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 The lack of common semantic information among corresponding geo-objects in different 
datasets required new matching approaches based on geometric and topological measures. In 
this study, a semi-automated matching approach based on the matching capabilities of 
geometric and topological measures was proposed. In the first stage, after the initial matching 
performed by a scoring system, the efficiency of each measure on the matching accuracy is 
evaluated manually by an operator. In the second stage, (1) the score of each measure is 
updated in accordance with the accuracy distributions. This means that the score of a measure 
is increased if it is relatively more significant than others. Finally, (2) matching process is 
repeated with new scores. The proposed approach was tested by matching tree-, cellular-, and 
hybrid-patterned road lines in municipal, private navigation, and OpenStreetMap datasets. 
The experimental testing shows that it has satisfactory results both in accuracy and 
completeness. F-measure is over 86% in hybrid-patterned Bosphorus datasets.   

 
 

1. INTRODUCTION 
 
Geometric integration establishes the relationships 

between the objects in a spatial dataset and the 
corresponding objects in another dataset and ensures 
that the target dataset reaches the required competence. 
Producing better (geometrically and semantically more 
up-to-date and rich) maps by using two different maps 
representing the same entities is also an important issue 
of integration and is called map conflation (Lynch and 
Saalfeld, 1985; Saalfeld, 1988). The integration process 
can be used for different purposes. Cobb et al. (1998) 
remarked the requirements for map conflation as; 
updating with the objects transferred from one dataset to 
another, optimization of geometric and semantic 
accuracy, and transferring data to a dataset containing 
missing information. The conflation process enables the 
spatial data generated by different sources to be used 
together. Geometric, topological and semantic 
similarities between objects are important criteria for 
the conflation process. The greater the similarity, the 
lower the operator effort. 

The conflation process is based on the principle of 
matching geometries (point, line, and polygon) that 
represent the same real entities (Yuan and Tao, 1999). 
Determining the correspondences between the objects 
according to their relations and similarities is called 
matching process (Hacar and Gökgöz, 2019b). 

In this study, a semi-automated matching approach 
based on the efficiency rates of the measures was 
proposed. In this section, related studies in the literature 
are examined. Following section presents the study area 
and datasets, the geometric and topological measures 
used to determine the similarities between the objects, 
and the proposed approach. Section 3 presents the 
experiment with tree-, cellular-, and hybrid-patterned 
road networks, and the evaluation of the results 
conducted with the statistics of the study. Section 4 
concludes the study by discussing the results and giving 
several further suggestions. 

 
1.1. Related Works 

 
Many methods have been developed to match line 

objects since it was first applied in 1980s by Rosen and 
Saalfeld (1985) and Saalfeld (1988). Main problem in line 
matching is that none of the corresponding line 
geometries from different sources are geometrically 
identical. In other words, the geometrical properties of 
corresponding line objects such as orientation, length, 
shape, location have not equal values. According to Hacar 
and Gökgöz (2019b), there are three important reasons 
that researchers prefer to work with line matching rather 
than point and polygon matchings: (1) difficulties in 
establishing relationships between complex 
representations such as patterns, intersections, 
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roundabouts, dead ends, (2) the need to keep navigation 
datasets up-to-date and (3) the rise of Volunteered 
Geographical Information (VGI) datasets. 

The concepts of matching progress in spatial data 
integration have also been focused by researchers. Yuan 
and Tao (1999) classified the matching process by 
geometry, topology and semantic. Ruiz et al. (2011) also 
discussed the integration process by match type; 
geometric, topological and semantic. Volz (2006) 
classified the process by similarity measures; point-, 
linear-, and area-based and the hybrid. Xavier et al. 
(2016) classified the measures as geometric, topological, 
attribute, context, and semantic. Memduhoğlu and 
Başaraner (2018) compared thematic geographic 
ontologies created for cities and discussed about possible 
contributions of basic integration methods and 
technologies of spatial semantics for creating a multi-
representation spatial database paradigm. Hacar and 
Gökgöz (2019a) designed a conceptual model for 
matching process under spatial data integration by 
classifying the types of geometry, measure, relationship, 
and spatial information. 

There have been developed many matching 
methods. While some of them works fully automated, 
others allow the user intervention. Xiong and Sperling 
(2004) proposed a semi-automatic method for matching 
road networks. By using a cluster-based matching 
process, strong relationships between nodes, edges, and 
segments in the two road networks are determined. 
Their method allows identifying and correcting missing 
matches, but requires significant interaction (operator 
intervention) during the process. Li and Goodchild 
(2011) proposed an automated optimization model to 
match the road lines using geometric and semantic 
measures, as well as an affine transformation. They used 
asymmetric property of one-way Hausdorff distance as a 
measure of dissimilarity. In addition, the Hamming 
distance was also used as a criterion of dissimilarity to 
show the difference between road names. Lei and Lei 
(2019) also developed a flow-based optimization model 
that seeks to minimize the total discrepancy between two 
datasets. Moreover, Araújo et al. (2019) proposed a 
Spark-based approach using the names of the places 
(semantic) and context information (e.g., neighbouring 
streets) to compare the corresponding objects in real-
world data sources of New York and Curitiba. 

Some researchers focused on matching objects in 
datasets that have a significant scale difference. To work 
with this kind of source datasets, researchers often use 
topological measures (e.g., the degree of connectivity (or 
the valence), spider function, buffer-growing, etc.) to 
match the corresponding objects. Mustière and Devogele 
(2008) proposed an approach relying on the comparison 
of geometrical, attributive, and topological properties of 
objects for matching networks with different levels of 
details. Olteanu-Raimond et al. (2015) used belief theory 
to represent and fuse knowledge from different sources 
to model imperfection (imprecision, uncertainty, and 
incompleteness), and make a decision. Chehreghan and 
Abbaspour (2018) developed an optimization-based 
matching approach for multi-source spatial datasets by 
taking into account several geometric criteria. The 
approach benefits from a genetic algorithm and 

sensitivity analysis to identify corresponding objects. 
Moreover, Guo et al. (2019) designed a new matching 
method for the objects in multi-scale geodatabases using 
weights of some well-known geometric and topological 
measures. The method has three stages; (1) entire, (2) 
partial matchings, and (3) roundabout detection and 
matching. The authors used a splitting process to match 
the unmatched road segments. 

Some studies in urban lands are also crucial tasks of 
integration cases. Recently, VGI, social media, and 
geocoding data are used to extract and combine new 
spatial data in urban areas (Hacar 2020; Kılıç and Gülgen 
2020; Bilgi et al. 2019). VGI enables generation of maps 
by using crowd-sourced volunteer contributors. Each 
volunteer has equal role to contribute the geometric and 
semantic properties of the geographical objects. 
However, since there is no rule to be a volunteer in VGI, 
non-expert contributors may draw features irregularly 
or inconsistently with basics of cartography. Therefore, 
result map may have low quality. In this context, geo-
object matching is used as a process providing a solution 
for analysing and increasing the quality and accuracy of 
VGI data. Koukoletsos et al. (2012) proposed a matching 
approach to assess the completeness of VGI data. They 
developed a multi-step approach matching 
OpenStreetMap (OSM) road data with the UK's official 
mapping agency Ordnance Survey (OS), taking into 
account the similarities in geometric (search distance, 
direction, line-based buffer zone) and attribute (road 
names). Pourabdollah et al. (2013) also conducted a 
conflation study with attribute-rich OS data to improve 
the quality of OSM road data. Besides, Hacar and Gökgöz 
(2019b) conducted a matching study with OSM and 
TomTom navigation data. In some cases, line-based 
(linear) approaches to matching road objects may be 
insufficient. In such cases, an area-based (spatial) 
matching approach, like proposed by Fan et al. (2016), 
can be used. This method finds the corresponding blocks 
in source datasets with a spatial overlapping ratio. It then 
matches the surrounding roads using the matched 
blocks. Also Fan et al. (2016) tested their method by 
matching OSM and public city data and achieved 
satisfactory results in Heidelberg (Germany), a network 
of regular networks, and Shanghai (China), with a 
relatively more complex network. The sources and 
patterns of road networks are two important factors to 
consider in the matching process. Yang et al. (2014) 
classify the pattern groups of the blocks that the roads 
surround and match the nodes in the groups 
hierarchically. Hacar (2019) and Hacar and Gökgöz 
(2019b) developed a score-based multi-stage method 
and tested it with cellular-, tree-, and hybrid- patterned 
road networks. According to the method, the candidate 
matches are scored in accordance with the geometric and 
topological similarity and then the objects with high 
scores are matched incrementally. 

The matching methods differ from each other 
according to the hierarchical steps of the approaches, 
even if they have some common stages, metrics or rules. 
The design of the method can primarily affect the 
sufficiency of the case study.  Also, the complexity of road 
networks can reduce the sufficiency. The previous 
approaches had low interest in complex road networks 
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such as in Istanbul. In this study, the scope of the 
proposed approach is determined to design a new 
matching model and its applicability in Istanbul road 
networks. 

 

2. THE PROPOSED APPROACH 
 

The proposed approach performs the matching 
process of road lines thanks to the efficiency rates. The 
rates are calculated using geometric and topological 
measures. The main idea for selecting the measures is to 
determine the similarities of corresponding matching 
pairs from different source datasets. As seen in Fig. 1, the 
matching process is managed in two stages in addition to 
a pre-process. Firstly, two road networks are aligned as a 
pre-process. In the first stage, road lines closer to each 
other than a predefined threshold distance value T are 
identified as candidate matchings. Hausdorff distance is 
used to determine the closeness between candidates. T 
should be large enough to identify possible correct 
matches and small enough not to cause too many missing 
matches (mismatching). The threshold can be 
determined by examining the source datasets and 
structure of road networks, and by conducting several 
experimental matching observations. After the selection 
of corresponding pairs, for each candidate matching, (1) 
similarity scores are calculated based on the measures of 
Hausdorff distance (𝑆𝐻), orientation (𝑆𝑂), sinuosity (𝑆𝑆), 
mean perpendicular distances (𝑆𝑃), mean length of 
triangular edges (𝑆𝑇) and modified degree of 
connectivity (𝑆𝐶) (Fig. 2). The maximum similarity score 
assigned to a candidate pair is 4 for all measures apart 
from sinuosity and mean perpendicular distance. 
Sinuosity and mean perpendicular distance represent 
similar characteristics of lines. The maximum score with 
respect to these indicators is 2 so that the maximum total 
score of these indicators shall be the same as the others, 
4, for fairness (Hacar and Gökgöz, 2019b). Table 1 shows 
the computation criteria of scores for each measure. (2) 
Sum of the similarity scores are obtained for each 
candidate pair, and (3) the candidates, whose total 
similarity scores are maximum, are selected as matched 
pairs and other candidates are eliminated. The efficiency 
of each measure is determined by comparing the 
matched pairs with the result of the manual matching. 
After determining the number of correct and incorrect 
matches for each measure, it is ensured that the score of 
the measure, which performs better results in term of the 
number of correct and incorrect matches, is higher than 
that of the relatively insignificant (less number of correct 
and/or much more incorrect matches). For this purpose, 
the efficiency ratio is used, where the numbers of correct 
and incorrect matchings are placed together. Each 
measure has its own efficiency ratio. 

Maximum-Minimum normalization method was 
adapted to calculate the efficiency ratio. Briefly, the ratio 
is multiplied by the similarity scores to increase the effect 
of the measure that performs the matching process with 

high accuracy and reduces, but not disables, the effect of 
the measure with low accuracy. 

The normalization consists of two equation: Profit 
(P) and Loss (L) (Eq. 1 and Eq. 2). While P represents how 
far the value Xi from minimum value, L represents how 
close the value Xi to maximum value. The following 
formulas are used as original Maximum-Minimum 
normalization measures (Başaraner, 2011; Şen, 2013). 

 

𝑃 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1) 

𝐿 =
𝑋𝑚𝑎𝑥 − 𝑋𝑖

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (2) 

 
These criteria can be adapted to calculate the 

normalized values 𝑃𝑖 and 𝐿𝑖 for each similarity measure 
with regards to the correct and incorrect match numbers 
as follows. 

 

𝑃𝑖 =
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖

− 𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑖𝑛

𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑥
− 𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑖𝑛

 (3) 

𝐿𝑖 =
𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑥

− 𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖

𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑥
− 𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑖𝑛

 (4) 

 
where 𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖

 (i=1,2,..,n) represents the number of 

correct matches of the respective measure, 𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑖𝑛
 

represents the least number of correct matches, and 
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑥

 represents the maximum number of correct 

matches between all the measures. In addition, 
𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖

 (i=1,2,..,n) represents the number of incorrect 

matches of the respective measure, 𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑖𝑛
 

represents the least number of incorrect matches, and 
𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑥

 represents the maximum number of 

incorrect matches between all the measures.  
The efficiency rates could be calculated as follows: 
 

𝐸𝑖 = 𝑃𝑖 × 𝐿𝑖 (5) 

 
However, the efficiency ratio (Eq. 5) is to be zero for 

the measure that performs the maximum number of 
incorrect or minimum number of correct matches. This 
results in the score used for the respective measure being 
multiplied by a factor of 0 (zero) and the corresponding 
measure being ineffective (disabled) in the second stage 
of the approach. Since there is no correlation between the 
numbers of the correct and incorrect matches, making 
any measure ineffective may reduce the success of the 
process. Also, our experience in matching cases 
motivates us to consider all of the measures, even if it is 
relatively less significant (generating many incorrect 
matches). Therefore, the exponential function should be 
used with previous formula (Eq. 5). Exponential function 
prevents the least important measure from taking a value 
0 (Eq. 6). In other words, the least important measure 
also affects the results in the second stage. 
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Figure 1. The workflow of the proposed approach 
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Table 1. The computation criteria of similarity scores (Hacar, (2019); Hacar and Gökgöz, 2019b) 
Measure Criteria 

Hausdorff distance 
For each candidate pair, the first three closest matches are scored as 𝑆𝐻1

= 4, 𝑆𝐻2
= 2, 

and 𝑆𝐻3
= 1, respectively. The fourth and others are scored as 𝑆𝐻

𝑖 (𝑖>3 ∈𝑍+)
= 0. 

Orientation 
Candidate pairs in the same class are scored as 𝑆𝑂 = 4. If they are in adjacent classes 
(seen in Fig. 2)), the score is assigned as 𝑆𝑂 = 2. Otherwise, the score is assigned as 𝑆𝑂 =
0. 

Sinuosity 

The rules for sinuosity scores (𝑆𝑆) are as follows: 
if 𝑆𝑛 = Low and if 𝑆𝑚 = Low, then  𝑆𝑆 = 2 
if 𝑆𝑛 = Low and if 𝑆𝑚 = Mid, then  𝑆𝑆 = 1 
if 𝑆𝑛 = Low and if 𝑆𝑚 = High, then  𝑆𝑆 = 0 
if 𝑆𝑛 = Mid and if 𝑆𝑚 = Low, then  𝑆𝑆 = 1 
if 𝑆𝑛 = Mid and if 𝑆𝑚 = Mid, then   𝑆𝑆 = 2 
if 𝑆𝑛 = Mid and if 𝑆𝑚 = High, then  𝑆𝑆 = 1 
if 𝑆𝑛 = High and if 𝑆𝑚 = Low, then  𝑆𝑆 = 0 
if 𝑆𝑛 = High and if 𝑆𝑚 = Mid, then  𝑆𝑆 = 1 
if 𝑆𝑛 = High and if 𝑆𝑚 = High, then  𝑆𝑆 = 2 

Mean perpendicular 
distance 

If the difference between the mean perpendicular distances of Line n and Line m is less 
than or equal to 𝜎𝑝 2⁄  (𝜎𝑝 is the standard deviation of all mean perpendicular distances), 

then it is scored as 𝑆𝑃 = 2. If the difference between the mean perpendicular distances 
of Line n and Line m is greater than 𝜎𝑝 2⁄  and less than or equal to 𝜎𝑝, then it is scored as 

𝑆𝑃 = 1. Otherwise, it is scored as 𝑆𝑃 = 0. 

Mean length of 
triangle edges 

If the difference between the mean length of triangle edges of Line n and Line m is less 
than or equal to 𝜎𝐸 2⁄  (𝜎𝐸 is the standard deviation of all mean lengths of triangle edges), 
then this matching is scored as 𝑆𝑇 = 4. If the difference between the mean length of 
triangle edges of Line n and Line m is greater than 𝜎𝐸 2⁄  and less than or equal to 𝜎𝐸, then 
it is scored as 𝑆𝑇 = 2. Otherwise, it is scored as 𝑆𝑇 = 0. 

Modified degree of 
connectivity 

If the candidates have the same degree, then it is scored as 𝑆𝐶 = 4. If there is a just one 
degree of difference between the candidates, then it is scored as 𝑆𝐶 = 2. Otherwise, it is 
scored as 𝑆𝐶 = 0. 

 

 
 
Figure 2. The similarity scores of possible matches 
(Hacar and Gökgöz, 2019b). 
 

𝐸𝑖 = 2𝑃𝑖×𝐿𝑖  (6) 

 
In the second stage, the matching process is 

repeated with similarity scores updated (optimized) 
with 𝐸𝑖 efficiency rates. This means that the score of a 
measure is increased whether it is relatively more 
significant than others. Finally, the candidates with the 
highest total similarity scores are determined as certain 
matches. 

 
3. EXPERIMENTAL TESTING 
 
3.1. Study Area and Datasets 

 
The proposed method was tested with tree-, 

cellular-, and hybrid-patterned road networks in 
Istanbul.  We used different sources as; Istanbul 
Metropolitan Municipality (IMM), two private navigation 
companies Başarsoft and TomTom, and OSM, one of the 
popular VGI projects, to show how efficient the proposed 
approach with different samples (Fig. 3) (Table 2). Also, 
an additional matching process was conducted with a 
large amount of data covering Bosphorus of Istanbul to 
prove its efficiency in a realistic way (Fig. 4). In 
Bosphorus, major elevation differences exist from 
coastal land to exterior bound. This kind of local surface 
changes makes road networks complex and leads the 
road shapes to be similar with hybrid-patterns. 
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Figure 3. Tree-, cellular-, and hybrid-patterned road networks: IMM (green), Başarsoft (red), OSM (blue), and 
TomTom (orange) 

 

 
Figure 4. The road networks in Bosphorus, Istanbul: 
OSM (blue) and TomTom (orange) 

Table 2. The number or objects and total road length in 
each dataset 

Pattern Source 
The number 

of objects 

Total 
length 
(km) 

Tree 
IMM 134 14.54 

Başarsoft 118 13.64 

Cellular 
OSM 153 16.22 

TomTom 146 15.87 

Hybrid 
OSM 288 21.95 

TomTom 221 19.69 

Bosphorus 
OSM 3030 221.60 

TomTom 1381 141.04 
 

3.2. Pre-processing 
 

The source datasets have different coordinate 
systems. This difference affects the calculation of 
similarity negatively. For example, the objects in the 
Başarsoft, TomTom, and OSM datasets have geographical 
coordinates in WGS84 datum. However, the measures 
used in the study are calculated in metric. Therefore, the 
geographical coordinates of the objects were 
transformed into the ITRF96 datum (Gauss-Krüger 
projection, Central meridian: 30° and GRS80 ellipsoid) 
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where the IMM dataset was defined. Furthermore, two 
road networks were aligned using linear rubber-sheet 
transformation. Moreover, we set T distance threshold as 
85m for tree- and cellular-patterned road networks and 
50m for hybrid-patterned road network by using our 
previous matching experiences with source datasets and 
the study area. 

 

3.3. Results and Evaluation 
 

The results of the matching process were compared 
with the results of manual matching, and then, the 
numbers of correct and incorrect matches in Table 3 
were determined. The evaluation was performed both 
integrated and separately with each geometric and 
topological measure. In the first stage of the approach, 
some results occurs categorically in accordance with the 
type of measures and road patterns. While Hausdorff 
distance measure performed the maximum number of 
correct and the least number of incorrect matches in both 
tree and cellular patterns, its result in hybrid pattern is 
different. Mean perpendicular distance performs the 
maximum number of correct matches. However, it also 

gave the most number of incorrect matches in hybrid 
patterns. Therefore, we examine the results of the 
measures by using their correctness and incorrectness 
percentages (Table 3). Hausdorff distance measure 
performed the maximum correctness and the minimum 
incorrectness in all patterns. Sinuosity and mean 
perpendicular distance measure gave the least 
correctness and the maximum incorrectness in cellular 
pattern. Orientation was the second best similarity 
measure in terms of both correct and incorrect matching 
in all patterns. From this point of view, it can be observed 
from Table 3 that mean perpendicular distance was the 
worst in all patterns. Similarly, mean length of triangle 
edges and modified degree of connectivity performed the 
least correctness and the most incorrectness in hybrid 
pattern. However, these measures gave similar results 
with orientation and sinuosity in tree. 

The similarity scores used in the first stage were 
optimized by the 𝐸𝑖 in Table 4 and new similarity scores 
to be used in the second stage were calculated as in Table 
5. 

 

Table 3. The numbers and percentages of correct and incorrect matching 
  H1 O2 S3 P4 T5 C6 1. stage 

Tree 
Correct 

Number 90 88 84 83 86 86 88 
% 78 54 49 40 43 47 75 

Incorrect 
Number 26 75 86 125 114 97 30 

% 22 46 51 60 57 53 25 

Cellular 
Correct 

Number 146 146 109 144 142 145 147 
% 95 39 33 33 37 39 94 

Incorrect 
Number 7 233 224 299 246 231 9 

% 5 61 67 67 63 61 6 

Hybrid 
Correct 

Number 191 191 182 195 181 189 190 
% 83 56 47 40 40 40 82 

Incorrect 
Number 38 148 206 296 275 279 42 

% 17 44 53 60 60 60 18 
 1Hausdorff distance; 2Orientation; 3Sinuosity; 4Mean perpendicular distance; 5Mean length of triangle 

edges; 6Modified degree of connectivity 

 
Table 4. Efficiency rates (𝐸𝑖) of similarity measures 

𝐸𝑖  H1 O2 S3 P4 T5 C6 

Tree 2.00000 1.28409 1.03978 1.00000 1.03356 1.08765 

Cellular 2.00000 1.16961 1.00000 1.00000 1.11875 1.17006 

Hybrid 1.64067 1.32845 1.01742 1.00000 1.00000 1.02644 

1Hausdorff distance; 2Orientation; 3Sinuosity; 4Mean perpendicular distance; 5Mean length of triangle edges; 6Modified degree of 
connectivity 

 
Table 5. The similarity scores used in the first and second stages of the approach 

Stage Pattern 𝑆𝐻 𝑆𝑂 𝑆𝑆 𝑆𝑃  𝑆𝑇  𝑆𝐶  

1. All 4 2 1 4 2 2 1 2 1 4 2 4 2 

2. 

Tree 8 4 2 5.14 2.57 2.08 1.04 2 1 4.13 2.07 4.35 2.18 

Cellular 8 4 2 4.68 2.34 2 1 2 1 4.48 2.24 4.68 2.34 

Hybrid 6.56 3.28 1.64 5.31 2.66 2.03 1.02 2 1 4 2 4.11 2.05 

In the second stage, the relationships between the 
candidates were determined with new similarity scores 

in Table 5 and the process was performed for the last 
time. Accordingly, while the proposed approach, with 
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the updated (optimized) scores, performed almost the 
same number of matches as the number of manual 
matching in tree and cellular patterns, some missing 
matching occurred in hybrid pattern (Table 6). The 
missing matching is related to two parameter: (1) 
matching capability of the approach and (2) distance 
threshold. While the approach was common for all the 
source patterns, the distance threshold T was different 
in hybrid pattern. Therefore, possible reason for the 
missing matches of hybrid was T.  

With the updated similarity scores, the number of 
correct matches increased by 4 and the number of 
incorrect matches decreased by 7 in tree-patterned 
roads. Although the number of incorrect matches 
decreased by 2 in cellular-patterned roads, the number 
of correct matches also decreased by 1. While there is no 
change in the number of correct matches in hybrid roads 
after second stage, the number of incorrect matches 
decreased by 8. 

The operation of controlling the manual matching 
could have been too hard with over a thousand 
corresponding matching pairs in Bosphorus datasets. 
Therefore, after generating the final matching with 
whole datasets, the correct and incorrect matches was 
determined by comparing randomly selected sample 
data with manual matching (Fig. 5). In Table 6 and 7, the 
results are based on the sample of Bosphorus datasets. 

 

 
Figure 5. Randomly selected roads (green) and the 
whole road networks (grey) in Bosphorus datasets. 

 

Since Bosphorus datasets consist of several types of 
patterns, it is better to examine matching instances in 
accordance with the pattern type separately. Fig. 6 
shows correctly matched road lines with cellular 
pattern. They were matched correctly both in the first 
stage and the second stage. Both this visual instance and 
Table 6 show that the second stage of the proposed 
method almost have the same result with the first one in 
cellular patterned-road networks. Besides, while the 
northwest roads with hybrid pattern in Fig. 7 was 
matched correctly, the south was a missing match. The 
possible reason is that the corresponding roads have 

quite different geometric properties such as sinuosity 
and centroid. Moreover, the road 1 in Fig. 8 was matched 
incorrectly with the road 2ˈ both in the first and second 
stage since the geometric and topological properties of 
the road 1 are more similar with the road 2ˈ than with 
the road 1ˈ. As a matter of course, there were expected 
instances showing us that the second stage optimized 
the matching process by eliminating the incorrect 
matches in the first stage. The road 1 Fig. 9b was 
matched with three roads in other datasets in the first 
stage. However, the matches with the roads 2ˈ and 3ˈ 
were incorrect. In the second stage, the efficiency rates 
ensured the elimination of the incorrect matches. 

 

Table 6. Final results of the matching process by means 
of matching numbers 

 Cor.1 Incor.2 Miss.3 Sum 

Tree 

Man.4 116 - - 116 

1.Stage 88 30 - 118 

2.Stage 92 23 1 115 

Cellular 

Man.4 150 - - 150 

1.Stage 147 9 - 156 

2.Stage 146 7 - 153 

Hybrid 

Man.4 262 - - 262 

1.Stage 190 42 30 232 

2.Stage 190 34 38 224 

Bosphorus 
sample 

(Hybrid) 

Man.4 151 - - 151 

1.Stage 114 25 12 139 

2.Stage 114 18 19 132 

1Correct; 2incorrect; 3missing; 4manual matching 

 

 
Figure 6. Correct matches in the cellular pattern 



International Journal of Engineering and Geosciences– 2021; 6(3); 146-156 

 

  154  

 

 
Figure 7. Correct (northwest) and missing (south) 
matches 

 

 
Figure 8. Incorrect matches in the hybrid pattern 
 

 
Determining the accuracy of a matching study only 

by the correct matches is not sufficient. For example, in 
a study area, there are 100 manually detected possible 
matches and a selected automated method performed 
10 matches only. If none of the 10 matches is incorrect, 
the method is considered to have worked with 100% 
correctness. However, according to manual matching, 
the method could not identify 90 matches. This shows 

that completeness should also be taken into account 
when making assessments of accuracy. Therefore, three 
of the frequently used measures of statistical analysis in 
data science; precision (Eq. 7), recall (Eq. 8) and F-
measure (Eq. 9) were used to evaluate the proposed 
method (Samal et al., 2004; Song et al., 2011; Fan et al., 
2016). 

 
 
Figure 9. Manual (a), the first stage (b), and the second stage (c) matching 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑁𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑁𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ

 (8) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

Three parameters have been used in the statistical 
measures: Number of correct matches (true positive), 
number of incorrect matches (false positive), and 
number of missing matches (false negative) (𝑁𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ). 
The number of missing matches was obtained by 
subtracting the total number of matches performed by 

the method (sum of true and false matches) from the 
number of manual matches. 

The precision measure is a ratio of the number of 
correct matches to the total number of matches. 
Therefore, the precision was used as the accuracy 
indicator. F-measure is an evaluation measure in which 
the precision (accuracy) and recall (completeness) 
together affect in a balanced way. In the second stage of 
the method, the accuracy increased by 5.4%, 1.2%, 2.9%, 
and 4.4% in tree-, cellular-, and hybrid-patterned roads 
and Bosphorus sample, respectively (Table 7). It can be 
said that the results are satisfactory in terms of accuracy. 
Recall is a measure of how complete the methods are 
performed. For instance, when Table 6 is examined 
carefully, comparing with the manual matching result, 
the proposed approach performed two more matchings 
(over-matches) in the first stage and one missing in the 
second stage with tree-patterned roads. As seen in Table 
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7, the completeness is 100% in the first stage and 98.9% 
in the second stage. This means that over-matches do not 
affect the value of the recall measure. This also indicates 
that the recall value cannot be a standalone measure for 
the evaluation, but can be used to interpret the accuracy. 
From this point of view, recall value presented that the 
proposed approach ensured high completeness (almost 
fully complete). Therefore, the accuracy of the study is 
quite reliable. In hybrid-patterned roads, the recall value 
decreased in the second stage. This is because of that 
while the number of incorrect matches decreased, the 
number of missing matches increased. Also, F-measure 
increased by 3.1% and 0.7% in tree and cellular patterns. 
It has no change in hybrid pattern since (1) the number 
of correct matches had no change, and (2) decreasing 
number of incorrect matches was added to number of 
missing matches in both stages. 

 

Table 7. The results of the evaluation measures 
 Prec.1 

(%) 
Rec.2 

(%) 
F-m.3 

(%) 

Tree 
1.Stage 74.6 100 85.4 
2.Stage 80.0 98.9 88.5 

Cellular 
1.Stage 94.2 100 97.0 
2.Stage 95.4 100 97.7 

Hybrid 
1.Stage 81.9 86.4 84.1 
2.Stage 84.8 83.3 84.1 

Bosphorus 
sample 

(Hybrid) 

1.Stage 82.0 90.5 86.0 

2.Stage 86.4 85.7 86.0 

1Precision; 2recall; 3f-measure 
 

The number of correct matching of each measure is 
close to each other (Table 3). Therefore, the correct 
matching numbers have no specifics. This assessment 
supports the proposed efficiency formula in which the 
incorrect matches are used. Moreover, Hausdorff 
distance performed the number of correct matches at 
least 3.5 times greater than the number of incorrect 
matches (Table 3). Other measures performed many 
incorrect matches. Sinuosity and mean perpendicular 
distance performed the worst in cellular pattern since 
most of the corresponding road lines has low curvature. 
The results show that some of the similarity measures 
are more important than others for the pattern type on 
which they are used. For instance in our experiments, 
while Hausdorff distance was the best-matcher for all 
patterns, the mean length of the triangle edges was the 
worst-matcher for only hybrid pattern. This kind of 
changeable order between measures clearly supports the 
proposed approach that optimizes the similarity scores 
using the efficiency rates. 

 

4. CONCLUSION 
 

This paper proposes a semi-automated approach for 
road objects in line geometry. Besides, since it 
determined the efficiency rates for the tree-, cellular-, 
and hybrid-patterned road network datasets, the second 
stage of the proposed approach can be performed 
automatically with the road networks in a similar 
pattern. For a road network with a different pattern, the 
efficiency rates must be recalculated since the similarity 
measures have different correctness and incorrectness in 
terms of the pattern type (Table 3). In addition, efficiency 

rates can be calculated using small samples for datasets 
containing a large number of road objects, and then, 
applied to the source datasets. In this case, after the 
efficiency rates are determined semi-automatically by a 
manual matching operator using randomly selected 
samples, the actual large data is matched automatically 
using these efficiency rates. To prove the efficiency of the 
proposed approach, we conducted an additional 
matching process with OSM and TomTom road networks 
in Bosphorus, Istanbul. Since the Bosphorus networks 
were hybrid-patterned, the efficiency rates had no need 
to be computed again. This enables the matching process 
with the same patterned roads to start directly from the 
second stage. 

Utilization of Maximum-Minimum normalization 
and the exponential function enabled the efficiency rates 
to be ranged between 1 and 2. Thus, even the mean 
perpendicular distance was used as the least significant 
measure in the similarity calculation. 

The proposed approach does not use any semantic 
information to determine the similarity between objects. 
Instead, the similarities are calculated on the basis of 
scores based on geometric and topological measures. The 
optimization process updates the scores using the 
efficiency rates. 

In this study, the scoring rules and the geometric 
and topological measures were taken from the study of 
Hacar and Gökgöz (2019b). However, the proposed 
approach can be used to adapt different kind of scoring 
rules using different geometric and topological measures 
that are specific to the characteristics of the source 
datasets. 

The proposed approach has an F-measure over 86% 
in hybrid-patterned Bosphorus datasets. The results are 
satisfactory in terms of accuracy and completeness. The 
experimental testing also show that there is no need to 
conduct a second stage for the cellular-patterned road 
networks. 

Computing the time of the matching process is a 
hard task since the process is conducted semi-
automatically. The process time changes according to the 
experiences of the matching operator in the stage of 
manual results. This may occur the disadvantage that 
prevents planning the geo-process routines. 
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