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Abstract

In this current study, we introduced and investigated two new subclasses of the bi-univalent functions associated with g-derivative operator;
both f(z) and f~!(z) are r-fold symmetric holomorphic functions in the open unit disk. Among other results, upper bounds for the coefficients
|pr+1| and |pos41] are found in this study. Also certain special cases are indicated.
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1. Introduction

Let 57 be the family of holomorphic functions, normalized by the conditions f(0) = f'(0) — 1 = 0 which is of the form:
f@) =z4p+ P38+ (1.1)

in the open unit disk Q = {z: |z| < 1}. We indicate by ¢ the subclass of functions in .7 which are univalent in £ (for more details see [10]).
The Keobe-One Quarter Theorem [10] state that the image of Q2 under all univalent function f € J# contains a disk of radius %. Hence all
univalent function f € ./ has an inverse f~! satisfy £~ !(f(z)) and f(f~'(v)) = v (Jv| < ro(f), ro(f) > 1), where

() = f1(v) =v— P07+ (2p3 — p3)v* — (5p3 —Spap3 +pa) vt + - (12)

A function f € J# denoted by & is said to be bi-univalent in Q if both £~!(z) ans f(z) are univalent in Q (see for details [15, 7, 26, 11, 17,
30, 31, 32, 33, 28, 23, 24, 21]).

Jackson [13, 14] introduced the g-derivative operator %, of a function as follows:

flaz)— f(2)
(g—1)z

and 7, f(z) = £'(0). In case f(z) = z? for ¢ is a positive integer, the g-derivative of f(z) is given by

2 —(z9)?
(g—1)z

Asq— 17 and ¢ € 4, we get

D4f (2) = (1.3)

P42 = = [9]yz*".

1—¢g?
[0l =5—_ _qq =l+q+-+q"—¢ 44

where (z # 0, g # 0), for more details on the concepts of g-derivative (see [16, 6, 3, 4, 19, 20, 9, 17, 22]).
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A domain W is said to be #-fold symmetric if a rotation of ¥ about the origin through an angle 27 /¢ carries ¥ on itself. Therefore, a function
f(z) holomorphic in £ is said to be ¢-fold symmetric if

FeF2) =e® f(2).

A function is said to be 7-fold symmetric if it has the following normalized form
f@)=z+Y pip1??"! (zeQ, ten). (1.5)
o=1

Let .#; the class of ¢-fold symmetric univalent functions in €, that are normalized by (1.5). In which, the functions in the class . are one-fold
symmetric. Similar to the concept of 7-fold symmetric univalent functions, we introduced the concept of 7-fold symmetric bi-univalent
functions which is denoted by &;. Each of the function f € & produces ¢-fold symmetric bi-univalent function for each integer r € 4.
The normalized form of f(z) is given as in (1.5) and the series expansion for f~!(z), which has been investigated by Srivastava et al. [27], is
given below:

_ 1
gw)=fFv)=v—p vt + [(f+1)P1271 7p21+]] 2+l _ {E(z+1)(3t+2)p,3+1 — (3t +2)pr11P2t+1+ P3e+1 | - (1.6)

Here are some examples of 7-fold symmetric bi-univalent functions:

{ilog(iJr;)l}’ [_1Og(1_zt)]%’ {lzzt} ’

for more details on 7-fold symmetric analytic bi-univalent functions (see [2, 5, 8, 12, 27, 29, 17, 25]).

In this current research, we introduced two new subclasses denoted by .7, Zg‘31_’2’(8; ¢) and .7, 6?_’,5 (8;¢) of the function class & and obtain
estimates coefficient |p;| and |pa, 1| for functions in these two new subclasses.

Lemma 1.1. [18] Let the function @ € & be given by the following series:
o) =1+oz+ o+ (€X).

The sharp estimate given by
lw,| <2 (ne ),

holds true.

2. Main Results

Definition 2.1. A function f(z) given by (1.5) is said to be in the class yé?}y(s;q;) (0<g<1,0<y<1,0<8<1,0eN,z,0EQ, 1€
N) if the following condition are fulfilled

[
feé& and |arg {(1 —-9) (%J(z)) +6 (z(@qf(z))' + @qf(z)> (@qf(z))(pl} < Yzl .1
and
¢ T
arg |:(1 —9) (@qg(v)) +6 (v(@qg(v))’ + qu(v)> (@qg(v))‘pl} < % 2.2)

where g(0) is given by (1.6).

Remark 2.2. We have lim,__, ;- 9;}7/(5; Q)= th(& ©) and for one-fold case 957.1 (0;1) = 9{2/ which was introduced by Srivastava et
al. [26]. ' '

Theorem 2.3. Let f(z) € 71 (8:9), (0<g<1,0<y<1,0<8<1, €M, 2,0E€Q, t €.N) be given (1.5). Then

2
Pt < ! 23)
\/(H— D(@+2t8)[2t +1]gy+ (¢ +28) (9 — Ve +- 1127 — (v — 1) (¢ +18)2[t +1]3
and
2y 2(t+1)7
Pl < G s 1], T (@t 18P+ 1B 24
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Proof. Using inequalities (2.1) and (2.2), we get
¢
(1-9) (%f(@) +6 (Z(%f(Z))’ +%4f (2)) (2@ =) (z€Q) 2.5)
and
[
(1-9) <%g(v)> +6 (v(@qg(v))’ + %g(v)> (Z48(0))? ' =D(0)]"  (veQ) (2.6
where x(z) and y(v) in &2 are given by the following series
x(2) = 1+x2 + a2 +x32 +-- 2.7
and
Y(0) = 1+y,0" +y 0% +y307 4. (2.8)
Now, comparing the coefficients in (2.5) and (2.6), we get
(@+18)[t+1gpr1 =7x (2.9
(¢+218)(¢— D[t +1]; -1
(¢ +218)[2 + 1gpars1 + £ 9021 = Yoy + WZ )3 (2.10)
—(@+18)[t + 1]gpr1 =Yyt (2.11)
(p+218)(@— 1)t +1]3 -1
(p-+208) 21+ 1)y ([r+ 11071 = pat ) + . L2y =+ T3 2.12)
From (2.9) and (2.11), we obtain
X =—y (2.13)
and
29 +18)*[t + 15071 = V(a7 +57)- (2.14)
Further from (2.10), (2.12) and (2.14), we obtain that
—1) [ 2(@+18)r+112p2
(94 268) 2+ 11yl 11071+ (9 208) (9 — e + 12021 = ¥(xa +y20) + 7Y Pret |
Therefore, we have
p2 _ (22 +)’2t)72
t+l [t+1](@+2:8)[2t +1]gy+ (@ +2t8) (@ — Dt + 112y — (y—1)(@ +18)2 [t +1]2
By applying Lemma 1.1 for the coefficients xp; and yy,, then we have
2
Pl < L :
\/[z+ 1(+268)[2t + 17+ (9 +2:8) (@ — 1)t + 12y — (y— 1) (@ +18)2[¢ + 112
Also, to find the bound on |y, 1], using the relation (2.12) and (2.10), we obtain
2 Yiy=1) (>
2+ 28) 20+ 1l + 1]parsr — (9+28) 20+ Uglr+ 107, =Yl —y2) + L= (- (2.15)
It follows from (2.13), (2.14) and (2.15), we get
Yoo —va) PG5 016

Pl = o+ 2u8) 21, | Mp+18)2 20+ 12
Applying Lemma 1.1 for the coefficients x;, x5, ¥, y2;, then we have

2y 206+ 1)y
¢+280)[2+1]  (@+10)2[t+1]7

lP2s1| < (
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Remark 2.4. We note that 36‘3’17(3; Q)= 3;”(5; @), which is the one-fold case introduced by Akgiil [1].

Choosing ¢ —» 17! in Theorem 2.1, we obtain the following corollary:

Corollary 2.5. Let f(z) € ygf(S;(p), (0<y<1,0<8<1,0eA,2z0eR,te.N)be given (1.5). Then

2y

‘g+”§/¢0+1X¢+2wﬂ%+lw+(¢+bEX¢—1W+&Py—@u&ﬂ¢+¢5?b+u2 ot
and

2y 292
I P T TR R Py I (2.18)

Remark 2.6. We note that lim,__, ;1 9;!:17/(0; 1) = 7{! which is the one-fold case and obtain the corollary 2.7 as follows:

Corollary 2.7. [26] Let f(z) € ﬂg, (0<y<1,z,0€ Q) be given (1.1). Then

[ 2
< 2.19
lp2| <7 742 (2.19)

and

(3y+2)

o3l < ¥ . (2.20)

Definition 2.8. A function f(z) given by (1.5) is said to be in the class <7£‘z§(5;(p) (0<g<1,0<€E<1,0<6<1,0p€H,z,0E
Q, t € N) if the following condition are fulfilled

[
fe& and %{(1 -5) (%f(Z)) +5<Z(9qf(1))/+9qf(Z)> (%f(z))‘”} > ¢ @a1)
and
[
ER{(] —-9) (@qg(v)> +0 (v(@qg(v))'+@qg(v)) (%]g(v))q’l} > & (2.22)

where g(v) is given by (1.6).

Remark 2.9. We have the class lim,__,; 9;’}5(6; Q)= 9§7l(6;(p) and for one-fold case 905’] (0;1) = 9{; which was introduced by
Srivastava et al. [26].

Theorem 2.10. Let f(z) € 363.’?(5;(;)), (0<g<1,0<E<1,0<6<1,0€M,z,0E R, t€.N)be given (1.5). Then

: 2(1-9) 1-§
Pri] < mm{ (04137 1], z%zw 0,0+ 1)@ 1218) + (¢ D(g 128 + 1]3,} 223)
and
2(1-¢)

IP2r+1] < m (2.24)
Proof. Using inequalities (2.21) and (2.22), we get

¢
(1-3) <%f(Z)> +5 (Z(%f(Z))’ + %f(Z)> (Duf ()P =E+(1-Ex(2) (€ Q) (2.25)
and

¢
(1-9) <%g(v)) +6 (v(%g(v))’ + %g(v)> (Z4g()? ' =8+ (1-Eh(x)  (veQ) (2.26)
where the functions x(z) and y(v) are given by (2.7) and (2.8). Now comparing the coefficients in (2.25) and (2.26), we get
(9+18)[t+1]gprer = (1 E)x; 2.27)

+2t8) (@ — 1)[t +1]2

(0+28) 2t + gparss + 2 )("’2 Wtz (e (2.28)

—(@+18)[t+1gprs1 = (18 (2.29)
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S _ 2
(p+260) -+ 1)y (#1102 —parr) 4 PO 2 1y,

From (2.27) and (2.29), we obtain

R

and

2@ +18)7 [t + 105071 = (1-&)* (a7 +¥7).

Also, from (2.28) and (2.30), we get

(9 +2:8)[2t + 1]lt + 117y + (9 +2:8) (9 — Dt + 11507 = (1 - &) (x2s + )

Applying the Lemma 1.1 for the coefficients x;,x2;,y:,y2s, we find that

1-8
Preil < 2\/[ZH— g(t+1)(@+2:8) + (¢ —1)(@+28)[r+1]7

Also, to find the bound on |py,+ 1], using the relation (2.30) and (2.28), we obtain
—(@+2:8)[2t + Mg [t + 1]p7 1 +2(9 +208) 20 + 1]t + 1parst = (1 &) (x2r —y)
or equivalently

(1 =&)(x —ya) (t+1) ,
Pat1 =5 +2t]4(9 +2t8) T P

By substituting the value of Pz2+1 from (2.32), we have

(=89 —ya) | =&+ 1)(F +7)
P = A 2] (@ +28) T (e +18)2[1+1]2

Applying the Lemma 1.1 for the coefficients x;,xy;,y;, vz, We get

2(1-¢) 21 =8> +1)
1+21(@+28) (9 +18)2[1+1]2°

P21 < [
Also, by using (2.33) and (2.35), and applying Lemma 1.1 we obtain

2(1-¢&)
p2s1| < T+2,(p+26)

which is the desired bounds on coefficients |py1 1| as asserted in Theorem 2.10.

Taking lim,__, ;-1 in Theorem 2.10, we have Corollary 2.11 as follows:

Corollary 2.11. Let f(z) € 92[(5;(,0), (0<E<1,0<8<1, 9N, z,0eER, 1€ .N)be given (1.5). Then

2\/[2z+1](t+1)( +2t5;;( —1)(p+2:8)[1+1]?
Pri1] < MY M

(@+16)2[t+1] 1421

and

2(1-¢)
‘p2t+1| < W

Remark 2.12. For one-fold case, Corollary 2.11 gives the following Corollary for the bounds on Coefficients |pz| and |p3|.

Corollary 2.13. Let f(z) € Zﬁ (8;0), (0<E<1,0<8<1, @ €A, z,0€ Q) be given (1.1). Then

\/ 2(1-8)
3(p+2t8)+2(@—1)(@+219)
‘p2| S (17§>

(p+16)?

W= O
IA A

£<
&<

—_— =

and

2(1-¢)

P31 < 3o 7200

Remark 2.14. Putting 6 =0 and ¢ = 1 in Corollary 2.13, we obtain the following corollary:

(2.30)

2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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Corollary 2.15. [9] Let f(z) € ,765, (0<é& <1, z,0 € Q) be given (1.1). Then

2(1=¢) 1
Ipa| < 5o 0s6<3 (2.41)

1-¢  1<é<i
and

2(1—
ool < 2080 @42
Remark 2.16. Corollary 2.15 is an improvement of the estimates for coefficients on |p;| and |p3| obtained by Srivastava et al. [26].
Corollary 2.17. [26] Let f(z) € 35, (0<E <1, z,0€Q)be given (1.1). Then
2(1—
Ip2| < % (2.43)
and
1-&)5-3

lps| < # (2.44)
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