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Abstract

In the paper, by virtue of the Faà di Bruno formula and several properties of the Bell polynomials of the
second kind, the author computes higher order derivatives of the generating function of convolved Fibonacci
numbers and, consequently, derives three closed forms for convolved Fibonacci numbers in terms of the falling
and rising factorials, the Lah numbers, the signed Stirling numbers of the �rst kind, and the golden ratio.

Keywords: closed form; convolved Fibonacci number; Faà di Bruno formula; Bell polynomial of the second
kind; higher order derivative; generating function; falling factorial; rising factorial; Lah number; Stirling
number of the �rst kind; golden ratio.
2010 MSC: 05A10, 11B83, 11C20, 11Y55, 26C05.

1. Motivation and main results

The well-known Fibonacci numbers

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(
1−

√
5

2

)n]
, n ∈ N

form a sequence of integers and satisfy the linear recurrence relation Fn = Fn−1 + Fn−2 for n ≥ 3. The
�rst eight Fibonacci numbers Fn for 1 ≤ n ≤ 8 are 1, 1, 2, 3, 5, 8, 13, 21. We can generate all the Fibonacci
numbers Fn for n ≥ 1 by

1

1− t− t2
=

∞∑
n=0

Fn+1t
n = 1 + t+ 2t2 + 3t3 + 5t4 + 8t5 + · · · , |t| <

√
5 − 1

2
. (1.1)
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We can �nd the de�nition of convolved Fibonacci numbers Fn(x)

F (t, x) =

(
1

1− t− t2

)x

=
∞∑
n=0

Fn(x)
tn

n!
, x ∈ R (1.2)

in the papers [2, 3, 6, 14]. It is obvious that Fn(1) = n!Fn+1 for n ≥ 0.
Kim and his three coauthors [13, Theorem 6] proved in an elementary fashion by induction and recursion

that the family of di�erential equations

∂nF (t, x)

∂tn
=

[⌊n+1
2

⌋∑
i=0

ai(n)(x)n−i
(1 + 2t)n−2i(
1− t− t2

)n−i

]
F (t, x) (1.3)

have a solution F (t, x) =
(

1
1−t−t2

)x
, where ⌊x⌋ is the �oor function whose value equals the largest integer

less than or equal to x, the quantity

(x)n =
n−1∏
ℓ=0

(x+ ℓ) =

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1;

1, n = 0

denotes the rising factorial, and

ai(n) =



1, i = 0;

2i
n−2i+1∑
ki=1

ki+1∑
ki−1=1

· · ·
k2+1∑
k1=1

i∏
ℓ=1

kℓ, 1 ≤ i ≤
⌊
n

2

⌋
;

0, i =
n+ 1

2

for all n ∈ N. Consequently, the authors [13, Corollary 8] derived that

Fn(x) =

⌊n+1
2

⌋∑
i=0

ai(n)(x)n−i. (1.4)

It is clear that computing, remembering, and understanding the above quantity ai(n) by hands and brains
are not an easy thing. Generally speaking, beauty, simplicity, symmetry, and recursion are the best and the
hope to �nd solutions in mathematics.

In this paper, our aims are to supply three alternative families of di�erential equations for the generating
function F (t, x) of convolved Fibonacci numbers Fn(x) in the form of higher order derivatives and to provide
three alternative closed forms for convolved Fibonacci numbers Fn(x) in terms of the falling factorials ⟨x⟩k,
the rising factorials (x)k, the Lah numbers L(n, k), the signed Stirling numbers of the �rst kind s(n, k), and

the golden ratio
√
5+1
2 .

Our main results can be stated as the following theorems.

Theorem 1. The nth partial derivative with respect to t of the generating function F (t, x) can be computed

by

∂nF (t, x)

∂tn
=

[
1(√

5−1
2 − t

)n n∑
k=0

(−1)k
(
n

k

)
(x)k(x)n−k

( √
5−1
2 − t

t+
√
5+1
2

)k]
F (t, x). (1.5)

Consequently, convolved Fibonacci numbers Fn(x) for n ≥ 0 can be expressed as

Fn(x) =
1(√

5−1
2

)n n∑
k=0

(−1)k
(
n

k

)(√
5 − 1√
5 + 1

)k

(x)k(x)n−k. (1.6)
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Theorem 2. The nth partial derivative with respect to t of the generating function F (t, x) can be computed

by

∂nF (t, x)

∂tn
=

[
n∑

k=0

(−1)kxk
∑

r+s=k

∑
ℓ+m=n

(
n

ℓ

)
s(ℓ, r)s(m, s)(

t+
√
5+1
2

)ℓ(
t−

√
5−1
2

)m
]
F (t, x), (1.7)

where s(n, k) are the signed Stirling numbers of the �rst kind which can be generated by

(ln(1 + x))k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1.

Consequently, convolved Fibonacci numbers Fn(x) for n ≥ 0 can be expressed as

Fn(x) =
n∑

k=0

(−1)kxk
∑

r+s=k

∑
ℓ+m=n

(−1)m
(
n

ℓ

)
s(ℓ, r)s(m, s)

(√
5 + 1

2

)m−ℓ

. (1.8)

Theorem 3. The nth partial derivative with respect to t of the generating function F (t, x) can be computed

by

∂nF (t, x)

∂tn

=

[
n∑

k=0

⟨x⟩k(√
5
)k ∑

r+s=k

∑
ℓ+m=n

(−1)r
(
n

ℓ

)
L(ℓ, r)L(m, s)

(
t+

√
5 + 1

2

)s−ℓ(
t−

√
5 − 1

2

)r−m
]
F (t, x), (1.9)

where

L(n, k) =

(
n− 1

k − 1

)
n!

k!
, n ≥ k ≥ 0

are the Lah numbers and

⟨x⟩n =
n−1∏
k=0

(x− k) =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1;

1, n = 0

is the falling factorial. Consequently, convolved Fibonacci numbers Fn(x) for n ≥ 0 can be expressed as

Fn(x) =

n∑
k=0

⟨x⟩k(√
5
)k ∑

r+s=k

∑
ℓ+m=n

(−1)m
(
n

ℓ

)
L(ℓ, r)L(m, s)

(√
5 + 1

2

)s+m−r−ℓ

. (1.10)

2. Lemmas

In order to verify our main results in Theorems 1 to 3, we need some notions and lemmas below.
In combinatorial mathematics, the Bell polynomials of the second kind Bn,k are de�ned by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
ℓi∈{0}∪N∑n−k+1
i=1 iℓi=n∑n−k+1
i=1 ℓi=k

n!∏n−k+1
i=1 ℓi!

n−k+1∏
i=1

(
xi
i!

)ℓi

for n ≥ k ≥ 0. See [5, p. 134, Theorem A]. In terms of the Bell polynomials of the second kind Bn,k, the Faà
di Bruno formula for computing higher order derivatives of composite functions is described in [5, p. 139,
Theorem C] by

dn

dxn
f ◦ g(x) =

n∑
k=0

f (k)(g(x)) Bn,k

(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
. (2.1)

The Bell polynomials of the second kind Bn,k have the following properties.
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Lemma 1 ([1, Example 2.6] and [5, p. 136, Eq. [3n]]). The Bell polynomials of the second kind Bn,k satisfy

Bn,k(x1 + y1, x2 + y2, . . . , xn−k+1 + yn−k+1)

=
∑

r+s=k

∑
ℓ+m=n

(
n

ℓ

)
Bℓ,r(x1, x2, . . . , xℓ−r+1) Bm,s(y1, y2, . . . , ym−s+1). (2.2)

Lemma 2 ([5, p. 135]). For n ≥ k ≥ 0, we have

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1), (2.3)

where a and b are any complex numbers.

Lemma 3 ([5, p. 135, Theorem B] and [22, p. 27, eq. (3.1)]). For n ≥ k ≥ 0, we have

Bn,k(1!, 2!, . . . , (n− k + 1)!) =

(
n− 1

k − 1

)
n!

k!
= L(n, k) (2.4)

and

Bn,k(0!, 1!, 2!, . . . , (n− k)!) = (−1)n−ks(n, k). (2.5)

3. Proofs of main results

Now we are in a position to prove our main results in Theorems 1 to 3.

Proof of Theorem 1. It is clear that the function 1
1−t−t2

can be written as

1

1− t− t2
=

1(
t+

√
5+1
2

)(√
5−1
2 − t

) .
Hence, it follows that

F (t, x) =

(
1

1− t− t2

)x

=
1(

t+
√
5+1
2

)x(√5−1
2 − t

)x
and

∂nF (t, x)

∂tn
=

n∑
k=0

(
n

k

)
∂k

∂tk

[
1(

t+
√
5+1
2

)x
]
∂n−k

∂tn−k

[
1(√

5−1
2 − t

)x
]

=
n∑

k=0

(
n

k

)
(−1)k(x)k(

t+
√
5+1
2

)x+k

(x)n−k(√
5−1
2 − t

)x+n−k

=

(
1

1− t− t2

)x 1(√
5−1
2 − t

)n n∑
k=0

(−1)k
(
n

k

)( √
5−1
2 − t

t+
√
5+1
2

)k

(x)k(x)n−k

→ 1(√
5−1
2

)n n∑
k=0

(−1)k
(
n

k

)(√
5 − 1√
5 + 1

)k

(x)k(x)n−k

as t → 0. The proof of Theorem 1 is complete.

Proof of Theorem 2. It is clear that we can write(
1

1− t− t2

)x

= e−x ln(1−t−t2).
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Applying the Faà di Bruno formula (2.1) to f(u) = e±u and

u = g(t) = ∓x ln
(
1− t− t2

)
= ∓x

[
ln

(
t+

√
5 + 1

2

)
+ ln

(√
5 − 1

2
− t

)]
and employing the formulas (2.2), (2.3), and (2.5) yield

dn

dtn

[(
1

1− t− t2

)x]
=

n∑
k=0

dk
(
e±u
)

duk
Bn,k

(
∓x

[
0!

t+
√
5+1
2

+
0!

t−
√
5−1
2

]
,∓x

[
(−1)11!(

t+
√
5+1
2

)2
+

(−1)11!(
t−

√
5−1
2

)2
]
,∓x

[
(−1)22!(

t+
√
5+1
2

)3 +
(−1)22!(

t−
√
5−1
2

)3
]
, . . . ,∓x

[
(−1)n−k(n− k)!(
t+

√
5+1
2

)n−k+1
+

(−1)n−k(n− k)!(
t−

√
5−1
2

)n−k+1

])

=
n∑

k=0

(±1)ke±u(∓x)k(−1)n+k Bn,k

(
0!

t+
√
5+1
2

+
0!

t−
√
5−1
2

,
1!(

t+
√
5+1
2

)2
+

1!(
t−

√
5−1
2

)2 , 2!(
t+

√
5+1
2

)3 +
2!(

t−
√
5−1
2

)3 , . . . , (n− k)!(
t+

√
5+1
2

)n−k+1
+

(n− k)!(
t−

√
5−1
2

)n−k+1

)

= (−1)n
(

1

1− t− t2

)x n∑
k=0

xk
∑

r+s=k

∑
ℓ+m=n

(
n

ℓ

)
Bℓ,r

(
0!

t+
√
5+1
2

,
1!(

t+
√
5+1
2

)2 , 2!(
t+

√
5+1
2

)3 , . . . ,
(ℓ− r)!(

t+
√
5+1
2

)ℓ−r+1

)
Bm,s

(
0!

t−
√
5−1
2

,
1!(

t−
√
5−1
2

)2 , 2!(
t−

√
5−1
2

)3 , . . . , (m− s)!(
t−

√
5−1
2

)m−s+1

)

= (−1)n
(

1

1− t− t2

)x n∑
k=0

xk
∑

r+s=k

∑
ℓ+m=n

(
n

ℓ

)
Bℓ,r(0!, 1!, . . . , (ℓ− r)!)(

t+
√
5+1
2

)ℓ Bm,s(0!, 1!, . . . , (m− s)!)(
t−

√
5−1
2

)m
= (−1)n

(
1

1− t− t2

)x n∑
k=0

xk
∑

r+s=k

∑
ℓ+m=n

(
n

ℓ

)
(−1)ℓ−rs(ℓ, r)(
t+

√
5+1
2

)ℓ (−1)m−ss(m, s)(
t−

√
5−1
2

)m
=

(
1

1− t− t2

)x n∑
k=0

(−1)kxk
∑

r+s=k

∑
ℓ+m=n

(
n

ℓ

)
s(ℓ, r)s(m, s)(

t+
√
5+1
2

)ℓ(
t−

√
5−1
2

)m
and, consequently,

Fn(x) = lim
t→0

dn

dtn

[(
1

1− t− t2

)x]
=

n∑
k=0

(−1)kxk
∑

r+s=k

∑
ℓ+m=n

(
n

ℓ

)
s(ℓ, r)s(m, s)(√
5+1
2

)ℓ(−√
5−1
2

)m
=

n∑
k=0

(−1)kxk
∑

r+s=k

∑
ℓ+m=n

(−1)m
(
n

ℓ

)
s(ℓ, r)s(m, s)

(√
5 + 1

2

)m(√
5 − 1

2

)ℓ

=
n∑

k=0

(−1)kxk
∑

r+s=k

∑
ℓ+m=n

(−1)m
(
n

ℓ

)
s(ℓ, r)s(m, s)

(√
5 + 1

2

)m−ℓ

.

The proof of Theorem 2 is thus complete.

Proof of Theorem 3. Let u = g(t) = 1
1−t−t2

. Then, by the Faà di Bruno formula (2.1),

dn

dtn

[(
1

1− t− t2

)x]
=

n∑
k=0

dk(ux)

duk
Bn,k

(
g′(t), g′′(t), . . . , g(n−k+1)(t)

)
=

n∑
k=0

⟨x⟩kgx−k(t) Bn,k

(
g′(t), g′′(t), . . . , g(n−k+1)(t)

)
.
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Since

g(t) =
1√
5

(
1

t+
√
5+1
2

− 1

t−
√
5−1
2

)
and

g(k)(t) =
k!√
5

[
1(

t+
√
5+1
2

)k+1
− 1(

t−
√
5−1
2

)k+1

]
,

by the formulas (2.2), (2.3), and (2.4), we obtain

Bn,k

(
g′(t), g′′(t), . . . , g(n−k+1)(t)

)
=
∑

r+s=k

∑
ℓ+m=n

(
n

ℓ

)
Bℓ,r

(
1!√
5

1(
t+

√
5+1
2

)2 ,
2!√
5

1(
t+

√
5+1
2

)3 , . . . , (ℓ− r + 1)!√
5

1(
t+

√
5+1
2

)ℓ−r+2

)
Bm,s

(
− 1!√

5

1(
t−

√
5−1
2

)2 ,
− 2!√

5

1(
t−

√
5−1
2

)3 , . . . ,−(m− s+ 1)!√
5

1(
t−

√
5−1
2

)m−s+2

)

=
∑

r+s=k

∑
ℓ+m=n

(
n

ℓ

)(
1√
5

)r 1(
t+

√
5+1
2

)ℓ+r
Bℓ,r(1!, 2!, . . . , (ℓ− r + 1)!)

×
(
− 1√

5

)s 1(
t−

√
5−1
2

)m+s
Bm,s(1!, 2!, . . . , (m− s+ 1)!)

=

(
1√
5

)k ∑
r+s=k

∑
ℓ+m=n

(−1)s
(
n

ℓ

)
1(

t+
√
5+1
2

)ℓ+r

1(
t−

√
5−1
2

)m+s
L(ℓ, r)L(m, s).

(3.1)

Therefore, it follows that

dn

dtn

[(
1

1− t− t2

)x]
= gx(t)

n∑
k=0

⟨x⟩k
gk(t)

(
1√
5

)k

×
∑

r+s=k

∑
ℓ+m=n

(−1)s
(
n

ℓ

)
L(ℓ, r)L(m, s)

1(
t+

√
5+1
2

)ℓ+r

1(
t−

√
5−1
2

)m+s

=

(
1

1− t− t2

)x n∑
k=0

⟨x⟩k(√
5
)k (1− t− t2

)k ∑
r+s=k

∑
ℓ+m=n

(−1)s
(
n

ℓ

)
L(ℓ, r)

×L(m, s)
1(

t+
√
5+1
2

)ℓ+r

1(
t−

√
5−1
2

)m+s

=

(
1

1− t− t2

)x n∑
k=0

⟨x⟩k(√
5
)k ∑

r+s=k

∑
ℓ+m=n

(−1)s+k

(
n

ℓ

)
L(ℓ, r)

×L(m, s)

(
t−

√
5−1
2

)k(
t+

√
5+1
2

)k(
t+

√
5+1
2

)ℓ+r(
t−

√
5−1
2

)m+s

=

(
1

1− t− t2

)x n∑
k=0

⟨x⟩k(√
5
)k ∑

r+s=k

∑
ℓ+m=n

(−1)r
(
n

ℓ

)
L(ℓ, r)

×L(m, s)

(
t+

√
5+1
2

)s(
t−

√
5−1
2

)r(
t+

√
5+1
2

)ℓ(
t−

√
5−1
2

)m
=

(
1

1− t− t2

)x n∑
k=0

⟨x⟩k(√
5
)k ∑

r+s=k

∑
ℓ+m=n

(−1)r
(
n

ℓ

)
L(ℓ, r)



F. Qi, Results in Nonlinear Anal. 3 (2020), 185�195. 191

×L(m, s)

(
t+

√
5 + 1

2

)s−ℓ(
t−

√
5 − 1

2

)r−m

and, consequently,

Fn(x) = lim
t→0

dn

dtn

[(
1

1− t− t2

)x]
=

n∑
k=0

⟨x⟩k(√
5
)k ∑

r+s=k

∑
ℓ+m=n

(−1)m
(
n

ℓ

)
L(ℓ, r)L(m, s)

(√
5 + 1

2

)s−ℓ(√
5 − 1

2

)r−m

=

n∑
k=0

⟨x⟩k(√
5
)k ∑

r+s=k

∑
ℓ+m=n

(−1)m
(
n

ℓ

)
L(ℓ, r)L(m, s)

(√
5 + 1

2

)s+m−r−ℓ

.

The di�erential equations in (1.9) and the formula (1.10) are thus veri�ed. The proof of Theorem 3 is
complete.

4. Remarks

Finally, we list several remarks on our main results and other things.

Remark 1. Because the di�erential equations in (1.5), (1.7), and (1.9) and the closed forms (1.6), (1.8),
and (1.10) are expressed in terms of the falling factorials ⟨x⟩k, the rising factorial (x)k, the Lah numbers

L(n, k), the signed Stirling numbers of the �rst kind s(n, k), and the golden ratio
√
5+1
2 , they and their proofs

are simpler, more meaningful, more signi�cant, and more computable than (1.3) and (1.4) and their proofs
in [13].

Remark 2. By (1.1) and (3.1), we can conclude that

Bn,k(1!F2, 2!F3, . . . , (n− k + 1)!Fn−k+2)

=

(
1√
5

)k ∑
r+s=k

∑
ℓ+m=n

(−1)m
(
n

ℓ

)
L(ℓ, r)L(m, s)(√

5+1
2

)ℓ+r(√5−1
2

)m+s

=

(
1√
5

)k ∑
r+s=k

∑
ℓ+m=n

(−1)m
(
n

ℓ

)
L(ℓ, r)L(m, s)

(√
5 + 1

2

)s+m−r−ℓ

.

By the way, in the papers [8, 20, 34, 39, 43, 48, 54, 50, 55, 56, 59, 64] and closely-related references
therein, there are some new results and applications of special values of the Bell polynomials of the second
kind Bn,k.

Remark 3. In the papers [10, 12, 58] and closely-related references, there are some new results for the Lah
numbers L(n, k). In the papers [16, 22, 23, 25, 26, 36] and references cited therein, there are some new results
for the Stirling numbers of the �rst kind s(n, k).

Remark 4. In [15, 34, 35], the authors have discussed the Cauchy product of central Delannoy numbers and
other properties of the Delannoy numbers.

Remark 5. We can generate the Fibonacci polynomials

Fn(s) =
1

2n

(
s+

√
4 + s2

)n −
(
s−

√
4 + s2

)n
√
4 + s2

, n ∈ N

by

1

1− sz − z2
=

∞∑
n=0

Fn+1(s)z
n = 1 + sz +

(
s2 + 1

)
z2 +

(
s3 + 2s

)
z3 + · · · .
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One can de�ne the generalized Fibonacci polynomials Fn(s, t) by the initial values

F0(s, t) = 0, F1(s, t) = 1,

and the recurrence relation
Fn(s, t) = sFn−1(s, t) + tFn−2(s, t), n ≥ 2.

It is easy to deduce that

F2(s, t) = s, F3(s, t) = s2 + t, F4(s, t) = s3 + 2st, F5(s, t) = s4 + 3s2t+ t2.

We can generate the generalized Fibonacci polynomials Fn(s, t) for n ∈ N by

1

1− sz − tz2
=

∞∑
n=0

Fn+1(s, t)z
n.

For more information, please refer to [19, 40, 57] and closely-related references therein.
It is clear that Fn(s, 1) = Fn(s) and Fn(1, 1) = Fn(1) = Fn for n ∈ N.
Motivated by the de�nition (1.2) for convolved Fibonacci numbers Fn(x), we can introduce two notions,

convolved Fibonacci polynomials Fn+1(s;x) and convolved generalized Fibonacci polynomials Fn+1(s, t;x),
by (

1

1− sz − z2

)x

=

∞∑
n=0

Fn+1(s;x)z
n

and (
1

1− sz − tz2

)x

=
∞∑
n=0

Fn+1(s, t;x)z
n.

For recent information, please refer to [4, 7, 67] and closely related references therein.

Remark 6. The idea of this paper comes from the papers and preprints [9, 11, 17, 18, 26, 27, 28, 29, 30, 31,
32, 36, 37, 38, 41, 42, 43, 46, 47, 49, 51, 52, 53, 60, 61, 62, 63, 65, 66, 68].

Remark 7. This paper is a companion of the electronic preprint [7] whose methods have been applied
in [21, 35, 44, 45] and closely related references therein.

Remark 8. This paper is an expanded and revised version of the electronic preprints [24, 33].
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