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ABSTRACT 

 
This paper analyzes the evolution of the Lebanese GDP growth rate over the period 1970-

2019 by estimating two kinds of switching models: The Smooth Transition 

Autoregressive (STAR) model and the model of the Markov process. These models show, 

on the one hand, asymmetries in the evolution of GDP growth with an abrupt transition 

from a regime to another and, on the other hand, a high probability that the economy 

remains in the recession regime. Even though the duration of the expansion phase is 

longer than the duration of the recession phase, the Lebanese economy experiencing the 

greatest difficulties in moving from a recession regime to an expansion regime. In 

addition, such an evolution is explosive and volatile during the lower regime (recession 

phase) but stationary and damped in the upper regime (expansion phase).  Finally, the 

paper shows that the STAR model, taking a logistic form, better fits the Lebanese GDP 

growth than the Markov model.  
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1. INTRODUCTION 

 

Several studies about the GDP fluctuations have been conducted in developed countries 

(Cette, 1997; OCDE, 2002; Ferrara, 2008 and 2009) as well as in developing countries (Fathi, 

2009; Ndongo and Francis, 2007; Hoffmaister and Roldos, 2001). For example, regarding 

Lebanon, GDP fluctuations are considerably noticeable over the 1970-2019 period and 

particularly during the civil war. Indeed, before 1975 (i.e., the beginning of the civil war), the 

GDP exhibited a growth rate of 11% in 1972. Then, this rate fell drastically to – 84% in 1976 

and increased to 61% the next year (United Nations, 2020). This instability continued until the 

end of the civil war in 1990. In fact, during the civil war, the GDP growth rate displayed 

abnormal values and such values may distort the analysis of its evolution.  

 

The graph for the annual difference of the GDP (in logarithm) is presented below. 
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Figure 1: Lebanese GDP growth 1971-2019 

 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015  
Source: Author 

 

This volatility in the evolution of the GDP cannot be found in other developed countries as 

well as in most of the MENA countries (Appendix 1). Indeed, Lebanon is the country 

showing the biggest GDP fluctuations and, literature regarding the analysis of the Lebanese 

GDP growth evolution is relatively rare (Verne, 2011). Therefore, it is important to use 

nonlinear time series models to characterize the asymmetric dynamics in the macroeconomic 

data such as GDP growth. As a matter of fact, these models were not estimated in Lebanon 

where the evolution of the GDP growth appears erratic, especially during the civil war. So, 

these models seem particularly well adapted for this country to take into account the 

nonlinearity and possible asymmetries in the cyclical evolution of its GDP growth.  

 

Thus, the purpose of this paper is to estimate nonlinearity and asymmetries in the Lebanese 

GDP growth that are captured by the analysis of the passage from a regime (expansion) to 

another (recession). For apprehending these asymmetric evolutions of the Lebanese economy, 

we shall estimate and compare two kinds of switching models: the Smooth Transition 

Autoregressive model (called, thereafter, STAR model, which is well known and often 

compared with other linear models in the literature) to examine the dynamic behavior of the 

GDP growth, and the model of discrete-state Markov process developed by Hamilton (1989) 

to see the characteristics of these changes of regime. We also don’t forget that the Lebanese 

economy has been largely perturbed by civil war and other conflicts after 1990.  

  

Thus, to estimate these evolutions of the Lebanese GDP growth, in a context of political 

instability, the present paper contains the following sections. After a brief literature review, 

comparing nonlinear models with linear models developed in Section 2, Section 3 presents 

and proposes an estimation of a STAR model to investigate the threshold from which the 

Lebanese economy undergoes a regime change. Section 4 presents an estimation of a 

Markovian model developed by Hamilton (1989) to see the likelihood of change from a 

regime to another. Moreover, it makes a comparison to determine which model better fits the 

observed data. Section 5 concludes and comments. 
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2. LITERATURE REVIEW OF THE STAR MODEL COMPARED WITH OTHER 

LINEAR MODELS 

 

Nonlinear time series models are relevant to characterize the asymmetric evolution of the 

macroeconomic data. The most famous nonlinear model that analyzes regime-switching is the 

Smooth Transition Autoregressive (STAR) model. The STAR model was developed by 

Chang and Tong (1986) and later popularized by Granger and Teräsvirta (1993), Teräsvirta 

(1994) and Van Dijk et.al. (2002). It is particularly well adapted to capture nonlinear 

characteristics of business cycle indicators. For example, at the macroeconomic level, Skalin 

and Teräsvirta (1999) use such a model for examining the nonlinearity in the Swedish 

business cycle. The general specification of this model nets the linear autoregressive model as 

a special case. It is also more general in comparison to other nonlinear models like the 

threshold autoregressive (TAR) models, initially developed and discussed by Tong (1983). 

 

So, in the literature, this STAR model was compared with other linear and autoregressive 

(AR) models. Sarantis (1999) investigates the real change rate of G-10 countries and 

compares forecasting performance between the STAR model and linear models. He concludes 

that there is not a big difference between both models regarding the accuracy of the 

prediction. On the contrary, Teräsvirta (1994) analyzes the performance of the STAR model 

using 47 macroeconomic variables in the G7 countries and shows that the forecasting 

accuracy of the STAR model outperforms linear autoregressive models. A similar result is 

found by Bradley and Jensen (2004), regarding the forecasting of industrial production. 

However, Claveria and Torra (2014), analyzing the evolution of the tourism demand, find that 

the forecasting of the ARIMA model outperforms the nonlinear self-exciting threshold 

autoregressive (SETAR) model and artificial neural network (ANN) model as well. In the 

same activity sector, by allowing structural breaks in the data, Saayman and Botha (2017) 

show the superior performance of the nonlinear model relative to the SARIMA model. Umer 

et al. (2018), by employing the travel monthly and leisure index in Turkey from April 1997 to 

August 2016, show that the nonlinear Logistic STAR model does not improve the forecasting 

accuracy compared to the linear AR model.  

 

This brief literature indicates several contradictory results about the efficiency of forecasting 

of the nonlinear models compared with other linear models. However, in a country like 

Lebanon, where the evolution of the GDP growth is somehow erratic, it seems that the 

estimation of the nonlinear model as the Logistic STAR model is needed for apprehending 

nonlinearities and asymmetries. Such a model can be compared with linear models as is the 

case in the aforementioned literature, but our purpose is to evaluate it with another 

asymmetric model such as the Markov process that estimates the probability of the switching 

regime.  

 

3. SMOOTH TRANSITION AUTOREGRESSIVE MODELS AND DYNAMIC 

BEHAVIOR OF THE LEBANESE GDP GROWTH 

 

The STAR model is estimated on the annual GDP growth in Lebanon over the period 1970-

2019. This series has been unloaded from the United Nations Statistic (2020) (at constant US 

dollars price). We write it in logarithm and the first difference and obtain the GDP growth 

rate, Yt. 

 

The STAR model (Dias, 2003) for a univariate series Yt (rate of GDP growth), can be 

expressed as:  
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Where εt →iid(0, σε
2), m represents the lags of Yt and G, called the transition function. This is 

a continuous bounded function between 0 and 1and at least twice differentiable in the sample 

space. It takes two extreme values: G = 0 and G = 1 with c representing the threshold e.g., the 

rate of GDP growth around which the economy runs from a regime to another. The transition 

between these two extreme regimes is allowed to be smooth and is governed by the transition 

variable Yt – d. When G = 0, the economy enters the recession phase, e.g., the lower regime. 

When G = 1, the economy reaches the expansion phase, e.g., the upper regime where equation 

1 can be re-written as: 
 

 
 

In this model, the GDP growth follows a stationary process and moves more or less smoothly 

between two extreme regimes characterized by possibly completely different specifications 

and dynamics instead of switching abruptly as is assumed in a threshold autoregressive (TAR) 

model. For our purpose, these extreme regimes represent the expansion (positive GDP 

growth) and the recession (negative GDP growth). The regime that characterizes the dynamic 

at each moment is linear and depends on the lagged value of the transition variable yt – d. 

 

The transition function can take two different forms: The logistic form and the exponential 

form. 

 

The logistic form is as follows: 
 

 
 

This function is monotonically in Yt – d so that the two regimes correspond to high and low 

values of the transition variable. The threshold value c determines the point at which the 

regimes are equally weighted and γ controls the speed and smoothness of the transition. The γ 

coefficient is the smoothness parameter. It determines the slopes of the logistic function and 

consequently governs the speed with which the transition takes place between the lower 

regime (G = 0) and the upper regime (G = 1). If γ is very large, the change from 0 to 1 is 

abrupt and, if γ →∞, the logistic STAR (LSTAR) model nets a two regimes thresholds 

autoregressive (TAR) model as a special case. When γ →0, the LSTAR model nets the AR 

model. 

 

Regarding the exponential form, we have:  
 

 
 

This function is increasing in the absolute deviation of Yt – d from the threshold c. G(Yt – d; γ, c) 

= 0 when Yt – d  = c and G approaches 1 as Yt – d → ∞ and Yt – d →  – ∞. Such a function does 

not nest the TAR model because when γ → 0 or γ → ∞, the specification becomes linear since 

G approaches a constant function returning 0 or 1. 
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To capture nonlinear characteristics of the GDP growth and select between both functions, we 

run the Teräsvirta test (1994, p. 211) which leads to follow the sequence of steps: 

 

• Specifying a linear autoregressive model of order p for the GDP growth using the 

Akaike and Schwarz information criteria. 

 

• Testing linearity against the nonlinear specified alternative STAR model. 

 

• Determining the transition variable most suitable if the null hypothesis of linearity is 

rejected. 

 

• Choosing between the Logistic STAR (LSTAR) model and the Exponential STAR 

(ESTAR) model by testing a sequence of hypotheses.  

 

The first step requires the specification of a linear autoregressive model throughout 1970-

2019 and is to carry out the Lagrange Multiplier test (LM test) to test linearity against STAR 

models alternative. We choose the rate of GDP growth as a transition variable and estimate 

the delay parameter.  We also include the war dummy variable (W) to correct abnormal 

values. Such a variable represents the civil war and equals 1 from 1975 to 1990 and 2006 

(second war with Israel) and 0 otherwise.  

 

To run this test, we follow the Luukkonen et.al. (1988) procedure that consists in substituting 

the transition function F by its fourth-order Taylor expansion that then yields an auxiliary 

regression as: 
 

 
 

If the null hypotheses H0i of the sequential test are rejected, then the model is non-linear. 

Thus, in Appendix 2 (Table A1), the Fisher test F(k, n – k – 1) and the associated p-value 

regarding the null hypotheses H0i of the sequential test indicates that we can reject the null 

hypotheses of linearity (γ ≠ 0). 

 

At the same time, we identify the delay of the transition variable Yt – d. To determine such a 

delay, we have chosen the value for which the above-mentioned test rejects the null 

hypothesis more strongly. So, the delay is d = 2. 

 

Also, for choosing between the ESTAR model and the LSTAR model, we estimate the 

relation (5) based on the third-order Taylor expansion (b5, j = 0). By using the OLS method 

based on Akaike and Schwarz criterion (that give us m = 3) and on the delay of the transition 

variable (d = 2) we obtain:  
 

Yt = – 0.018 + 0.18Yt – 1 – 0.07Yt – 2 – 0.16Yt – 3 + 6.77Yt – 1Yt – 2 + 4.11Yt – 2 Yt – 2 + 4.67Yt – 3 Yt – 2  

         (0.37)  (0.60)         (0.08)        (0.54)        (2.33)**           (1.32)                 (1.94)* 

 

+ 2.98Yt – 1 Y 2t – 2  – 5.83Yt – 2 Y 2t – 2  – 3.94Yt – 3 Y 2t – 2 – 31.98Yt – 1 Y 3t – 2 – 25.27Yt – 2 Y 3t – 2  
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(0.51)                 (0.90)                  (1.04)                   (1.17)                   (1.40)  

  

 

– 25.32 Yt – 3 Y 3t – 2  – 0.16W + et         

  

   (2.50)**                 (2.12)**        (6) 

 

R2 = 0.60, N = 46 

 

Q(13, 14, 15)= [18.94(0.13) ; 19.03(0.16) ; 19.5(0.19)] 

 

 (.) = t-ratio and ***, ** significance at the one-percent level and five percent level 

respectively. 

 

R2 = coefficient of determination and N, the number of observations.  

 

Q is the Ljung Box Statistic with 13, 14, 15 lags and the p-value are also presented in 

parenthesis.  

 

The Q statistics and the associated p-value, larger than the five-percent level, show that 

residuals are following a white noise process. The war dummy variable shows a significant 

coefficient (at the five-percent threshold).  

 

Knowing that the model is nonlinear with the transition variable Yt – d = Yt – 2, we follow the 

Teräsvirta’s procedure (1994, p. 211) for choosing between the LSTAR model and the 

ESTAR model, by carrying out the three tests in the following sequence: 

 

H01: b4,j = 0 against H11 (b4,j ≠ 0), with an F-test (F4)             j = 

1,…,m 

H02: b3,j = 0  ׀ b4,j = 0 against H12 (b3,j ≠ 0  ׀ b4,j = 0,), with an F-test (F3)         j = 

1,…,m 

H03: b2,j = 0  ׀ b3,j = b4,j = 0 against H13 (b2,j ≠ 0  ׀ b3,j = b4,j = 0,), with an F-test (F2)     j = 

1,…,m 

This test gives us the following results (with the p-value in parenthesis): 

 

F4 = 2.18(0.09); F3 = 0.91(0.68); F2 = 7.14(0.00). 

 

Because we reject H03 after failing to reject H02, we may choose the LSTAR model. Such a 

result is confirmed by the Escribano and Jorda test (2001, p. 14) which recommends 

substituting the transition function F by its fourth-order Taylor expansion to consider that the 

threshold parameter c is different from zero (Appendix 3). 

 
Therefore, we choose the LSTAR model that takes the following form: 

 

Yt = (a0 + a1Yt – 1 + a2Yt – 2 + a3Yt – 3 + w1W) + (b0 + b1Yt – 1 + b2Yt – 3 + b3Yt – 3 + w2W)G(Yt – d; γ; 

c) 

 

With G (Yt – d; γ; c) = {1 + exp [– γ(Yt – 2 – c )]} – 1 + εt        (7) 
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{1 + exp[– γ(Yt– 2 – c )]}– 1  represents the transition function (described above) and W is the 

dummy variable representing the war.  

 

Using the nonlinear least square (NLS) method and dropping the statistically non-significant 

intercept, we obtain the following results: 

 

Yt = (– 0.54Yt – 1 – 1.46Yt – 2 + 0.90Yt – 3 – 0.51W) + (1.18Yt – 1 + 1.50Yt – 2 – 0.87Yt – 3 + 0.47W) G 

(Yt – d;γ; c) 

         (3.89)***    (5.64)***   (3.12)*** (4.77)***  (3.75)***  (3.90)***  (2.65)***   (3.28)*** 

 

With G (Yt – d; γ; c) = {1 + exp [– 269.62(Yt – 2 – 0.048 )] }– 1 + et                                   (8) 

                                      (0.44)              (6.07)***     

 

R2 = 0.58, N = 46 

Q(13, 14, 15) = [19.16(0.16) ; 19.31(0.20) ; 19.41(0.25)] 

ARCH(1) = [0.44(0.66)]; ARCH(2)=[– 0.43(067)] 

 

(.) = t-ratio and ***, ** significance at the one-percent level and five percent level 

respectively. 

R2 = coefficient of determination and N, the number of observations.  

ARCH(p): Heteroskedastic test of order p. 

 

The Q (Ljung-Box) Statistic (with the lags in parenthesis) and the p-value show that residuals 

follow a white noise process. The LM test of no ARCH effect of order one and order two and 

the associated p-value (larger than 5%) indicate that they are homoscedastic. All the 

parameters are highly significant. We also notice that the value of γ coefficient (significantly 

different from zero, as aforementioned in the relation (6)), is very large.  

 

Figure 2 shows that the rate of GDP growth is switching abruptly from the lower regime 

(recession) to the upper regime (expansion).  
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Figure 2: Threshold Weight Function (c = 0.048) 
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The transition function delivers a specification very close to a regime of self-exciting 

threshold autoregressive model initially developed by Tong (1983). 

 

The threshold value (c parameter) shows that the Lebanese economy runs from a recession 

regime to an expansion regime when the rate of GDP growth reaches around 4.8%. 

 

In addition, the war variable significantly corrects the abnormal values taken by the GDP 

growth, notably during the period of the civil war. Indeed, it entails a reduction in GDP 

growth of 39% (100*[exp (– 0.50)-1] = 39%) in the lower regime (G (Yt – d; γ; c) = 0), against 

4.9% (100*[exp(– 0.50 + 0.45)-1] = 4.9%) in the upper regime (with G(Yt – d; γ; c) = 1). Thus, 

the two regimes present different dynamics (Dias, 2003, p. 19). For instance, the lower 

regime, described by a negative GDP growth rate (G(Yt – d; γ; c) = 0), has the characteristic 

polynomial with inverse roots and modulus given by: 

   

  h(z) = z3 + 1.44z2 + 0.53z – 0.88       (9) 

 

with inverse real roots = – 0.546 and inverse complex roots =  associated with 

modulus ρ = 1.27. This shows an explosive dynamic. 

 

Concerning the upper, described by a positive GDP growth rate (F (Yt – d; γ; c) = 1), the 

characteristic polynomial with inverse roots is given by: 

 

h(z) = z3 – 0.06z2 – 0.64z – 0.03       (10) 

 

The inverse real roots are: 0.047; 0.75; – 0.845. This means that in the upper regime, where 

inverse roots are less than one, a stationary dynamic occurs. Such a property implies that once 

the economy is in the upper regime, it will remain there. The economy will return towards the 

lower regime after the occurrence of a large negative exogenous shock. However, once the 

economy is in this regime, the non-stationary dynamic leads the GDP growth out of the lower 
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regime to a normal growth rate as time elapses, even in the absence of positive shocks. In 

other words, we can estimate the period during which the Lebanese economy stays in a state 

of recession (lower regime) or a state of expansion (upper regime). 

 

4. CHARACTERISTICS IN THE CHANGE OF THE RATE OF GDP GROWTH: THE 

MARKOV PROCESS 

 

In Lebanon, the economy runs abruptly from a regime to another. Moreover, the lower and 

upper regimes exhibit completely different dynamics. Thus, by using the Hamilton (1989) 

procedure, we show that the dynamics of the GDP growth are state-dependent and follow a 

Markov process. In this model, there is a finite number of unobserved states. For our purpose, 

we have two states e.g., state 1: Expansion (upper regime) and state 2: Recession (lower 

regime). We set a random variable called ut such that ut = 1 or ut = 2 at any time. The ut 

variable follows a first-order Markov process because its current value depends only on the 

immediate past value. Moreover, we do not know which state the process is, but can only 

estimate the probabilities.   

 

The process can switch between states repeatedly over the sample. So, we estimate the state-

dependent parameter and transition probabilities as: P(ut = j/ut-1 = i) = pij. This means the 

probability of transitioning from state i to state j. We may write these probabilities in a 

transition matrix as follows: 

 

 
 

This matrix represents the probability of transitioning from regime i in period t-1 to regime j 

in period t with p12 = 1 – p11 and p22 = 1 – p21. 

 

In the Markov model, the probabilities are parameterized in terms of a multinomial logit:  

 
 

In this model, the values of the GDP growth rate (Yt), have to be corrected by the dummy 

variable (W). The number of states is imposed a priori. Because of the heteroscedasticity 

exhibited by the GDP growth from 1970 to 2018 and especially during the civil war (1975-

1990 period), we estimate the model with specific error variance.  For our purpose, the two 

states model can be expressed as:  

 

     (11) 

 

εt,i  and vt,i, are the white noises such as εt,i → N(0, σε
2) and vt,i → N(0, σv

2)  and σεt
2 is the error 

variance (called sigma) that measures volatility into the regime. W is a common dummy 

variable and the residuals et, are following an autoregressive process of order 1. 

 

The results of equation (11) are the following: 
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Yt = 0.03 – 0.02W + et, 1   if ut = 1 (upper regime)    (12) 

    (3.5)*** (1.05) 

 

σεt
2 = 0.026 + vt,1        (12’) 

        (24.23)*** 

 

Yt =  – 0.12 – 0.02W + et, 2 if ut = 2 (lower regime)    (12’’) 

       (1.99)** (1.05) 

 

σεt
2 = 0.42 + vt,2        (12’’’) 

        (4.28)*** 

 

et,i = 0.38et-1,i + vt        (12’’’’) 

       (3.65)*** 

 

N = 48 

(.) = z-ratio and ***, significance at the one percent-level. 

 

All parameters are statistically significant at the five-percent threshold, except the coefficient 

of the war variable (W) because the model corrects for heteroscedasticity of the GDP growth. 

We see that in the lower regime, the value of the sigma parameter is higher than in the upper 

regime. This shows larger heteroscedasticity of the GDP growth in the recession regime than 

in the expansion regime.   

 

Regarding the coefficients of the transition matrix parameter, p11, denotes the probability that 

the economy remains in an expansion regime in the next period, and it equals 92%: 

 

 
 

p21 denotes the probability of transitioning from an expansion regime to a recession regime in 

the next period. It equals 16%: 

 

 
 

With p12 = 1 – p11 = 0.08, the probability of transitioning from a recession regime to an 

expansion regime and p22 = 1 – p12, = 0.84, the probability that the economy remains in a 

recession regime we have: 

 

 

(row = i / column = j)  

  

                1              2 

  1 0.92 0.08 

  2 0.16 0.84 

 
Table 4.1. Constant transition probabilities 
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From these results, we can estimate the expected duration of the expansion regime E[Dexp] and 

the recession regime E[Drec] as follows: 

 

 
And  

 
 

We see a high probability of remaining in the regime origin: 92% regarding the upper regime 

and 84% for the lower regime. The corresponding expected durations in the upper regime 

(positive GDP growth) and, in the lower regime (negative GDP growth) are approximately 

12.5 years and 6.25 years, respectively.  

 

These durations of the regime can be exhibited by the graph of the filtered probabilities of 

being in the expansion regime and the recession regime (Figure 3). 

  

We can see the regime of each state according to the higher probability:  

 

Thus, 𝑈𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃𝑟 (𝑈𝑡 \Ω𝑡)  
                   K, N 

 

Where Ut represents the state of the economy estimated at the t period, K, the number of 

regimes, N the size of the sample and, Ω𝑡 is the ensemble of information. A recession occurs 

if the probability of being in the recession regime (state 2) is larger than 50%: Pr(Ut = 2\ Ωt) 

> 0.5 (Figure 3). An expansion occurs if the probability of being in expansion regime (state 1) 

is larger than 50%: Pr(Ut = 1\ Ωt) > 0.5 (Figure 4). 

 
Figure 3: Probability of being in a recession regime 

 

 

Source: Author 
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This Figure shows that Pr(Ut = 2\ Ωt) > 0.5 between 1975 and 1978 (period of total war); 

between 1982 and 1984 (period of Israeli invasion) and between 1986 till the end of the war 

and the beginning of the reconstruction period in 1991. 
 

Figure 4: Probability of being in an expansion regime 
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This Figure shows that Pr(Ut = 1\ Ωt) > 0.5 for 1974; for 1980 and 1981; for 1985; between 

1993 and 2018.  

 

In Lebanon, the probability that the economy remains in the upper regime is larger than the 

probability of staying in the recession regime (92% against 84%) and the duration of the state 

of expansion is longer than the duration of the state of recession. Such a result indicates that a 

cyclical asymmetry in the evolution of GDP growth occurs. Indeed, the two main phases of 

the business cycle, recession and expansion, are not equally long (Luukkonen and Teräsvirta, 

1991) and, overall, show different volatility. Furthermore, we notice that the probability of 

transitioning from an upper regime to a lower regime is twice higher than the probability of 

transitioning from a lower regime to an upper regime (16% against 8%).  

 

From such results, we can compare both models (Markov process or logistic STAR model) in 

Figures 5 and 6 to determine which better fits the Lebanese GDP growth data. 
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Figure 5: Observed data of Lebanese GDP Growth vs Fitted Data with LSTAR Model 
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Figure 6: Observed data of Lebanese GDP Growth vs Fitted Data with Markov Switching Model 
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While the two Figures are showing a relatively good fit of the observed Lebanese GDP 

growth, the MAPE (Mean Absolute Percentage Error) statistic indicates a very bad fit because 

it exhibits values larger than 100% regarding both models (Lewis, 1982). However, data are 

written in logarithm and first differences. So, in this case, MAPE has a disadvantage since it 

produces indefinite or infinite values when the observed values are zero or close to zero as in 

the Lebanese GDP growth rate. Indeed, absolute actual values of this macroeconomic variable 

are very small (often less than one) and this is the reason for which MAPE yields extremely 

large percentage errors. Such errors might be regarded as outliers. To overcome this problem, 

Kim and Kim (2016) propose a new measure called the Mean Arctangent Absolute Error 

(MAAPE) which is less biased than MAPE. This MAAPE is written as follows: 
 

Observed GDP Growth 

Fitted GDP Growth 

RMSE = 0.15 

0.15 

Fitted GDP Growth 

Observed GDP Growth RMSE = 0.25 

MAPE = 129% 

MAPE = 201% 
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Where Y and  are the values of the observed GDP growth rate and predicted GDP growth 

rate, respectively. 

 

We obtain MAAPE = 45% regarding the fit of the observed GDP with the logistic STAR 

model, which is a reasonable prediction, and MAAPE = 53% for the Markov model. 

 

Thus, according to this statistic, it seems that the Logistic STAR model better fits the data, 

since it indicates a MAAPE value lower than that obtained by the Markov model. 

Nevertheless, Figure 6 shows the Markov model better fits the observed GDP growth between 

1991 and 2019 while Figure 5 indicates that the logistic STAR model better fits the observed 

GDP growth during the 1970-1990 period.   

 

5. CONCLUSION 

 

From 1975 through 1990, the civil war disturbs the evolution of the Lebanese GDP growth 

rate and plays an important role in the correction of the abnormal values, notably when 

estimating the STAR model. By comparing two switching regression models, we saw that the 

LSTAR model better fits the Lebanese GDP growth than the Markov switching model, 

especially during the 1970-1990 period. However, the two models are complementary because 

they enable us to show asymmetries in the evolution of GDP growth. 

 

By estimating a STAR model, we have shown that the Lebanese economy goes brutally from 

the lower regime (recession) to the upper regime (expansion). Moreover, the evolution of the 

GDP growth in the lower regime is not only heteroscedastic but also explosive. It becomes 

less volatile and stationary in the upper regime.  

 

The model of the discrete-state Markov process has shown that the Lebanese economy 

exhibits expansion for a relatively longer time than recession. However, the probability that 

this economy goes from an expansion regime to a recession regime is twice higher than the 

probability of transitioning from a recession regime to an expansion regime. This means that 

even though this economy is relatively resilient (until 2019), because of the Lebanese 

diaspora, which allows Lebanon to benefit from large financial inflows, it is having great 

difficulties in moving from a recession regime to an expansion regime. A lack of an effective 

economic policy and a high level of corruption that prevents the sustainable growth of the 

Lebanese economy can explain such a phenomenon.  
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APPENDIX  

 

 

 
 Mean  Median  Maximum  Minimum  Std. Dev. Skewness  Kurtosis 

ALGERIA 0.03 0.03 0.20 -0.10 0.04 0.77 9.82 

EGYPT 0.05 0.05 0.15 0.01 0.03 1.24 4.85 

IRAQ 0.04 0.04 0.43 -1.08 0.22 -2.58 14.84 

IRAN 0.02 0.03 0.21 -0.24 0.08 -0.60 4.25 

ISRAEL 0.04 0.04 0.11 0.00 0.03 0.49 3.15 

JORDAN 0.04 0.04 0.19 -0.11 0.05 0.14 4.60 

KUWAIT 0.02 0.03 0.60 -0.53 0.16 0.07 8.22 

LEBANON 0.02 0.03 0.61 -0.84 0.22 -1.41 7.90 

LIBYA -0.01 0.03 0.81 -0.95 0.27 -1.06 7.33 

MORROCO 0.04 0.04 0.12 -0.07 0.04 -0.62 3.47 

PALESTINE 0.05 0.06 0.21 -0.13 0.08 -0.15 2.39 

SYRIA 0.03 0.05 0.22 -0.31 0.10 -1.36 5.90 

TUNISIA 0.04 0.04 0.16 -0.02 0.03 0.85 6.36 

TURKEY 0.04 0.05 0.11 -0.06 0.04 -1.03 3.54 

UAE 0.05 0.05 0.23 -0.21 0.08 -0.40 4.92 

 
Table 1. GDP Growth: Descriptive statistics for MENA region 

 

With Libya and Iraq, Lebanon is the country exhibiting the greatest volatility of the GDP 

growth with a rate varying from – 84% to 61% and a standard deviation equals 0.22, the 

second-highest of the sample. 

 

Non-linearity test with Yt – 2 as transition variable (based on equation (5)) 

 

 (5) 

 

To run this test, we also use the same OLS method to estimate (5), with m = 3 and d = 2, we 

obtain: 

 

Yt = – 0.03 + 0.04Yt – 1 + 1.31Yt – 2 + 0.14Yt – 3 + 1.84Yt – 1Yt – 2 – 6.57Yt – 2 Yt – 2 – 3.26Yt – 3 Yt – 2  

         (0.51)  (0.11)        (0.69)        (0.43)        (0.25)              (0.64)                 (0.36) 

 

+ 45.21Yt – 1 Y 2t – 2  + 7.79Yt – 2 Y 2t – 2  + 46.69Yt – 3 Y 2t – 2 – 21.79Yt – 1 Y 3t – 2 + 29.73Yt – 2 Y 3t – 2  

    (1.03)                   (0.46)                  (0.81)                   (0.24)                     (0.24)  
  

 

– 28.43Yt – 3 Y 3t – 2  – 307.31Yt – 1 Y 4t – 2  – 167.03Yt – 2 Y 4t – 2   – 147.96Yt – 3 Y 4t – 2  – 0.20W + et  

(18) 

  (1.19)                     (1.12)                     (1.0)                          (0.76)             (2.08)** 
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R2 = 0.55; N = 46;  

 

Q(13, 14, 15) (the Ljung-Box statistic)= [13.05(0.41) ; 13.74(0.47) ; 14.65(0.48) 

 

 (.) = t-ratio and * significance at the ten-percent and one-percent levels respectively. 

 

R2 = coefficient of determination and N, the number of observations. The Q statistics show 

that residuals are following a white noise process. 

 

Only the war variable has a significant impact on GDP growth. 

 

Non-linearity test: Yt – d = Yt – 2 

Hypothesis b1,j = b2,j =  

b3,j = b4,j = 0 

b1,j = b2,j =  b3,j = 0 b1,j = b2,j =  0 b1,j = 0 

F(k, n – k – 1)=F-Stat 

(p-value) 

3.47 

(0.00) 

3.75 

(0.00) 

3.90 

(0.00) 

7.33 

(0.00) 

 

In all cases, we reject strongly the null hypothesis of non-linearity. 

 

The Escribano-Jorda test 

According to Escribano and Jorda (2001, p. 14), we must consider that the threshold 

parameter c is different from zero. Thus, the authors recommend substituting the transition 

function F by its fourth-order Taylor (equation (5)). 

 

So, for choosing between LSTAR and ESTAR, they propose to carry out another two tests: 

 

H0L: b2,j = b4,j = 0 against b2,j ≠ b4,j ≠ 0 with an F7 test. 

H0E: b3,j = b5j = 0 against b3,j ≠ b5,j ≠ 0 with an F6 test. 

 

If the minimum p-value, corresponds to F7, then we have to select the LSTAR model, and 

ESTAR model if it corresponds to F6. 

 

By using the results of relation (17) we have: 

 

F7 = 2.38(0.06); F6 = 0.71(0.64) 

 

The results of the F7-test and the F6-test with the p-values in parenthesis indicate that the p-

value of the F7-test is less than the p-value the of F6-test. Consequently, we can choose the 
LSTAR model. 
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