

(C5) ψ(Tx+ Fx) > c and ψ(Tx+ z0) ≥ c for all x ∈ P(α, r2;β, L2;ψ, c)
⋂

Ω with α(Tx+ Fx) > d.

Then T + F has at least three �xed points x1, x2 and x3 in P(α, r2;β, L2)
⋂

Ω with

x1 ∈ P(α, r1;β, L1), x2 ∈ {x ∈ P(α, r2;β, L2;ψ, c) : ψ(x) > c }

and
x3 ∈ P(α, r2;β, L2) \ P(α, r2;β, L2;ψ, c)

⋃
P(α, r1;β, L1).

Proof. We list
U1 = P(α, r1;β, L1),

U2 = {x ∈ P(α, r2;β, L2;ψ, c) : ψ(x) > c }.

By assumptions on α, β and ψ, U1 and U2 are disjoint bounded nonempty open subsets of P(α, r2;β, L2).
Claim 1. We show that i∗(T + F,U1

⋂
Ω,P(α, r2;β, L2)) = 1.

We have Tx+ Fx 6= x for all x ∈ ∂U1
⋂

Ω. Otherwise
there exist x0 ∈ ∂U1

⋂
Ω such that x0 = Tx0 + Fx0.

If α(x0) = r1, by condition (C1), we get

r1 = α(x0) = α(Tx0 + Fx0) 6= r1,

which is a contradiction.
If β(x0) = L1, by condition (C2) we get

L1 = β(x0) = β(Tx0 + Fx0) 6= L1,

which is a contradiction.
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Therefore, for X = P(α, r2;β, L2), X1 = U1 and U = U1, Lemma 2.7 applies and gives the conclusion.
Claim 2. We show that i∗(T + F,P(α, r2;β, L2)

⋂
Ω,P(α, r2;β, L2)) = 1.

It is easy to see that this claim follows from the condition (2.6) and Lemma 2.7.
Claim 3. We show that i∗(T + F,U2

⋂
Ω,P(α, r2;β, L2)) = 1.

Suppose that x0 ∈ ∂U2
⋂

Ω is a �xed point of T + F ; then there is either
Case (i): ψ(x0) = c with α(x0) > d, or
Case (ii): ψ(x0) = c with x0 ∈ P(α, d;β, L2;ψ, c).
In Case (i), there is α(Tx0 + Fx0) = α(x0) > d, which combined with (C5) yields
ψ(x0) = ψ(Tx0 + Fx0) > c, it is a contradiction.
In Case (ii), ψ(x0) = ψ(Tx0 + Fx0) > c, leading again to a contradiction with (C4).
Consequently, the �xed point index i∗ (T +F,U2

⋂
Ω,P(α, r2;β, L2)) is well de�ned and satisfying the prop-

erties (a)-(d) of Theorem [6, Theorem 2.3] as well as the properties given in Lemma 2.6.
New, we consider the homotopic deformation H : [0, 1]× U2 → E de�ned by

H(t, x) = tFx+ (1− t)z0.

The operator H is continuous and uniformly continuous in t for each x and from (C3) we easily see that
H([0, 1]× U2) ⊂ (I − T )(Ω). Moreover, H(t, .) is a k-set contraction for each t and the mapping T +H(t, .)
has no �xed point on ∂U2

⋂
Ω. Otherwise, there would exist some x0 ∈ ∂U2

⋂
Ω and t0 ∈ [0, 1] such that

x0 = Tx0 +H(t0, x0).

Since x0 ∈ ∂U2, we have ψ(x0) = c, so we may distinguish between two cases:
α(Tx0 + Fx0) > d and α(Tx0 + Fx0) ≤ d.
If α(Tx0 + Fx0) > d, the concavity of ψ and the condition (C5) lead to

c = ψ(x0) = ψ (Tx0 +H(t0, x0))
= ψ (Tx0 + t0Fx0 + (1− t0)z0)
≥ t0ψ (Tx0 + Fx0) + (1− t0)ψ(Tx0 + z0)
> c,

which is a contradiction.
If α(Tx0 + Fx0) ≤ d, the convexity of α and the condition (C4) lead to

α(x0) = α (Tx0 +H(t0, x0))
= α (t0(Tx0 + Fx0) + (1− t0)(Tx0 + z0))
≤ t0α (Tx0 + Fx0) + (1− t0)α(Tx0 + z0)
≤ d,

Thus, x0 ∈ P(α, d;β, L2;ψ, c)
⋂

Ω and by the condition (C4), we get ψ(Tx0 + Fx0) > c, which implies that
ψ(x0) > c and again we come to a contradiction with ψ(x0) = c.
According to the homotopy invariance of the index i∗,

i∗ (T + F,U2

⋂
Ω,P(α, r2;β, L2)) = i∗ (T + z0, U2

⋂
Ω,P(α, r2;β, L2)).

Since P(α, r2;β, L2) ⊂ PR is closed and convex, so it is a retract of PR with Ω ⊂ P(α, r2;β, L2), by the
preservation property of the index i∗ in Lemma 2.6, we deduce that

i∗ (T + z0, U2

⋂
Ω,P(α, r2;β, L2)) = i∗ (T + z0, U2

⋂
Ω,PR). (2.7)

Since U2 ⊂ PR and T + z0 has no �xed point in PR \U2 (from the condition (C3) we have (I − T )−1z0 ∈ U2

), by the excision property of the index i∗ in Lemma 2.6, we deduce that

i∗ (T + z0, U2

⋂
Ω,PR) = i∗ (T + z0,PR

⋂
Ω,PR). (2.8)
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Then, our claim follow from (2.7), (2.8), the condition (C3) and the normality property of the index i∗.

Claim 4. We show that i∗(T + F,
(
P(α, r2;β, L2) \ (U1

⋃
U2 )

)⋂
Ω,P(α, r2;β, L2)) 6= 0. From the addi-

tivity property of the index i∗, we have

i∗ (T + F,
(
P(α, r2;β, L2) \ (U1

⋃
U2 )

)⋂
Ω,P(α, r2;β, L2))

= i∗ (T + F,P(α, r2;β, L2)
⋂

Ω,P(α, r2;β, L2))

−i∗ (T + F,U1
⋂

Ω,P(α, r2;β, L2))− i∗ (T + F,U2
⋂

Ω,P(α, r2;β, L2))

= 1− 1− 1 = −1.

Consequently, T + F has at least three �xed points x1, x2 and x3 in P(α, r2;β, L2)
⋂

Ω such that

x1 ∈ U1

⋂
Ω, x2 ∈ U2

⋂
Ω

and

x3 ∈
(
P(α, r2;β, L2) \ (U1

⋃
U2 )

)⋂
Ω.

3. Applications

In this section, we will investigate the following eigenvalue three-point boundary value problem

u(4) + λg(t)f(u) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = u′′(p)− u′′(1) = 0,

(3.1)

where

(D1) λ > 0, λ 6= 1, 0 < p < 1.

(D2) g ∈ C([0, 1]) is a nonnegative function such that

0 ≤ g(t) ≤ N, t ∈ [0, 1],

N is a positive constant.

(D3) f ∈ C([0,∞)) is a nonnegative function such that

f(0) = 0, |f(x)− f(y)| ≤ b|x− y|, x, y ∈ [0,∞),

b is a positive constant.

De�ne

G1(t, s) =


t if t ≤ s

s if s ≤ t,
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G2(t, s) =



t if t ≤ s ≤ p

s if s ≤ t and s ≤ p

1−s
1−p t if s ≥ p and t ≤ s

s+ p−s
1−p t if t ≥ s ≥ p,

J(t, s) =

∫ 1

0
G1(t, v)G2(v, s)dv, t, s ∈ [0, 1].

We have J(0, s) = 0, s ∈ [0, 1], and

0 ≤ G1(t, s), G2(t, s) ≤ 1, t, s ∈ [0, 1].

Thus,

0 ≤ J(t, s) ≤ 1, t, s ∈ [0, 1].

In [8], when λ 6= 1, it is proved that J(·, ·) is the Green function for the BVP (3.1). Then the solutions of
the BVP (3.1) can be represented in the form

u(t) = −λ
∫ 1

0
J(t, s)g(s)f(u(s))ds, t ∈ [0, 1].

In [8] the problem (3.1) is investigated for existence of at least one nonnegative solution. Here we investigate
the problem (3.1) for existence of at least three nonnegative solutions.

Let E = C([0, 1]) be endowed with the maximum norm. Below, suppose that z0, r1, r2, L1, L2, b, N , d,
c, m, ε and R are positive constants that satisfy the following inequalities

(D4)

r2 = L2 ≥ d > d
ε ≥ z0 > c > r1,

m > 1, r1 = L1, λ = ε
ε+1− 1

m

,
(3.2)

0 < A1 < 1, ε > 2, ε(1−A1) > 1, (3.3)

z0 < (ε(1−A1)− 1)R, r2
m(ε+1−εA1)

≤ r1. (3.4)

Here A1 = bN .

After the proof of the main result in this section, we will give an example for such constants and functions
f and g that satisfy (D1)-(D4). Our main result in this section is as follows.

Theorem 3.1. Suppose that (D1)-(D4) hold. Then the BVP (3.1) has at least three nonnegative solutions.

Proof. For u ∈ E, de�ne the operators

T1u(t) =

∫ 1

0
J(t, s)g(s)f(u(s))ds,

T2u(t) = −εu(t)− εT1u(t),

Tu(t) = T2u(t)− z0,

F1u(t) =
1

m
u(t),

Fu(t) = F1u(t) + z0 t ∈ [0, 1].
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De�ne the functional α : E → R as follows

α(u) =


z0 if u(0) = 0

|u(0)| if u(0) 6= 0.

Next, for u ∈ E, de�ne the functionals

ψ(u) = α(u), β(u) = ‖u‖.

Let

P = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]}.

Note that any �xed point u ∈ P of the operator T + F is a solution to the eigenvalue BVP (3.1). We have
that α and β are convex continuous functionals on P and ψ is a concave continuous functional on P and

ψ(u) = α(u), ‖u‖ ≤ max(α(u), β(u)) u ∈ P,

i.e., (A1) holds. Now, let r > 0 and L > 0 be arbitrarily chosen. Let also, L̃ = min{r, L}. Then L̃
2 ∈ P and

α

(
L̃

2

)
=
L̃

2
< r, β

(
L̃

2

)
=
L̃

2
< L.

Therefore L̃
2 ∈ P(α, r;β, L) and P(α, r;β, L) 6= ∅. So, (A2) holds. Let Ω = P(α, dε ;β,

d
ε ). We have that

0 ∈ Ω and Ω ⊂ P(α, r2;β, L2). For u, u1, u2 ∈ P, we have

T1u(t) ≤
∫ 1

0
J(t, s)g(s)f(u(s))ds

≤ bN

∫ 1

0
u(s)ds

≤ bN‖u‖

= A1‖u‖, t ∈ [0, 1],

‖T1u1 − T1u2‖ = max
t∈[0,1]

∣∣∣∣∫ 1

0
J(t, s)g(s)(f(u1(s))− f(u2(s)))ds

∣∣∣∣
≤

∫ 1

0
g(s)|f(u1(s))− f(u2(s))|ds

≤ bN

∫ 1

0
|u1(s)− u2(s)|ds

≤ A1‖u1 − u2‖.
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1. Let u1, u2 ∈ Ω be arbitrarily chosen. Then

‖Tu1 − Tu2‖ = ‖ε(u1 − u2) + ε(T1u1 − T1u2)‖

≥ ε‖u1 − u2‖ − ε‖T1u1 − T1u2‖

≥ ε‖u1 − u2‖ − εA1‖u1 − u2‖

= ε(1−A1)‖u1 − u2‖.

Therefore T : Ω→ E is an expansive operator with a constant h = ε(1−A1) > 1.

2. We have F : P(α, r2;β, L2)→ E is a completely continuous operator and then it is a 0-set contraction.

3. Let u ∈ P(α, r2;β, L2) be arbitrarily chosen. Then

‖(I − T2)u‖ = ‖(1 + ε)u+ εT1u‖

≥ (1 + ε)‖u‖ − ε‖T1u‖

≥ (ε+ 1− εA1)‖u‖

and

‖(I − T2)u‖ = ‖(1 + ε)u+ εT1u‖

≤ (ε+ 1)‖u‖+ ε‖T1u‖

≤ (ε+ 1 + εA1)‖u‖.

Take
u1 = (I − T2)−1F1u.

Then u1 ∈ P and

‖u1‖ = ‖(I − T2)−1F1u‖

≤ 1

m(ε+ 1− εA1)
‖u‖

≤ r2
m(ε+ 1− εA1)

≤ r1

and

(I − T )u1 = (I − T2)u1 + z0

= F1u+ z0

= Fu.
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Therefore u1 ∈ Ω and

F (P(α, r2;β, L2)) ⊂ (I − T )(P(α, r1;β, L1)
⋂

Ω).

4. Let u ∈ P. Then

Tu+ Fu = −
(
ε− 1

m

)
u− εT1u,

(Tu+ Fu)(0) = −
(
ε− 1

m

)
u(0),

β(Tu+ Fu) = β

(
−
(
ε− 1

m

)
u− εT1u

)

= β

((
ε− 1

m

)
u+ εT1u

)

≥
(
ε− 1

m

)
β(u).

Let α(u) = r1. If u(0) = 0, then
α(Tu+ Fu) = z0 > r1.

If u(0) 6= 0, then r1 = α(u) = |u(0)| and

α(Tu+ Fu) =

(
ε− 1

m

)
u(0) =

(
ε− 1

m

)
r1 > r1.

If β(u) = L1, then

β(Tu+ Fu) ≥
(
ε− 1

m

)
L1 > L1.

Therefore (C1) and (C2) hold.

5. We have z0 ∈ {x ∈ P(α, d;β, L2;ψ, c) : ψ(x) > c},

z0 < (ε(1−A1)− 1)R and ψ
(
(I − T )−1z0

)
= ψ (0) = z0 > c.

Let now, u ∈ P(α, r2;β, L2) and µ ∈ [0, 1] be arbitrarily chosen. Take

u2 = (I − T2)−1(µF1u).

We have u2 ∈ P and

‖u2‖ ≤
‖u‖

m(ε+ 1− εA1)

≤ r2
m(ε+ 1− εA1)

≤ d

ε
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and

(I − T )u2 = (I − T2)u2 + z0

= µF1u+ µz0 + (1− µ)z0

= µFu+ (1− µ)z0.

Therefore u2 ∈ Ω and

µF (P(α, r2;β, L2)) + (1− µ)z0 ⊂ (I − T )(Ω), µ ∈ [0, 1].

Thus, (C3) holds.

6. Let u ∈ P(α, d;β, L2;ψ, c)
⋂

Ω be arbitrarily chosen. Then α(u) ≤ d
ε and

ψ(Tu+ Fu) = ψ

((
ε− 1

m

)
u

)
=


(
ε− 1

m

)
u(0) > c if u(0) 6= 0

z0 > c if u(0) = 0
,

ψ(Tu+ z0) = ψ(T2u) = ψ (εu) =


εu(0) > c if u(0) 6= 0

z0 > c if u(0) = 0
,

α(Tu+ z0) = α(T2u) = α(εu) =


εu(0) ≤ d if u(0) 6= 0

z0 ≤ d if u(0) = 0.

Thus, (C4) holds.

7. Let u ∈ {P(α, r2;β, L2;ψ, c)
⋂

Ω : α(Tu+ Fu) > d}. Then α(u) ≤ d
ε and

ψ(Tu+ Fu) = ψ

((
ε− 1

m

)
u

)
=


(
ε− 1

m

)
u(0) > c if u(0) 6= 0

z0 > c if u(0) = 0
,

ψ(Tu+ z0) = ψ(T2u) = ψ (εu) =


εu(0) > c if u(0) 6= 0

z0 > c if u(0) = 0
,

α(Tu+ z0) = α(T2u) = α(εu) =


εu(0) ≤ r2 if u(0) 6= 0

z0 ≤ r2 if u(0) = 0.

Thus, (C5) holds.

Hence and Theorem 2.8, it follows that the problem (3.1) has at least three solutions u1, u2, u3 such that
u1 ∈ P(α, r1;β, L1),

u2 ∈ {x ∈ P(α, r2;β, L2;ψ, c) : ψ(x) > c}

and
u3 ∈ P(α, r2;β, L2)\

(
P(α, r2;β, L2;ψ, c)

⋃
P(α, r1;β, L1)

)
.

This completes the proof.
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Example 3.2. Let

r2 = L2 = d = b = 1, N =
1

2
, ε =

1994

3
,

z0 =
1

1994
, R = 1, m = 1994, L1 = r1 =

3

1994 · 103
,

λ =
19942

1994 · 1997− 3
, c =

3

4 · 1994
.

1. We have

ε+ 1− 1

m
=

1994

3
+ 1− 1

1994
=

1994 · 1997− 3

3 · 1994
,

ε

ε+ 1− 1
m

=
1994
3

1994·1997−3
3·1994

=
19942

1994 · 1997− 3
= λ

and d
ε = 3

1994 and

r2 = L2 = d >
d

ε
> z0 > c > r1, m > 1, r1 = L1,

i.e., (3.2) holds.

2. Note that A1 = bN = 1
2 and

0 < A1 < 1, ε > 2, ε(1−A1) =
997

3
> 1,

i.e., (3.3) holds.

3. We have

(ε(1−A1)− 1)R =
997

3
− 1 =

994

3
> z0

and

d

103ε
=

1

103 · 19943

=
3

1994 · 103
= r1,

ε+ 1− εA1 = ε(1−A1) + 1 =
997

3
+ 1 =

103

3
,

r2
m(ε+ 1− εA1)

=
1

1994 · 1033
=

3

1994 · 103
= r1,

i.e., (3.4) holds.

Now, consider the BVP

u(4) + 19942

1994·1997−3

(
1

2(1+t2)

)(
u

1+u

)
= 0, t ∈ (0, 1),

u(0) = u′(1) = u′′(0) = u′′
(
1
2

)
− u′′(1) = 0.

(3.5)

Here

λ =
19942

1994 · 1997− 3
, g(t) =

1

2(1 + t2)
, f(u) =

u

1 + u
,
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t ∈ [0, 1], u ∈ [0,∞). Then

0 ≤ g(t) ≤ 1

2
, t ∈ [0, 1],

and
f(0) = 0, |f(x1)− f(x2)| ≤ |x1 − x2|, x1, x2 ∈ [0,∞).

Hence and Theorem 3.1, it follows that the problem (3.5) has at least three nonnegative solutions.

Now, suppose that z0, r1, r2, L1, L2, b, N , d, c, m, ε and R are positive constants that satisfy the
following inequalities

(D5)

r2 = L2 ≥ d > d
ε+1 ≥ z0 > c > r1,

1 > ε > 1
m , r1 = L1, λ = ε

ε− 1
m

, 0 < A1 < 1,
(3.6)

z0 < ε(1−A1)R,
r2

mε(1−A1)
≤ r1. (3.7)

Here A1 = bN .

Our next main result is as follows.

Theorem 3.3. Suppose that (D1)-(D3) and (D5) hold. Then the BVP (3.1)has at least three nonnegative
solutions.

Proof. For u ∈ E, de�ne the operators

T3u(t) = (ε+ 1)u(t) + εT1u(t),

T4u(t) = T3u(t)− z0,

F2u(t) = −F1u(t) + z0 t ∈ [0, 1],

where F1 and T1 are as in the proof of Theorem 3.1. Let P, α, β and ψ are as in the proof of Theorem 3.1.
Note that, by the proof of Theorem 3.1, it follows that (A1) and (A2) hold. Also, any �xed point u ∈ P of
the operator T4 + F2 is a solution to the eigenvalue BVP (3.1). Let Ω = P(α, d

1+ε ;β,
d

1+ε). We have that

0 ∈ Ω and Ω ⊂ P(α, r2;β, L2).

1. Let u1, u2 ∈ Ω be arbitrarily chosen. Then

‖T4u1 − T4u2‖ = ‖(ε+ 1)(u1 − u2) + ε(T1u1 − T1u2)‖

≥ (ε+ 1)‖u1 − u2‖ − ε‖T1u1 − T1u2‖

≥ (ε+ 1)‖u1 − u2‖ − εA1‖u1 − u2‖

= (ε(1−A1) + 1)‖u1 − u2‖.

Therefore T4 : Ω→ E is an expansive operator with a constant h = ε(1−A1) + 1 > 1.

2. We have F2 : P(α, r2;β, L2)→ E is a completely continuous operator and then it is a 0-set contraction.
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3. Let u ∈ P(α, r2;β, L2) be arbitrarily chosen. Then

‖(I − T3)u‖ = ‖εu+ εT1u‖

≥ ε‖u‖ − ε‖T1u‖

≥ ε(1−A1)‖u‖

and

‖(I − T3)u‖ = ‖εu+ εT1u‖

≤ ε‖u‖+ ε‖T1u‖

≤ ε(1 +A1)‖u‖.

Take
u1 = −(I − T3)−1F1u.

Then u1 ∈ P and

‖u1‖ = ‖(I − T3)−1F1u‖

≤ 1

mε(1−A1)
‖u‖

≤ r2
mε(1−A1)

≤ r1

and

(I − T4)u1 = (I − T3)u1 + z0

= −F1u+ z0

= F2u.

Therefore u1 ∈ Ω and

F2(P(α, r2;β, L2)) ⊂ (I − T4)(P(α, r1;β, L1)
⋂

Ω).
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4. Let u ∈ P. Then

T4u+ F2u =

(
ε+ 1− 1

m

)
u+ εT1u,

(T4u+ F2u)(0) =

(
ε+ 1− 1

m

)
u(0),

β(T4u+ F2u) = β

((
ε+ 1− 1

m

)
u+ εT1u

)

= β

((
ε+ 1− 1

m

)
u+ εT1u

)

≥
(
ε+ 1− 1

m

)
β(u).

Let α(u) = r1. If u(0) = 0, then
α(T4u+ F2u) = z0 > r1.

If u(0) 6= 0, then

α(T4u+ F2u) =

(
ε+ 1− 1

m

)
u(0) =

(
ε+ 1− 1

m

)
r1 > r1.

If β(u) = L1, then

β(T4u+ F2u) ≥
(
ε+ 1− 1

m

)
L1 > L1.

Therefore (C1) and (C2) hold.

5. We have z0 ∈ {x ∈ P(α, d;β, L2;ψ, c) : ψ(x) > c},

z0 < ε(1−A1)R and ψ
(
(I − T4)−1z0

)
= ψ (0) = z0 > c.

Let now, u ∈ P(α, r2;β, L2) and µ ∈ [0, 1] be arbitrarily chosen. Take

u2 = −(I − T3)−1(µF1u).

We have u2 ∈ P and

‖u2‖ ≤
‖u‖

mε(1−A1)

≤ r2
mε(1−A1)

≤ d

ε+ 1

and

(I − T4)u2 = (I − T3)u2 + z0

= −µF1u+ µz0 + (1− µ)z0

= µF2u+ (1− µ)z0.
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Therefore u2 ∈ Ω and

µF2(P(α, r2;β, L2)) + (1− µ)z0 ⊂ (I − T4)(Ω), µ ∈ [0, 1].

Thus, (C3) holds.

6. Let u ∈ P(α, d;β, L2;ψ, c)
⋂

Ω be arbitrarily chosen. Then α(u) ≤ d
1+ε and

ψ(T4u+ F2u) = ψ

((
ε+ 1− 1

m

)
u

)
=


(
ε+ 1− 1

m

)
u(0) > c if u(0) 6= 0

z0 > c if u(0) = 0
,

ψ(T4u+ z0) = ψ(T3u) = ψ ((1 + ε)u) =


(ε+ 1)u(0) > c if u(0) 6= 0

z0 > c if u(0) = 0
,

α(T4u+ z0) = α(T3u) =


(ε+ 1)u(0) ≤ d if u(0) 6= 0

z0 ≤ d if u(0) = 0.

Thus, (C4) holds.

7. Let u ∈ {P(α, r2;β, L2;ψ, c)
⋂

Ω : α(T4u+ F2u) > d}. Then α(u) ≤ d
1+ε and

ψ(T4u+ F2u) = ψ

((
ε+ 1− 1

m

)
u

)
=


(
ε+ 1− 1

m

)
u(0) > c if u(0) 6= 0

z0 > c if u(0) = 0
,

ψ(T4u+ z0) = ψ(T3u) = ψ ((1 + ε)u) =


(ε+ 1)u(0) > c if u(0) 6= 0

z0 > c if u(0) = 0
,

α(T4u+ z0) = α(T3u) =


(ε+ 1)u(0) ≤ r2 if u(0) 6= 0

z0 ≤ r2 if u(0) = 0.

Thus, (C5) holds.

Hence and Theorem 2.8, it follows that the problem (3.1) has at least three solutions u1, u2, u3 such that
u1 ∈ P(α, r1;β, L1),

u2 ∈ {x ∈ P(α, r2;β, L2;ψ, c) : ψ(x) > c}

and
u3 ∈ P(α, r2;β, L2)\

(
P(α, r2;β, L2;ψ, c)

⋃
P(α, r1;β, L1)

)
.

This completes the proof.

Example 3.4. Let

r2 = L2 = d = b = 1, N = ε = A1 =
1

2
, m = 40,

z0 =
1

5
, c =

1

9
, r1 =

1

10
, λ =

20

19
, R = 1.

Then

A1 =
1

2
, ε+ 1 =

3

2
,

d

ε+ 1
=

2

3
, ε− 1

m
=

1

2
− 1

40
=

19

40
.
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1. We have

r2 = L2 = d > 1 >
2

3
=

d

ε+ 1
>

1

5
= z0 >

1

9
= c >

1

10
= r1,

and

1 >
1

2
= ε >

1

40
=

1

m
,

ε

ε− 1
m

=
1
2
19
40

=
20

19
= λ, 0 < A1 < 1,

i.e., (3.6) holds.

2. We have

ε(1−A1)R =
1

4
>

1

5
= z0,

mε(1−A1) = 40 · 1

2
· 1

2
= 10,

r2
mε(1−A1)

= r1,

i.e., (3.7).

Now, consider the BVP

u(4) + 10
19

(
1

1+t2

)(
u

1+u

)
= 0, t ∈ (0, 1),

u(0) = u′(1) = u′′(0) = u′′
(
1
2

)
− u′′(1) = 0.

(3.8)

Here

λ =
20

19
, g(t) =

1

2(1 + t2)
, f(u) =

u

1 + u
,

t ∈ [0, 1], u ∈ [0,∞). Then

0 ≤ g(t) ≤ 1

2
, t ∈ [0, 1],

and
f(0) = 0, |f(x1)− f(x2)| ≤ |x1 − x2|, x1, x2 ∈ [0,∞).

Hence and Theorem 3.3, it follows that the problem (3.8) has at least three nonnegative solutions.
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